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ABSTRACT In response to the challenge of insufficient trajectory tracking accuracy and low solution
efficiency of Mecanum wheel AGV (Automated Guided Vehicle) under complex and constrained working
conditions, this paper proposes an efficient Model Predictive Control (MPC) method to achieve superior
tracking performance and robustness. Initially, a linear error model of the mobile platform is established
based on pose error, serving as the predictive model for the MPC controller. A target function is designed
to transform the trajectory tracking control problem into an optimal control problem. To handle inequality
constraints, penalty terms are introduced into the objective function, and the resulting constrained problem
is subsequently solved to approximate the optimal solution for the original inequalities. To alleviate the
computational burden associated with real-time optimization problem-solving, an efficient MPC algorithm.
has been developed. To ensure closed-loop stability under the MPC control method, stability constraints
are imposed on the new optimization problem. Simulation results demonstrate that, in comparison to
traditional MPC methods, the proposed approach reduces the average solution calculation time by 5.1% and
the maximum single calculation time by 13.7%, all while maintaining trajectory tracking accuracy. These
results validate the algorithm’s feasibility, effectively addressing the challenges associated with solvingMPC
problems.

INDEX TERMS Computational efficiency, Mecanum wheel, model predictive control, stability, trajectory
tracking.

I. INTRODUCTION
This document discusses an Automated Guided Vehicle,
also referred to as an unmanned transport vehicle–an auto-
mated, unmanned, intelligent handling device categorized
under mobile robotic systems [1]. Specifically, the Mecanum
wheel AGV represents a comprehensive system that inte-
grates various functions, including environmental perception,
dynamic decision-making and planning, behavior control,
and execution. It finds extensive applications across multiple
industries, including manufacturing, logistics, and unmanned
warehousing [2], [3]. Renowned for its exceptional maneu-
verability, capacity for zero-radius turns in any direction,
and mobility in confined spaces, the Mecanum wheel AGV
is widely utilized in diverse applications [4], [5]. Despite
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its advantages, practical applications of the Mecanum wheel
AGV encounter challenges in trajectory tracking control,
a key concern marked by several issues. Factors such as
uncertainty, external disturbances, system nonlinearity, and
sensor noise present formidable challenges, rending tradi-
tional control methods incapable of meeting precise trajec-
tory tracking requirements. Problems like deviation from
desired trajectories, control oscillations, response delays, and
constraint violations may arise. Traditional control meth-
ods often struggle to effectively address tracking control
problems under these multiple constraint conditions, causing
AGVs to respond inadequately to control commands and
resulting in failures in efficient, accurate, and reliable han-
dling tasks.

In addressing the challenging problem of trajectory track-
ing control, scholars both domestically and internationally
have explored various control methods. Fuzzy control [6],
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PID control [7], neural network control [8], sliding mode
control [9], and MPC [10] have all been employed to tackle
this complex issue. For instance, in reference [11], a PID
control algorithm integrating dynamic lookahead and yaw
angle feedback is utilized to achieve lateral trajectory tracking
control by effectively decoupling yaw motion and lateral
motion. Meanwhile, in reference [12], a single-point preview
method is adopted to establish dynamic lateral position and
yaw angle error models. It employs a nonsingular terminal
sliding mode control strategy to design stable lane-keeping
control, ensuring stability through validation using Lyapunov
theory and significantly reducing lateral deviation. However,
challenges persist in these control methods, as discussed in
references [11] and [12], specifically concerning the ineffec-
tive constraint on control output. This limitation may result
in decreased control performance due to output saturation and
even pose a risk of vehicle instability. Moreover, coordinating
control between multiple objectives remains a challenge, par-
ticularly in multi-objective scenarios. To complement these
studies, literature [13] introduces a unique steering strategy
based on a lane-line detection model. This method employs
both line selection and CNN-based extraction to predict
lane markings from images captured by a forward-looking
monocular camera. The detected lane markings are then
utilized to estimate the vehicle’s next destination, with DC
servo motor steering control ensuring precise navigation on
a golf cart for various tasks. Furthermore, literature [14]
explores the application of convolutional neural networks
(CNNs) for training and simulating driverless car models.
Using three cameras capturing left, right, and center images
labeled with steering angles and speed parameters, the CNN
is trained to navigate the vehicle, implementing a steering
angle adjustment strategy to maintain lane centering. The
method is evaluated on the UDACITY simulation platform,
yielding impressive accuracy results. In a different approach,
literature [15] presents a prototype of a monocular vision
autonomous vehicle based on Raspberry Pi deep neural net-
work. This work focuses on developing a model using a
deep neural network to directly map the input image to the
predicted steering angle. The on-board platform, consisting
of 1/10 RC cars, Raspberry Pi 3 model B computer, and a
front-facing camera, is used to train CNN model parameters.
Experimental road testing in outdoor environments, including
autonomous driving on oval and number 8 tracks with traffic
signs, validates the model’s effectiveness and robustness in
lane-keeping tasks.

Comparison with other methods reveals that MPC pos-
sesses significant advantages in addressing multi-objective
constrained optimization problems. It excels in predicting
future trajectory states, rendering it widely applicable in solv-
ing problems within the trajectory tracking domain. Refer-
ence [16] introduces a path tracking algorithm based onMPC.
By employing quadratic programming (QP) optimization,
it computes the optimal steering instructions for the trajec-
tory. Combining the characteristics of the steering execution

system, it achieves precise and smooth trajectory tracking
for vehicles. In a similar vein, reference [17] proposes an
MPC method with integral action, which preserves not only
the predictive and optimization capabilities of MPC but also
mitigates steady-state errors arising during the operation of
omnidirectional mobile robots. This enhancement contributes
to an overall improvement in the controller’s tracking per-
formance. Addressing the steering avoidance challenges for
autonomous vehicles, reference [18] presents a hierarchical
obstacle avoidance control strategy based on MPC theory.
Simulation results demonstrate that the upper-level controller
dynamically plans local obstacle avoidance paths, and the
lower-level controller consistently tracks these paths, ensur-
ing stable and effective avoidance. While the aforementioned
references [16], [17], and [18] meticulously analyze the per-
formance of controllers under simulation conditions, it is
noteworthy that a highly complex controlled object model can
significantly escalate the online iteration computation load
of MPC, consequently diminishing real-time performance
and impeding the practical application of MPC controllers
[19]. To mitigate the online computation burden of MPC
controllers, scholars have proposed methods such as Explicit
MPC [20], control block methods [21], and interpolation
control methods [22], which find relevant applications in
trajectory tracking.

To complement existing studies, we introduce a stream-
lined MPC approach tailored for the trajectory tracking of
Mecanum wheel AGV, with three main contributions:

1) Proposing an efficient MPC scheme that considers
constraints of the Mecanum wheel AGV to reduce com-
putational complexity while ensuring trajectory tracking
feasibility.

2) Introducing an efficient MPC algorithm to address com-
putational efficiency issues, incorporating penalty terms on
the objective function to handle inequality constraints and
enhance computational efficiency.

3) Integrating stability constraints within a finite time
domain to ensure closed-loop stability in the context of the
Mecanum wheel AGV system.

The remainder of this article is organized as follows.
Section II focuses on establishing a linear error model for
the mobile platform based on the motion characteristics of
Mecanum wheels. In Section III, we utilize the established
model as the predictive model for the MPC controller. We
design a quadratic objective function to transform the tra-
jectory tracking problem into an optimal control problem.
In Section IV, we introduce penalty terms to the objective
function to relax inequality constraints. We also design an
efficient MPC algorithm to enhance computational efficiency
while ensuring stability under closed-loop MPC control.
Stability constraints are imposed on the new optimization
problem. In Section V, we validate the effectiveness of the
proposed method throughMATLAB simulation experiments.
Section VI concludes the paper with a summary of the pre-
sented work.

13764 VOLUME 12, 2024



M. Tang et al.: Mecanum Wheel AGV Trajectory Tracking Control Based on Efficient MPC Algorithm

II. AGV MOBILE PLATFORM ERROR MODEL
The motion model of the Mecanum wheel mobile platform is
illustrated in Figure 1. Treating the mobile platform as a rigid
body model with an unchanged mechanical structure and
dimensions, effects such as wheel slipping and mechanical
friction are neglected. To accurately represent the platform’s
motion state, we establish a linear error model of the mobile
platform based on pose error.
XWOWYW is the world coordinate system, (x, y) represents

the coordinates of the model center point, and θ indicates the
heading angle of the model, ω,Vx ,Vy denote the rotational
speeds of the mobile platform, and the velocities along the X
and Y axes in the platform coordinate system, respectively.

FIGURE 1. Schematic diagram of the Mecanum wheel mobile platform
model.

The motion state model of the Mecanum wheel mobile
platform is outlined as follows: ẋ

ẏ
θ̇

 =

Vx cos θ + Vy sin θ

Vy cos θ + Vx sin θ

ω

 (1)

Refer to (1),
(
ẋ, ẏ, θ̇

)
represents the pose derivative of the

mobile platform, and P = (x, y)T denotes the coordinates of
the vehicle’s center of mass in the global coordinate system.
Here,X = [x, y, θ]T and u =

[
Vx ,Vy, ω

]T represent the state
variables and input control variables of the mobile platform,
and the state-space description can be expressed as follows:

Ẋ = f (X,u) (2)

Owing to the nonlinearity in (2), linearization becomes
imperative. Assuming that the position of any reference point
on the trajectory is denoted as (xr , yr , θr ) and simultaneously
satisfies Ẋ r = f (X r,ur), where X r = [xr , yr , θr ]T and ur =[
Vxr ,Vyr , ωr

]T . Expanding (2) at the reference point using
a Taylor series and neglecting higher-order terms, we obtain
the following expression:

Ẋ = f (X r,ur) +
∂f (X,u)

∂X
(X − X r)

+
∂f (X,u)

∂u
(u− ur) (3)

Subtracting the expression (3) from (2) yields the general
form of the linear error model as follows:

f (X,u) − f (X r,ur) =
∂f (X,u)

∂X
(X − X r)

+
∂f (X,u)

∂u
(u− ur) (4)

Rewriting the linear error model equation in state-space
form results in:

Ẋe = AXe + Bue (5)

where

A =

 0 0 −Vxr sin θr + Vyr cos θr
0 0 −Vyr sin θr − Vxr cos θr
0 0 0

 ,

B =

 cos θr sin θr 0
− sin θr cos θr 0

0 0 1

 .

To achieve precise control and trajectory tracking of the
mobile platform, a controller needs to be designed to ensure
that the platform’s state follows the predetermined target
trajectory. The control objective is to adjust input control
variables to achieve the desired pose state. Specifically, the
goal is for the mobile platform to move along the given
reference trajectory at the desired speed and heading angle.
Two main objectives are sought:

1) Ensure that the system output accurately tracks the
desired pose and maintains the pose tracking error within a
predetermined steady-state boundary range.

2) Ensure system stability and robustness, with parameters
remaining bounded.

III. DESIGNING AN MPC TRAJECTORY TRACKING
CONTROLLER
A. ESTABLISHING A PREDICTIVE MODEL FOR THE POSE
ERROR OF THE MOBILE PLATFORM
Utilize the linear error model established based on pose error
as the predictive model for the MPC controller. Since this lin-
ear error model represents a continuous system, it cannot be
directly applied to the design of the MPC controller. Hence,
discretization of (5) is achieved through the utilization of the
Euler method [23]. The forward Euler method is a first-order
numerical method for solving ordinary differential equations
with given initial values. Assuming T is the sampling period,
its discretization is represented as:

Xe (k+ 1) = aXe (k) + bue (k) (6)

where

a =

 1 0 −TVxr sin θr + TVyr cos θr
0 1 −TVyr sin θr − TVxr cos θr
0 0 1

 ,

b =

 T cos θr T sin θr 0
−T sin θr T cos θr 0

0 0 T

 .
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Define the output equation as:

y (k) =

 1 0 0
0 1 0
0 0 1

Xe (k) = IXe (k) (7)

To precisely constrain the control increments and solve
for the optimal control, the discrete state variable Xe (k) and
control variable ue (k − 1) are combined to construct a new
state variable, denoted as ζ (k) =

[
Xe (k) ue (k − 1)

]T .
Consequently, the new state-space equation is expressed as:{

ζ (k+ 1) = Akζ (k) + Bk1u (k)
η (k) = Ckζ (k)

(8)

In which, Ak =

[
a b

0Nu×NX INu

]
, Bk =

[
b
INu

]
, Ck =[

INX 0
]
, NX represent the dimensions of the state variables,

and Nu represents the dimension of the control variables. At
each moment within the prediction time horizon Np the state
variables are given by:

ζ (k+ 1) = Akζ (k) + Bk1u (k)

ζ (k+ 2) = A2
k ζ (k) + AkBk1u (k)

+ Bk1u (k+ 1)

...

ζ (k+ Nc) = ANc
k ζ (k) + A

Nc−1

k Bk1u (k)

+ · · · + A0
kBk1u (k+ Nc−1)

ζ
(
k+ Np

)
= A

Np
k ζ (k) + A

Np−1

k Bk1u (k)

+ · · · + A0
kBk1u

(
k+ Np−1

)
(9)

At each moment within the prediction time horizon, the
output variables of the system are:

η (k+ 1) = CkAkζ (k) + CkBk1u (k)

η (k+ 2) = CkA2
k ζ (k) + CkAkBk1u (k)

+ CkBk1u (k+ 1)

...

η (k+ Nc) = CkA
Nc
k ζ (k) + CkA

Nc−1

k Bk1u (k)

+ · · · + CkA0
kBk1u (k+ Nc−1)

η
(
k+ Np

)
= CkA

Np
k ζ (k) + CkA

Np−1

k Bk1u (k)

+ · · · + CkA0
kBk1u

(
k+ Np−1

)
(10)

The system’s output equation can be obtained by deriving
it from the expression given in (10) as follows:

Y = ψζ (k) +21U (11)

where

Y =


η (k+ 1)

η (k+ 2)

· · ·

η (k+ Nc)

· · ·

η
(
k+ Np

)

 , ψ =



CkAk
CkA2

k
· · ·

CkA
Nc
k

· · ·

CkA
Np
k


.

2 =



CkBk 0 · · · 0
CkAkBk CkBk · · · 0

· · · · · ·
. . . · · ·

CkA
Nc−1
k Bk CkA

Nc−2
k Bk · · · CkA0

kBk

· · · · · ·
. . . · · ·

CkA
Np−1
k Bk CkA

Np−2
k Bk · · · CkA

Np−Nc
k Bk



1U =


1u (k)

1u (k+ 1)

1u (k+ 2)

· · ·

1u (k+ Nc−1)

 .

Referring to (11), the prediction of the system’s output
variables within the future horizon Np can be achieved when
the current state variables and control variables within the
control horizon Nc are known

B. DESIGNING THE OBJECTIVE FUNCTION
To obtain the optimal control sequence, it is essential to
design a rational optimization objective. By computing the
objective function, a series of optimal control variables can
be obtained. The formulated objective function is as follows:

J = (Y − Y r)
T Q (Y − Y r) +1UTR1U (12)

In the above expressions, Y r is the reference output of the
system, Q and R are positive definite weight matrices for the
system. The first term in the equation represents the accu-
mulation of trajectory deviation during tracking. Increasing
the weight matrix Q reduces the tracking error of the mobile
platform. The second term signifies the energy consumption
during the tracking process; i.e., when the weight matrix
R is larger, the output changes of the control variables are
smoother, resulting in a more stable motion of the mobile
platform.

For ease of computer computation, the objective function
is processed according to the methods outlined in reference
[24], as follows:

J = 1UT
(
2TQ2+ R

)
1U + ETQE

+ 2ETQ21U − 2Y rQ21U

+ YTr QY − 2YTr QE (13)

When solving the objective function, the constant term
in the above polynomial can be omitted. Simultaneously,
to ensure the solvability of the objective function, the intro-
duction of a relaxation factor row can facilitate a smooth
solving process, avoiding potential failures due to overly
strict solving conditions. Further discussion on this matter
will be presented in the following text.

H =

[
2TQ2+ R 0Nu∗Nc×1
01×Nu∗Nc row

]
, g =

[
ETQ2 0

]
,
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transforming it into the quadratic form of the objective func-
tion, the above expression can be rewritten as:

min
1U

J = 2
(
1
2
1UTH1U + gT1U

)
=

1
2
1UTH1U + gT1U (14)

An outstanding attribute ofMPC lies in its capacity toman-
age numerous constraints. In practical engineering control,
it is crucial to set sensible boundaries on control variables and
increments. This entails designing constraint conditions for
both the control variables and increments of the mobile plat-
form. The connection between control variables and incre-
ments can be articulated as follows:

U =


ue (k)

ue (k+ 1)

· · ·

ue (k+ Nc−1)

 =


ue (k − 1)

ue (k − 1)

· · ·

ue (k − 1)



+


INc 0 · · · 0
INc INc · · · 0
...

...
. . .

...

INc INc · · · INc




1u (k)
1u (k+ 1)

· · ·

1u (k+ Nc−1)


(15)

By combining the expressions from (7) and (8), we obtain
the following result:

uemin
uemin

...

uemin

 ≤


ue (k)

ue (k+ 1)
...

ue (k+ Nc−1)

 ≤


uemax
uemax

...

uemax

 (16)

Hence, the objective function can be streamlined into a
standard quadratic form along with the associated constraint
conditions. This transformation turns the trajectory tracking
control problem into an optimal control problem:

min
1U

J =
1
2
1UTH1U + gT1U (17)

s.t.


Umin + U t ≤ AI1U t ≤ Umax − U t

Umin ≤ U t + AI1U t ≤ Umax

1Umin ≤ 1U t ≤ 1Umax

cin (X i,ui) ≤ 0

(18)

whereU t represents the actual control variable at the previous
time step;Umin and Umax denote the minimum and maxi-
mum values of the control variable, respectively;1Umin and
1Umax represent the minimum and maximum values of the
control increment, respectively. cin (X i,ui) ≤ 0 denotes a
vector-valued inequality constraint.

Following the aforementioned solution within each control
cycle, only the first element of the control sequence is imple-
mented on the system. In the next time step, the process is
iteratively solved, enabling continuous control of the system.
From this point, the designed AGV trajectory tracking system
is primarily controlled and determined by theMPC (as shown

in Figure 2), enabling the AGV to precisely follow the desired
trajectory.

IV. EFFICIENT MPC OPTIMIZATION CONTROL
Regarding the AGV trajectory tracking control problemmen-
tioned in the previous section, it is addressed by transform-
ing it into an optimal control problem and employing the
MPC method for resolution. However, in the process of
MPC solving, the optimization problem involves a nonlinear
problem with inequality constraints, which typically cannot
be obtained through conventional methods. To address the
challenges posed by inequality constraints in the MPC solv-
ing process, a method is proposed—namely, relaxing the
inequality constraints in the objective function by introduc-
ing so-called soft constraints. Penalty terms are incorporated
into the objective function to streamline the optimization
problem-solving process. Specifically, to alleviate the com-
plexity of the problem, a relaxation factor is introduced
by easing the inequality constraints in the objective func-
tion (18). Subsequently, an efficient MPC algorithm is pro-
posed to ensure that the control system can complete the
optimization solution within finite computation time, facil-
itating real-time trajectory tracking control for stability.

A. CONSTRUCTING CONSTRAINT RELAXATION FACTORS
To address the constraints imposed by the inequality con-
straints, especially those denoted as cin (X i,ui) ≤ 0 in (18),
a constraint penalty term is introduced to address the inequal-
ity constraint approximately within the objective function.
The penalty term associated with the inequality constraint
is defined based on the switching mode of the constraint as
follows:

ζ
(
cj (X i,ui)

)
=

{
1, for cj (X i,ui) > 0
0, for cj (X i,ui) ≤ 0

(19)

In the equation, the j − th row of cin (·, ·) represents
the dimensions of the vector-valued inequality constraints
cj (X i,ui) , j = 1, 2, · · · , n, and n.

However, cj (X i,ui) = 0 introduces non-differentiability.
To address this issue, the problem can be resolved by approx-
imating relaxation using the following function (19):

ζ
(
cj (X i,ui)

)
≈ sig

(
cj (·, ·) , α

)
=

1

1 + e−cj (X i,ui)α
(20)

In this context, sig (·, ·) is the sigmoid function, with
α determining the sharpness of the switching behavior. It
is noteworthy that the sigmoid function can be effectively
approximated by using a suitably large α (20). Subsequently,
the updated formula for the new objective function with
penalty terms is as follows:

min
1U

J =
1
2
1UTH1U + gT1U + β · χ (X i,ui) (21)

where χ (X i,ui) =
∑ n

j=1ζ
(
cj (X i,ui)

)
. It is worth noting

that when the upper limit of inequality
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FIGURE 2. AGV trajectory tracking control system diagram.

cin (X i,ui) ≤ 0 is reached, this inequality constraint can
ensure that the constraints remain within the specified range,
ensuring the existence of a solution during the calcula-
tion process. Additionally, different values for parameter
β can also have an impact on the numerical convergence
characteristics.

The above method for handling inequality constraints
avoids situations where the inequality requirements are vio-
lated during the computation. Even in cases of slight violation
of the inequality constraints, the new optimal control problem
can still be successfully solved. This makes the method par-
ticularly suitable for robot applications with state constraints.
Furthermore, it eliminates the need for additional optimiza-
tion variables, thus maintaining a relatively low level in terms
of problem dimensions and computational workload.

B. ESTABLISHING EFFICIENT MPC STABILITY
CONSTRAINTS
In the preceding section, the primary emphasis was on resolv-
ing the matter of inequality constraints, without explicitly
delving into the closed-loop stability of the MPC control
method. To theoretically ensure this crucial property, sta-
bility constraints are introduced to constrain the new MPC
optimization problem. By incorporating these stability con-
straints into the optimization problem, it is possible to ensure
system stability while maintaining control performance. The
formula for stability constraints is expressed as follows:

∂V
∂X

f (X (t) ,u (t)) ≤
∂V
∂X

f (X (t) ,h (X (t))) (22)

In the above expression, V (·) is the Lyapunov function
and h (·) is an auxiliary control law based on Lyapunov. As
only the initial element of the optimal control sequenceU∗ is

transmitted to themobile robot, we solely account for stability
constraints within the first prediction time [t, t + δ].
From the above, it can be concluded that the efficient

MPC approach incorporates stability through auxiliary con-
trol laws. It ensures flexibility within specified ranges with-
out compromising the stability of tracking control. In other
words, when employing a cost-effective processor for the
control algorithm, the prediction horizon can be tailored to
judiciously diminish the size of real-time MPC optimiza-
tion. By providing real-time feedback on the computation
time tp for each iteration, we apply such adjustments to
Algorithm 1. This optimization measure enables the control
system to flexibly adjust the prediction horizon based on the
actual computational resource constraints, improving compu-
tational efficiency and meeting the requirements of real-time
control. Here, 1N represents the prediction horizon incre-
ment (or decrement), ω ∈ (0, 1) is the weighting factor, and
tp is the computation time for each iteration. This algorithm
further reduces computational complexity while enhancing
control performance.

C. STABILITY ANALYSIS
Diverging from conventionalMPC, efficientMPC guarantees
stability when the auxiliary control law h(X) is a viable
solution, provided that certain conditions

∥∥h(X)
∥∥

∞
≤ umax

can be satisfied. The formulation of the auxiliary control law
h(X) is grounded in the principles of the Lyapunov stability
theorem.

To analyze the stability of efficient MPC, the following
Lyapunov function is designed:

V =
1
2 z
T
1z1 +

1
2 z
T
2z2 (23)
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Algorithm 1 Efficient MPC Algorithm
1: Initialization: Set simulation time tsim, initial state
X (t0), set k = 0, t0 = 0, 1X = 0, ω,N , 1N ;

2: Convert (14) to (21);
3: Use the initial state X (0) to solve (21) and generate

the optimal control sequence U∗ at time t = t0;
4: Implement the calculated control actions
u (t) = 1

(
U∗

0

)
;

5: k = k + 1, t = kδ;
6:while t ≤ tsim do
7: Capture the value of tp;
8: If tp > δ then set N = N − 1N ;
9: else if tp < ωδ then set N = N + 1N ;
10: else N = N ;
11: Sample the system state X (t);
12: Calculate the state difference

1X = X (kδ) − X ((k − 1) δ);
13: Generate U∗

k by solving the updated N through (21);
14: Implement the calculated control action

u (t) = 1
(
U∗
k

)
;

15: k = k + 1, t = kδ;
16: end while

where z1 = X r − X represents the position error, and z2 =

Ẋ r−Bu+α1z1 represents the velocity error. Then, using the
backstepping control (BC) technique, auxiliary control laws
can be designed as follows:

h(X) = G−1BT(θ)µ(X) (24)

where

µ(X) = Ẍ r − Ḃ(θ )u+ (α1 + α2)z2 + (1 − α2
1)z1 (25)

where α1, α2 > 0 are the parameters of the controller, and
for the convenience of the following proof, parameter B is
is replaced with B(θ). It is essential to highlight that when∥∥h(X)

∥∥
∞

≤ umax is met, the stability of efficient MPC is
assured. Consequently, the objective is to identify a feasible
set of controller parameters.
Assumption 1: The desired position trajectory p(t) and

its derivatives are both smooth and bounded, adhering to:
|xr (t)| ≤ x̄, |yr (t)| ≤ ȳ, |ẋr (t)| ≤ x̄1, |ẏr (t)| ≤ ȳ1, |ẍr (t)| ≤

x̄2, |ÿr (t)| ≤ ȳ2.
Lemma 1: The reference states of the system, denoted by

X r(t) and its first and second derivatives Ẋ r(t), Ẍ r(t), are
bounded. In other words, there exist positive constants X̄ , X̄1,
and X̄2 such that for some

∥∥X r(t)
∥∥

∞
≤ X̄ ,

∥∥Ẋ r(t)
∥∥

∞
≤ X̄1,∥∥Ẍ r(t)

∥∥
∞

≤ X̄2.
Note 1: Assuming a continuously smooth curve p(t),

the fulfillment of Assumption 1 is straightforward. With
Assumption 1, the proof of state boundedness concerning the
reference can be established.
Theorem 1: Assume that the necessary conditions are met

to validate Assumption 1. Given ḡ =

∥∥∥G−1
∥∥∥

∞

, that is,

ḡ = max
{
a−1
g , b−1

g , c−1
g

}
. If the following conditions

can be met:
√
2 · ḡ(X̄2 + 2

√
2 · l2 + w) ≤ umax (26)

where l = X̄1 + ∥z2(t0)∥2 + α1 ∥z1(t0)∥2 and w =

(α1 + α2) ∥z2(t0)∥2+
(
1 − α2

1

)
∥z1(t0)∥2, t0 is the initial time,

the efficient MPC scheme is consistently assured to possess
a feasible solution.

Proof: Taking the infinity norm on both sides of (24),
we derive the following inequality:∥∥h(X)

∥∥
∞

≤

∥∥∥G−1
∥∥∥

∞

∥∥∥BT(θ)
∥∥∥

∞

∥µ∥∞ (27)∥∥∥BT (θ )∥∥∥
∞

= max {|sin(θ)| + cos(θ), 1} ≤
√
2 (28)

Likewise, a similar inequality is applicable to (25):

∥µ∥∞ ≤ X̄2 + ∥�∥∞ ∥u∥∞ + (1 − α2
1) ∥z1∥∞

+ (α1 + α2) ∥z2∥∞ (29)

where

� = −Ḃ(θ) =

 sin(θ)r cos(θ )r 0
− cos(θ )r sin(θ )r 0

0 0 0

 .

In fact, ∥�∥∞ ≤
√
2 ∥u∥∞.

According to (2), we can obtain:

∥u∥∞ =

∥∥∥BT(θ)Ẋ
∥∥∥

∞

≤
√
2

∥∥Ẋ∥∥
∞

(30)

Based on z1 = X r − X and ż1 = z2 − α1z1, we can
conclude:∥∥Ẋ∥∥

∞
=

∥∥Ẋd − ż1
∥∥ ≤ X̄1 + ∥ż1∥∞ ≤ X̄1

+ ∥z2∥∞ + α1 ∥z1∥∞ (31)

As V̇ ≤ 0, ∥z1(t)∥∞ ≤ ∥z1(t)∥2 ≤ ∥z1(t0)∥2, and
∥z2(t)∥∞ ≤ ∥z2(t)∥2 ≤ ∥z2(t0)∥2 are typically functions of
t0 = 0. Therefore, according to (31), we can obtain:

∥µ∥∞ ≤ X̄2 + 2
√
2 · l2 + w (32)

where l = X̄1 + ∥z2(t0)∥2 + α1 ∥z1(t0)∥2, w = (α1 +

α2) ∥z2(t0)∥2 + (1 − α2
1) ∥z1(t0)∥2◦

Substituting (28), (30), and (32) into (27), we get:∥∥h(X)
∥∥

∞
≤

√
2 · f̄ (s̄ · l + X̄2 + 2

√
2 · l2 + w) (33)

Certainly, the satisfaction of condition (26) implies the
fulfillment of

∥∥h(X)
∥∥

∞
≤ umax, thereby ensuring that the

efficient MPC scheme, as defined in (22), consistently pro-
vides feasible solutions adhering to the constraints.
Note 2: Theorem 1 provides criteria for ensuring∥∥h(X)

∥∥
∞

≤ umax, offering guidelines for an appropriate
choice of α1 and α2. To facilitate obtaining possible optimal
solutions, it is desired to minimize α1 and α2 as much as
possible to maximize the allowable operational region. While
smaller values of α1 and α2 may result in slower convergence,
the use of efficientMPC ensures optimal control performance
relative to a certain performance metric.
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It is important to note that stability constraints are intro-
duced to guarantee closed-loop stability when the controller
parameters satisfy condition (26). Following this, the stability
of the proposed efficient MPC is established through Lya-
punov’s direct method.
Theorem 2: Assuming the problem possessed a singular

optimal solution and optimal cost, both of which exhibit
bounded solutions. Assume that Assumption 1 and the
inequality (26) hold. With the auxiliary control law defined
in (24), Algorithm 1 ensures asymptotic convergence to the
desired trajectory.

Proof: For the Lyapunov candidate V (X ) in (23), which
is continuously differentiable and radially unbounded, func-
tions κ∞ and βi(·), i = 1, 2, 3 exist, satisfying the following
inequalities according to the inverse Lyapunov theorem:

β1(∥x∥) ≤ V(X) ≤ β2(∥x∥) (34)
∂V(X)

∂X
f (X,h(X)) ≤ −β3(∥x∥) (35)

Taking into account the stability constraint (22) and the
controlU(t) = U∗(s), s ∈ [t, t+δ] applied at each sampling
instant in the efficient MPC control, the Lyapunov candidate
V(X) in (35) adheres to the following inequality:

∂V(X)
∂X

f (X, u) ≤
∂V(X)

∂X
f (X,h(X)) ≤ −β3(∥x∥) (36)

Hence, following the principles of the Lyapunov stability
theorem, the demonstration of the proposed efficient MPC
algorithm in this paper is concluded.

V. SIMULATION EXPERIMENT VERIFICATION AND
ANALYSIS
In this section, we conducted a simulation analysis on the
MATLAB platform to assess the precision and computational
speed of the proposed efficient MPC algorithm for AGV
trajectory tracking. A comparative analysis between the effi-
cient MPC algorithm and the traditional MPC algorithm was
carried out to showcase the effectiveness of the proposed
approach. Tables 1 and 2 present the fundamental parameters
of the AGV and the controller, respectively.

In the experiment, trigonometric functions were employed
as the reference trajectory for the simulation analysis. The
traditional MPC and efficient MPC algorithms were utilized
to track the reference trajectory, and the corresponding devia-
tion values, along with the computation time incurred during
tracking, were obtained to assess the algorithm’s perfor-
mance. Figure 3 illustrates the trajectory tracking plot, while
Figures 4 and 5 depict the deviations along the X and Y axes
during the tracking process.

From Figure 3, it can be observed that there is a significant
error fluctuation between 7-10 seconds, while the efficient
MPC shows relatively stable control without drastic error
fluctuations during the entire process. The tracking perfor-
mance of the efficient MPC is notably superior to that of
traditional MPC. To accurately compare the performance of
each controller, the mean deviation and variance in the X

TABLE 1. Basic parameters of AGV.

TABLE 2. Basic parameters of controller.

FIGURE 3. Trajectory tracking curve.

FIGURE 4. X-axis deviation curve.

and Y directions are calculated as metrics to evaluate the
controller’s tracking effectiveness. A higher mean deviation
or variance indicates a greater deviation or dispersion of the
trajectory, resulting in poorer tracking performance. Con-
versely, lower values suggest better tracking performance.
The data for both controllers are presented in Table 3.

The table shows that the mean deviation of the X-axis
and Y-axis for the efficient MPC controller is 74.7%
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FIGURE 5. Y-axis deviation curve.

TABLE 3. Comparison of controller performance.

and 65.3% of those for the traditional MPC controller,
respectively. The variances are 16% and 51.3% of those for
the traditional MPC controller. Simulation results demon-
strate that the efficient MPC controller exhibits better
control performance compared to the traditional MPC
controller.

Figures 6-8 represent the acceleration control chart, steer-
ing angle chart, and controller computation time chart,
respectively. From Figure 6, it can be observed that the
accelerations of both controllers meet the requirements under
constraints. However, Figure 7 shows that the efficient MPC
controller initially violates the constraint conditions, but the
presence of constraints ensures that it always stays within the
specified range. In contrast, the traditional MPC controller
exhibits multiple instances of constraint violation. Compared
to the traditionalMPC controller, the efficientMPC controller
demonstrates better stability.

From Figure 8, it is evident that the computation time used
by the efficient MPC controller is significantly less than the
time used by the traditional MPC controller. As shown in
Table 4, the average computation time for the efficient MPC
controller is 0.9762s, with a maximum single computation
time of 1.4314s. This represents an improvement compared
to the traditional MPC controller, which has an average com-
putation time of 1.0208s and a maximum single computation
time of 1.6593s.

The simulation results above highlight that the efficient
MPC algorithm effectively minimizes the solution time of
the model predictive controller. The efficient MPC algorithm
ensures, under the premise of trajectory tracking accuracy,
a 5.1% reduction in average solution computation time and

FIGURE 6. Acceleration control diagram.

FIGURE 7. Steering angle diagram.

FIGURE 8. Calculation time diagram.

TABLE 4. Comparison of controller computation time.

a 13.7% reduction in the maximum single computation time
compared to the traditionalMPC algorithm. This validates the
feasibility of the algorithm.
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VI. CONCLUSION
In conclusion, we propose an efficient MPC algorithm tai-
lored for Mecanum wheel AGV trajectory tracking, achiev-
ing effective and stable control. A linear error model
based on pose error is established, and an optimization
objective function is designed. Comparative analysis in
MATLAB demonstrates the algorithm’s superiority over
traditional MPC, reducing trajectory tracking error and
enhancing accuracy by 5.1%. Stability under constraints is
notably improved, and average computation time is reduced.
This ensures ideal trajectory tracking, meeting real-time
requirements.

Our investigation into multi-vehicle coordinated control
for AGV systems sets the stage for future research. We
plan to extend the efficient MPC algorithm for coordinated
motion among multiple AGVs, enhancing system efficiency.
Additionally, integrating emerging technologies like deep
learning and reinforcement learning with the efficient MPC
algorithm holds promise for elevating system intelligence
and adaptability, addressing dynamic changes and diverse
task requirements. By delineating these future directions,
we emphasize the foresight of our research and anticipate
robust interest from academic and industrial communities.
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