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ABSTRACT Graphs classification is a relevant problem that arises inmany disciplines. Using graphs directly
instead of vectorization allows exploiting the intrinsic representations of the data. Support Vector Machines
(SVM) is a supervised learning method based on the use of graph kernel functions used for this task. One of
the problems of SVM, as the number of samples increases, is the cost of storing and solving the optimization
problem related to SVM. In this work, we propose a method capable of finding a small representative subset
of the whole graph data set such that an approximate solution of the SVM optimization problem can be
obtained in a fraction of the time, and without significantly degrading the classification prediction error. The
method is based on the use of Locality-Sensitive Hashing for projecting over the Hilbert spaces defined by
appropriate graph kernels that measure similarity between the graphs. A description of the algorithm, as well
as numerical results using two graph kernels (Simple Product and Random Walk) on simulated and real life
data sets are presented. The numerical experiments compare the training times and the classification error
between the SVM obtained with our smart sampling approach, and the SVM obtained over the complete data
set or over a random sub-sample. The results offer evidence of the advantages of our proposal for solving
large scale graph classification problems when using SVM.

INDEX TERMS Graph classification, locality sensitive hashing, support vector machines.

I. INTRODUCTION
Many kinds of objects can be naturally represented as graphs,
for example biological sequences, chemical compounds,
RNA secondary structures or fraud and money laundering.
The wide use of graphs to model data structures, the existence
of large data basis (e.g. NCBI’s PubChem) and the demands
from new applications could explain the effort devoted, in the
recent decades, to develop efficient methods for processing
graph data. In particular, the classification problem, which
consists in building models to predict the class label of a
given object by learning from training data, has become a
graph mining problem of great interest among researchers
and practitioners because of its ample field of applications.
For a general presentation on graph classification methods,
we refer to [28].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jad Nasreddine .

Support Vector Machines (SVM) is a popular supervised
machine learning technique for classifying objects. It is
characterized by the use of kernel functions to embed objects
in a feature space, such that parameter estimation depends
only on the chosen kernel and not on the actual embedding.
This, in addition to the proven robustness of the method along
with the elegant theory behind it, explain the appeal and
popularity of SVM. However, a bottleneck for its use, is the
dependence on the choice of adequate kernel functions aswell
as the high computational cost when considering large data
sets. These are particularly relevant when trying to use SVM
for graph classification, since adequate similarity measures
are needed. Recent developments have tried to close the gap
between the use of kernel machines and graph classification
by proposing similarity functions for graphs, so particular
kernels can be built [22].

Even for small sized graph data sets, their nature makes
the SVM problems to be solved very costly, so efficient
methods are of interest. In this work, we deal with the problem
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of classifying graphs by using Support Vector Machines
(SVM). We propose a method based on Locality-Sensitive
Hashing (following the ideas presented in [12]) in order
to choose a subset of the graphs to represent the original
data set without loosing too much significant information.
For this, we use the rationale of finding an adequate subset
of representative points via projections of the transformed
graphs. More precisely, using the kernel-trick, for any chosen
kernel there exists a transformation such that this kernel
represents the inner product in an appropriate Hilbert space.
Graph projections will be based on this kernel (without
having to actually consider the transformed graphs) and they
will allow us to create bins so that with high probability points
belonging to the same bin are close, and points which are far
apart will not be in the same bin. Based on these bins, it is not
necessary to consider the whole original set, thus reducing the
effective size of the data set.

The paper is organized as follows. In Section II we present
some related works. In Section III we briefly introduce
SVM methods. Section IV is devoted to presenting basic
facts and notation on graphs. There, the Simple Product
and Random Walk kernel, the kernels used in our numerical
studies, are introduced. The proposed algorithm is presented
in Section V. Section VI resumes the numerical experiments
and their results. Finally, some conclusions and remarks are
presented in the last section.

II. RELATED WORK
Because the computational time of using SVM becomes very
demanding when training large data sets, there have been
many attempts in the literature to address this bottleneck.
A group of them are oriented to find an approximated solution
of the SVM optimization problem by solving a sequence
of smaller problems. Relevant algorithms in this respect are
SMO [23] and the extension, LIBSVM [19]. The latter is at
the foundation of several codes presented in well known and
used packages, as for example sickit-learn of Python.

There are also other strategies that aim at building an
approximate optimization problem using data reduction.
These approaches are very diverse in nature, including
methodologies that use geometry, clusterization, distance-
based approaches, and random sampling. The best method to
use for data reduction is still an active research topic, as can
be seen from the recent reviews [3] and [21]. Some issues to
address are the efficient treatment of imbalanced data sets and
the effect of noise and the kernel functions [3].
Among the approaches that use sub-sampling for data

reduction, is the random sampling algorithm (RSA) [1] which
is a technique based on assigning a probability to each
sample to be chosen. Once a random number of samples has
been selected, an SVM is trained, and it updates the initial
probabilities, increasing the ones with samples that have
been miss classified. The reduced SVM method (RSVM)
[18] is another method that randomly selects a subset of
the data to represent the original training set. The kernel
matrix is replaced by a rectangular kernel matrix formed

by this selection. The formulation of the SVM problem
differs from Problem (3) since the kernel matrix found is
included in the restrictions of the optimization problem to
be solved, instead of the objective function. The Knee-cut
SVM algorithm in [24] uses the kernel as a measure of
the distance between the classes and eliminates samples
that are far from the boundary of the classes. A different
approach is presented in [14] where the reduction of the
data includes the assignments of large weights to important
samples and the reduction of the features, by using graph and
self-paced learning. The methods in [5] and [6] use nearest
neighbors with sub-sampling in order to select a subset of
significant instances. They start by training an SVM formed
by a very small sub-samples of the data set. The support
vectors obtained with this initial sample are enriched by
nearest neighbors found within the complete data set, and a
new SVM problem is trained. This process is repeated until
the classification error becomes almost constant. In [5] the
authors also provide a theoretical framework for the analysis
of random sub-sampling when using SVM.

A simple random sub-sampling of the data is customary
among the practitioners of SVM when training a large
data set. The authors of [13] present a very interesting
comparison among different techniques for approximating
SVM in combination with simple random selection of the
data. They conclude that LIBSVM is the best option when
using simple random subsampling. Therefore, we include
random sub-sampling as a benchmark in our numerical
experiments.

Our sub-sampling strategy is novel in the sense it combines
the virtues of simple random sub-sampling, including its
embarrassingly-parallel property with clusterization-oriented
strategies, as we aim at avoiding similar data points in
the final sub-sample, without having to calculate overall
distances.

Also, our sub-sample strategy is constructed based directly
on the graph classification problem at hand. For graph
classification, most methods are based on some kind of
vectorization or representation technique. Recent papers
such as [7] and [20] use convolutional or recurrent neural
networks, to deal with this task. There, the graphs are
transformed using the Laplacian. For a thorough revision of
graph classification techniques, we refer to [26].

Unlike these approaches, our method does not use
representations of the graphs but rather uses graph kernels
to embed the graphs in a Hilbert space following the general
SVM setup. In this framework our procedure for selecting
significant sub-samples is based only on the associated inner
product.

We can summarize our main contributions as:

• The method is embarrassingly-parallel as it does not
depend on any iterative procedure.

• The method does not require a representation or
vectorization of the graph data set as it depends solely
on the chosen kernel.
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• Sub-sample selection is smart as it avoids selecting
similar data-points, thus obtaining the benefits of
cluster-based methods without their complexity.

• The SVM problem solved using our proposed
sub-sampling strategy is efficient in the sense less
support vectors are required to define the model albeit
no significant loss in accuracy.

III. INTRODUCTION TO SVM
SVM for binary classification (the one considered in this
paper) is based on the following. Given points {Xi ∈

Rd , i = 1, . . . , n} belonging to two classes (identified
with the corresponding tags yi = 1 or yi = −1), they are
linearly separable if there exists an hyperplane that divides
them into the two different classes. The dimension d denotes
the attributes of the data, and the input (or observation)
space is the set formed by the data. Among all separating
hyperplanes, SVM seeks to find the one that maximizes the
separation margin between classes, constrained to respecting
the classification of each point of the data. This problem
can be modeled, after a normalization, as the optimization
problem

minimize
w,b

1
2
∥w∥

2
2

subject to yi(wtXi + b) ≥ 1 ∀ i = 1, . . . , n, (1)

Here, ∥.∥2 denotes the euclidean norm.
Because the data set is usually linearly non-separable (that

is, there does not exist a solution of problem (1)) two variants
are introduced in the previous problem. On the one hand,
a perturbation variable ξ is included in order to relax the
constraints, so that a margin of error in the classification is
accepted. On the other, since the data might be separable
by a nonlinear decision surface, such a surface is computed
by mapping the input variables on to a higher dimensional
feature space, and by solving a linear classification problem
in that space. In other words, let us denote H the feature
space which satisfies to be a Reproducing Kernel Hilbert set
(RKHS). We denote the inner product in H with < ., . >.
Then, x ∈ Rd is mapped into φ(x) ∈ H, where φ(.) is the
transformation induced by the use of the kernel function K .
This is, K (z, a) =< φ(z), φ(a) > for every z, a ∈ Rd . Thus,
the input vectors Xi are substituted with the new ‘‘feature
vectors’’ φ(Xi), belonging to the ‘‘feature space’’ H. In this
way, for the linearly non-separable case, the optimization
problem is written as

minimize
w,b,ξ

1
2
∥w∥

2
H + C

n∑
i=1

ξi

subject to yi(< w, φ(Xi) > +b) ≥ 1 − ξi ∀ i = 1, . . . , n,

ξi ≥ 0 ∀ i = 1, . . . , n. (2)

where C is a positive constant that penalizes the errors at the
constraints, and ∥w∥

2
H =< w,w >. For more details we refer

to the book by Cristianini and Shawe-Taylor [8].

In order to solve (2), standard duality theory may be used
since the problem is convex and quadratic. Using this theory,
(2) can be solved by solving its dual. Some advantages of
using the dual problem is that an explicit description of φ

above is not required and can be replaced by a function that
preserves the properties of the inner product in the higher
dimensional space H, and this is satisfied by the kernel
function K . Then, the dimension of the feature space for
the classification can be increased without increasing the
dimension of the optimization problem to be solved, and
this is particularly relevant when dealing with an infinite
dimensional space H. Moreover, for graph data sets, the use
of SVM for their classification only requires the existence of
an appropriate kernel function.

Following [8], the dual problem corresponding to (2) is
given, in terms of the kernel function, by

mimimize
λ

−

n∑
i=1

λi +
1
2
λtQλ

subject to ytλ = 0,

0 ≤ λi ≤ C for i = 1, . . . , n (3)

where Q ∈ Rn×n is a symmetric positive semi-definite
matrix with positive diagonal, defined asQij = yiyjK (Xi,Xj).
The matrix K with ij-component equal to K (Xi,Xj) is called
the kernel matrix. To avoid complicating notation, typically
K will stand for both the generic kernel and the matrix
defined by the kernel restricted to the original data set of
size n.

Let λ∗ be a solution of (3). Our interest is to classify a new
point by means of a generalization function (or classifier)
g∗ using λ∗. This can be done, after using duality theory
(see [8]), by computing

g∗(X ) = sign(
n∑
i=1

λ∗
i yiK (Xi,X ) + b∗), (4)

with b∗
= 1 − max{yj=1,0<λ∗

j <C}

∑n
i=1 λ∗

i yiK (Xi,Xj).
Observe that only the λ∗

i > 0 are relevant. The corresponding
Xi are the so-called support vectors and their importance
follows from the fact that any other data points are irrelevant
for classification purposes.

Therefore the classification of a new point can bemade just
by selecting a (hopefully small) group of support vectors from
the large original data set. The procedure of finding these
vectors (which we will denote by SV ) from the given data
set, is usually referred to as the training process or training
the machine. After training, it is customary to qualify the
result by using an held-out set of examples, not seen during
the training phase. This set of points is called the testing set.
The estimated classification or prediction error for a given
data set is the percentage of points from the test set that are
incorrectly predicted.

In the following section we will introduce some basic facts
and notation for graphs.
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IV. BASIC FACTS AND NOTATION
In this paper the objects to be classified are graphs. They can
be described, in a natural way, as a set of nodes (or vertices)
that may or may not be connected by edges. Each node and
edge may have corresponding labels. Formally,
Definition 1: A graph g is defined as g = (V ,E, µ, ν)

where
• V denotes the finite set of nodes,
• E ⊆ V × V denotes the set of edges,
• µ : V → L is the function that assigns labels to the
nodes,

• ν : E → L is the function that assigns labels to the
edges.

Notice that L is a label alphabet set.
A great effort has been devoted to establish ways to

compare graphs, i.e. graphmatchingmethods. Thesemethods
can be separated into two types: exact and inexact ones. The
latter ones cover error-tolerant graph techniques which are
more suitable for using in the framework of kernel machines.
Some of these approaches give rise to graph kernels. This is,
functions that measure similarity among graphs satisfying the
properties of being a kernel. Recent papers on graph kernels
and future challenges can be found in [4] and [17].

The simplest graph kernel is the one that can be defined
between two graphs with the same number of nodes by using
the adjacency matrix for each one of them. This is,
Definition 2: Let g = (V ,E, µ, ν) and g′

=

(V ′,E ′, µ′, ν′) with |V | = |V ′
| where |.| denotes the

cardinality of the set.
Then, the Simple Product kernel between g and g′ is

defined as

S(g, g′) =< Ag,A′
g >F= Trace(AtgAg′ ) (5)

with Ag ∈ R|V |×|V | the Adjacency matrix of g defined, for
any pair (u, v) of nodes of graph g, as

Ag(u, v) =

{
1 if (u, v) ∈ E
0 otherwise

The adjacency matrices represent the structure of a graph
in matrix form. The inner product < ., . >F is the usual inner
product among matrices.

In the case when the number of nodes in each graph does
not coincide, the Simple Product kernel may be extended
by considering the adjacency matrix of size m × m with
m = max(|V |, |V ′

|) including zeros for the artificial positions
added.

Advantages of the Simple Product kernel are its simplicity
and easy computation. The idea behind the definition is
that two graphs with the same number of nodes should be
similar if, independently on how the nodes are labeled, they
are connected in a similar fashion. However, some special
structure among the graphs may be missed.

In order to meaningfully extend the Simple Direct Product
Kernel to be used with graphs with different number of nodes,
and to take into account more of the graph structure, we also

consider in this paper the Random Walk Kernel. Before
introducing its definition, we define the Direct Product
between graphs.
Definition 3: Given graphs g = (V ,E, µ, ν) and g′

=

(V ′,E ′, µ′, ν′) their Direct Product is defined as the graph
g× g′

= (VX ,EX , µX , νX ) where

• VX = {(u, u′) ∈ V × V ′
: µ(u) = µ′(u′)}

• EX = {((u, u′), (v, v′) ∈ VX × VX : (u, v) ∈ E, (u′, v′) ∈

E ′, ν(u, v) = ν′(u′, v′)}.
• The labels are defined as µX (u, u′) = µ(u) = µ′(u′) and

νX ((u, u′), (v, v′) = ν(u, v) = ν′(u′, v′).

Definition 4: The Adjacencymatrix AX of g×g′ is defined
as

[AX ](u,u′),(v,v′) =

{
1 if ((u, u′), (v, v′)) ∈ EX
0 otherwise

This matrix can be seen as an extension of the Adjacency
matrix defined for each graph.

In the case of undirected graphs and assuming that no node
can be connected with itself, it is easy to prove the following
result,
Proposition 1: The adjacency matrix AX ∈ R|V ||V ′

|
2
of

g × g′ is equal to Ag ⊗ A′
g, with ⊗ the Kronecker product

of matrices.
This direct product is connected with a graph kernel

based on random walks called the Random Walk Kernel.
This graph kernel is build on the idea that similarity among
graphs is defined by comparing their common random walks.
A randomwalk over a graphmeans going from a starting node
and moving through the graph by randomly travelling across
the edges. For a formal definition, we follow the presentation
in [11].
Definition 5: Given a graph g = (V ,E, µ, ν),

the set of walks in g with n edges is wn(g) =

{(u1, e1, u2, e2, . . . , un, en, un+1) ∈ V × E × . . . × E × V :

ei = (ui, ui+1), i = 1, . . . , n}. For each element of this set
w = (u1, e1, u2, . . .), a corresponding sequence of node and
edge labels is defined as ρ(w) = (µ(u1), ν(e1), . . .).
Given a sequence s of node and edge labels of a graph g,

let us define the vector 8s(g) = λ
n
2 |{w ∈ wn(g) : ρ(w) = s}|

some λ ≥ 0. This is, 8s(g) represents the number of walks
with corresponding node and edge sequence (multiplied by
a weighting factor). It can be shown that H, the set formed
by all the vectors 8(g) = (8s1 (g), 8s2 (g), . . .) is a Hilbert
space. The direct computation of 8(g) according to this
definition can be very difficult. An important result from [22]
is that the inner product of each transformed pair of graphs
< 8(g), 8(g′) > can be found by the direct product g× g′ of
the graphs, using the adjacency matrices.
Definition 6: The RandomWalk kernel of graphs g and g′

is defined as

R(g, g′) =

|VX |∑
i,j=1

(
∞∑
n=0

λnAnX )ij, some λ ≥ 0. (6)
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In [11] it is proved that < 8(g), 8(g′) >= R(g, g′) for any
fixed value λ. Therefore K is a kernel function. Even though
this kernel may be affected by noisy data, its simplicity makes
it attractive as an alternative to measure similarities between
graphs under machine kernel methodologies.

Let us observe that since the Random Walk kernel
computation is based on the powers of the Adjacency matrix
whose components are 1 or 0, it can be efficiently calculated.
And, if λ is chosen smaller than 1, the contribution of λnAnX
is small for large n. Then, in practice it is enough to sum
over a finite number Nk of terms. However, even with these
considerations, the running time for the computation of the
Kernel using (6) is O(k6) with k = |V ||V ′

|, so it can be very
high for large graphs. A cheaper way to compute the Random
Walk Kernel is to use the following equivalence

K (g, g′) = et (I − λAX )−1e.

Here e is the vector of all ones and I is the identity matrix,
both in the corresponding dimension. This computation
may be done in O(m3) with m = |E||E ′

|, reducing the
computational time (see [16]).

In the following section we present the algorithm based on
LSH.

V. METHODOLOGY
A. USING LSH FOR SVM
Locality-sensitive Hashing (LSH) was introduced as an effi-
cient way to look for nearest neighbors in high dimensional
spaces [15]. The idea is to hash the vectors in the data
space using several hash functions so that, for each one, the
probability of collision is much higher for points that are
close to each other than for those which are far apart. Then,
LSH can be used to search approximate nearest neighbors
of a given query point by retrieving elements stored in the
same bin containing this point. Formally, the definition is as
follows.
Definition 7: (LSH functions) For given R2 > R1 > 0 and

1 > p1 > p2 > 0, a family of functions belonging to the set
H = {h : D → N }, where D is a metric space with metric d̃ ,
P a probability measure over D and N is the set of integers,
are LSH if for each q̃, q ∈ D and each h ∈ H the following
are satisfied

• if d̃(q̃, q) ≤ R1 then P[h(q) = h(q̃)] ≥ p1,
• if d̃(q̃, q) > R2 then P[h(q) = h(q̃)] ≤ p2.
In this paper we are interested in the Projection-based hash

functions as presented in [9]. For any p dimensional vector
v, define the maps ha,θ (v) : Rp

→ N indexed by a choice of
an α-stable random vector a (see [9] for a definition) and a
real number θ chosen uniformly from the range [0, r] in the
following way. For a fixed a, θ the hash function ha,θ is given
by

ha,θ (v) =

⌊
atv+ θ

r

⌋
. (7)

Here, ⌊.⌋ denotes the floor function.

In [9] it is shown that the Projection-based functions h,
as previously defined, are LSH.

B. ALGORITHM LSH-SVM-GRAPH
We will use the hash functions (introduced in the previous
Section) in the feature space in order to find bucket-
representatives of the data set used to train the SVM problem.
We will do this by projecting the data several times over
random directions (see Step 1 of Algorithm 1) using a
hash function based on the inner product defined by an
appropriate kernel function. For each projection a number of
bins defined by the hash functions are built for each sample
point. By construction, this procedure is not iterative and can
thus be paralleled. Finally, concatenating the bins obtained
for each projection we obtain a set of buckets, each one
corresponding to a cluster of the original sample points. From
each bucket we select a random representative (Step 2 from
Algorithm 1). These sample representatives form the selected
sub-sample used for solving the approximate SVM problem
(Step 3 of Algorithm 1).

A detailed description of the algorithm is presented in
Algorithm 1.

Algorithm 1 Algorithm LSH-SVM-GRAPH (LSVMG)
Input:
K the graph kernel,
S the original labeled graphs dataset (S = {x1, . . . , xn}),
B number of bins,
N the number of projections.
Output:
SVM model defined by the support vectors,
Errors: train and test,
Runtimes: training and fit.
Procedure LSVMG(S, K , B, N ):

Step 0 Set li, an empty string for each i = 1, . . . , n.
Step 1 For k = 1, . . . ,N ,

• Generate a random graph gk (Ex: Erdos-Renyi
graph).

• Find K (gk , x) for all x ∈ S, and calculate Rmax =

maxx∈S K (gk , x) − minx∈S K (gk , x).
• Calculate the width r =

Rmax
B .

• Generate θ ∼ Uniform[0, r], and find hgk ,θ (x) :=

⌊
K (gk ,x)+θ

r ⌋ for all x ∈ S.
Step 2 • For for all x ∈ S create the concatenated strings

li = hg1,θ (xi) || hg2,θ (xi) || . . . hgN ,θ (xi)
• Group identical strings
• From each group randomly select a sample repre-
sentative. Define Ŝ as the set of representatives.

Step 3 Solve SVM problem (3) using Ŝ and ŷ their corre-
sponding classes, instead of S and y. Set B̂ := |Ŝ|

the size of the obtained sub-sample.

To motivate our algorithm, let us recall that for the SVM
method only the support vectors are needed to define the
separation surface among classes. Therefore, data points are
important only in terms of their closeness to the support
vectors, which of course are not known a priory. It follows
that points which are close to each other offer redundant
information in relation to support vectors so that only one
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TABLE 1. Obtained mean values and s.d. for B̂, using varying n=1000,
4000 and 8000 synthetic Barabasi-Albert graphs.

representative of each cluster formed by repeated projections
is needed.

The rationale behind our approach is to use projections,
instead of distance measures, in order to reduce compu-
tational costs. By projecting over random directions, the
algorithm is capable of finding a smart subset of the whole
data set that approximates quite accurately the solution of the
SVM obtained over the complete data set.

It is important to highlight that our algorithm is searching
for a solution of an SVM problem using a subset of the
complete data set. The nature of this approximation is
analyzed in the numerical experiments, in terms of the
standard classification metrics.

The main goal with our algorithm is to reduce the
computational time without significantly degrading the
performance by using only a smart subset of the whole data
set. In the next proposition we state the time complexity of
the LSVMG procedure. The proof follows straightforwardly
from the description of Algorithm 1.
Proposition 2:

1) The time complexity of the procedure LSVMG
described in Algorithm 1, is O(Nnm2

+ B̂2), where m
is maximum number of nodes of any graph in S.

2) The relative efficiency rn of the proposed algorithm in
relation to the original SVM problem is given by rn =

Nnm2
+B̂2

n2

A theoretical probabilistic bound for B̂ is beyond the scope
of this paper. However, because of the underlying inner
product structure it is related to the covering properties of
any bounded ball in the associated Hilbert space and the LSH
property.

For completeness sake, we have included experimental
results for the obtained B̂ for comprehensive simulation
setups, varying the size of B,N and n. Results for 10 simula-
tions showing obtained mean values and associated s.d. of B̂
are shown in Table 1 for the 1000, 4000 and 8000 simulated
Barabasi-Albert graphs and in Table 2 for the Reddit data
set [25].
In the following section we study the performance of the

proposed algorithm (LSVMG) using different graph data sets
and the kernels introduced in this section. We compare with
the SVM using the complete data set and the SVM over a
random sample.

TABLE 2. Obtained mean values and s.d. for B̂, using the n=8000 Reddit
data set graphs.

VI. EXPERIMENTS
A. EXPERIMENTAL SETTING
1) GRAPHS USED IN OUR EXPERIMENTS

• Synthetic random graphs based on the Barabasi-Albert
(BA) model for simulating social networks [2]. The idea
is to start with a network of m nodes, and set c the
number of edges to attach to each existing node, one
at a time. The probability of a new connection for any
given node is proportional to the number of links the
node already has. This intends to emulate the way social
networks behave in real life, assuming that the more
popular nodes have a greater probability of making new
friends. The BA model satisfies the scale-free network
property, this is, the number of nodes and edges are
related by a certain family of underlying probability
distributions.

• Synthetic random graphs generated on the Erdös-Renyi
(ER) model [10]. Different from the previous ones, these
graphs are completely random in the sense that for a
fixed constant probability p, the number of nodes is fixed
and the edges are generated according to a Bernoulli
distribution with parameter p.

• The Reddit Threads real data set from [25], which was
collected in 2018, where nodes are Reddit users who
participate in a discussion and links are defined by
replies amongst them.

2) DATA SETS
After extensive experimentation, we present the results
obtained for three kinds of test sets described below as being
representatives of our main findings.

• Test set 1:
This data set consists of #G number of graphs syn-
thetically generated, half of them of class BA and the
other half of class ER. Therefore, the classification goal
should be easily reached. All the graphs are generated
so that they share the same number of vertices. The
probability for ER used was chosen as p = 0.1.
The graph kernel used satisfies equation (6) but with
only a finite number of terms Nk > 0. And, λn =

0.0178e−0.115n for n = 1, . . . ,Nk = 10.
• Test set 2:
In these tests our main goal was to analyze the perfor-
mance of the LSVMG-Algorithm for larger data sets
with imbalanced data. We simulated 10, 000 synthetic
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BA graphs, where 9, 500 are BA with parameters m =

10 and c = 3, and 500 are also BA with parameters
m = 15 and c = 2.

• Test set 3 The Reddit Threads from [25] consist
203, 088 binary labeled balanced graphs, and the task
is to predict whether a thread is discussion-based or not.

3) METHODS AND IMPLEMENTATION ISSUES
For our numerical experiments we coded the LSVMG-
Algorithm (which finds a selection of the complete data set)
in Python and compared with the SVM algorithm using the
whole data set. For our results we name ‘‘Complete’’ the
results obtained using the whole data set.

We also compared with the SVM algorithm using a simple
random selection of the data sets. Therefore, in our numerical
results we present comparison among the following methods:

• Algorithm LSVMG.
• Algorithm SVM (complete data set)
• Algorithm SVM (random selection of sub-sample)

For our experiments we use the following standard
class-prediction evaluation metrics: Accuracy, F1-score,
Recall, and Precision. Our goal in this numerical section
is to show the performance of the proposed algorithm over
different data sets comparing kernels, evaluation measures
and computational times.

In all cases, we use 80% of the data set for training
and 20% for model evaluation. The random graphs for the
LSVMG-Algorithm are ER synthetic graphs.

B. RESULTS
1) RESULTS FOR TEST SET 1
The objective of this first test set is to evaluate the
performance of the LSVMG-Algorithm in conjunction with
the RandomWalk kernel, and to compare with the Algorithm
SVM (complete data set).

The results obtained for the Test set 1 are included in
Table 3 where the first column refers to the total number of
generated graphs and the second one to the number of vertices
for each graph.

The notation T , P and Error is used for the average
values of training time (in seconds), prediction time (in
seconds), and classification error obtained after 5 runs for
each problem. Here we are using as classification error the
value of 1 − Accuracy. Columns 3 to 5 correspond to the
results for the whole data set. Columns 6 to 9 correspond
to the results for the LSVMG-Algorithm. The symbol −−

is used for denoting non convergence of the algorithm when
the running time exceeds 24 hours.

Observe that, for both approaches, the classification errors
are generally low, which is to be expected for this separable
data set. The training time increases as the number of vertices
increases, as should be expected. In fact, when the number of
vertices reaches 20, none of the algorithms is able to solve the
corresponding classification problem because of the running
time of the RandomWalk kernel even for medium number of

TABLE 3. Performance on evaluation, using synthetics Barabasi and
Erdös-Renyi graphs, with Random-Walk kernel.

TABLE 4. Performance on evaluation, using synthetic Barabasi-Albert
graphs, with simple product kernel.

graphs. But, the running time in the training and prediction
steps are much smaller for the LSVMG-Algorithm than for
training over the whole data set. In general, the classification
errors obtained by the two approaches are comparable.

2) RESULTS FOR THE TEST SET 2
We applied the LSVMG and SVM (complete data set) for the
Test set 2.

For the LSVMH Algorithm the number of bins was set as
B = 40, an ER random graphs were chosen as projections
with p = 0.2. The number of projections considered for our
experiments was N = 5, for a total of B̂ = 188 selected
samples.

Since the data is imbalanced, we consider the macro
F1-score as a comparison metric over the test data set.
In these experiments we were also interested in comparing
the performance of our sub-sampling algorithm with a simple
random sampling of the data set, this is Algorithm SVM (with
a random selection of the data set).

For a fair comparison, we did the following.We applied the
LSVMG Algorithm and used the same number of data points
finally selected by the algorithm in order to randomly choose
the sub-sample from the original data set and to apply SVM
with these samples. In Table 4 we include the results obtained
using the Simple product kernel. We call Random the results
obtained with SVM over the random sample and Complete
the results obtained with SVM by using the complete data
set.
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TABLE 5. Performance on evaluation, using synthetic Barabasi-Albert
graphs, with the random-walk kernel.

FIGURE 1. The first 4 Reddit Threads graphs in [25].

Observe that there is a significant running time difference
between training with the whole data set, achieving only
a slightly worse performance, where LSVMG-Algorithm
shows a considerable improvement in terms of computational
and spacial cost. On the other hand, we could infer that
LSVMG-Algorithm is avoiding over-fitting. The number
of support vectors reduces considerably when using our
algorithm compared to when the whole data set is used. This
also contributes to having lower prediction times without
significantly decreasing the classification error.

Choosing a random sample decreases the outcome signifi-
cantly as can be seen in Table 5, looking at the F1-score and
Recall columns.

Using the Random Walk kernel already implemented
in [27] following [16], the performance obtained with the
random sample is comparable to that obtained with the
LSVMG-Algorithm as it can be seen in Table 5. However,
a higher computational time is needed in order to get the
same performance as that of the LSVMG-Algorithm with
the Simple Product kernel. Results were not obtained for the
whole data set after 3 days running.

3) RESULTS FOR THE TEST SET 3
For simplicity, we have used the first 10, 000 graphs, taking
80% for training and 20% for testing.

TABLE 6. Performance on evaluation, using Reddit Threads from SNAP
Datasets, with simple product kernel.

TABLE 7. Performance on evaluation, using the Reddit Threads data set
from SNAP Data sets, with the Random-walk kernel.

The number of bins for the Algorithm LSVMG was set
to B = 40, and the ER random graphs were chosen
for projections with p = 0.8. The number of projections
performed was N = 5, for a total of B̂ = 718 selected
samples. As in the experiment shown for Test set 2, we solved
the problem with the complete data set and by using a
random sample of the data of the same size as the number of
samples selected using our algorithm. The results are shown
in Tables 6 and 7.

As remarked for the previous test set, there is a con-
siderable improvement in terms of training time for the
LSVMG-Algorithm as compared to the complete data set.
It is also worthwhile remarking that selecting a sub-sample
actually improves accuracy, probably because of reducing
over-fitting given by the complexity of the problem, due to
the similarity between graphs of different classes, as shown
in figure 1. Also, it is interesting that there is an accuracy
improvement obtained by the LSVMG-Algorithm as com-
pared to the random sampling, probably because of the more
precise selection of the representative data points.

Table 7 shows the results obtained using the Random
Walk kernel. As can be seen, accuracy for both sub-sampling
algorithms deteriorated when using the RandomWalk Kernel
so this similaritymeasure does not seem to be adequate for the
problem. As for the Simple kernel, no results were available
after 3 days using the whole data set.

VII. CONCLUDING REMARKS
In this paper a novel approach for classifying graphs using
Support Vector Machines was presented. The approach is
based on using projection-based Locality-sensitive Hashing
functions on random graphs, in order to find significant
samples of the whole data set.
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Because the size of the optimization problem is reduced,
the solution is found in a fraction of the time that is
required if the whole data set is used. And, this is performed
without significantly degrading the classification errors
which illustrates the relevance of the subset found by the
algorithm. This relevance is also supported by the results
obtained when comparing the performance of the algorithm
with SVM using a simple random subsampling of the data
set. Further research will include experiments with alternative
graph kernels and applications to larger real life data sets.
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