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ABSTRACT Generative adversarial networks (GANs) have drawn considerable attention in recent years for
their proven capability in generating synthetic data which can be utilised for multiple purposes. While GANs
have demonstrated tremendous successes in producing synthetic data samples that replicate the dynamics
of the original datasets, the validity of the synthetic data and the underlying privacy concerns represent
major challenges which are not sufficiently addressed. In this work, we design a cascaded tabular GAN
framework (CasTGAN) for generating realistic tabular data with a specific focus on the validity of the
output. In this context, validity refers to the the dependency between features that can be found in the real
data, but is typically misrepresented by traditional generative models. Our key idea entails that employing
a cascaded architecture in which a dedicated generator samples each feature, the synthetic output becomes
more representative of the real data. Our experimental results demonstrate that our model is capable of
generating synthetic tabular data that can be used for fitting machine learning models, as CasTGAN’s
classification performance only falls under the real training data’s PR-AUC score by 4.88% on average
for classification datasets, and exhibits an average reduction of the real training data’s R2 score by 0.139 for
regression datasets. In addition, our model captures well the constraints and the correlations between the
features of the real data, especially the high dimensional datasets. Assessing the generation of invalid records
demonstrates that CasTGAN reduces the number of invalid data observations by up to 622% in comparison
to the second best performing baseline tabular GAN model. Furthermore, we evaluate the risk of white-
box privacy attacks on our model and subsequently show that applying some perturbations to the auxiliary
learners in CasTGAN increases the overall robustness of our model against targeted attacks.

INDEX TERMS Generative adversarial networks, output validity, privacy attacks, tabular data.

I. INTRODUCTION
Facilitating information and knowledge sharing within and
between organisations is increasingly sought after for attain-
ing growth and development. From a healthcare and medical
standpoint, information exchange subsequently contributes
to better understanding of diseases and risk factors, more
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intuitive prognosis by practitioners and effective treatment
planning based on previously obtained knowledge [1]. In the
financial sector, sharing information between stakeholders
leads to improved prediction of corporate bankruptcy and
quicker identification of suspicious transaction behaviour that
can be potentially linked to organised financial crime [2].
For both fields, sharing the data which contains sensitive
patient and client information is subject to the European
Union’s General Data Protection Regulation (GDPR) [3] to
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maintain the confidentiality and privacy of such information.
Therefore, institutions are continuously seeking new data
anonymisation and synthetic data generation techniques for
exchanging domain knowledge without exposing sensitive
information.

Ever since their development, generative adversarial net-
works (GANs) [4] have been increasingly studied for their
ability to approximate and model complex data distributions.
Despite the early GAN applications being densely focused
on the computer vision domain and image generation, GANs
are becoming recently researched in other fields such as
natural language processing [5] and time-series anomaly
detection [6]. In addition, more properties of GANs have
emerged such as conditionally generating samples based on
a specific target class [7] and generation in conjunction with
variational auto-encoders [8].
In contrast, GANs have been significantly less explored for

tabular data generation. A tabular dataset typically comprises
a mixture of continuous variables and categorical features [9].
Tabular data is common in the medical and the financial
domains where fields such age, gender, profession, and
income can be commonly found in databases containing
numerous records. As opposed to purely numerical data,
representing datasets with categorical variables can be
particularly difficult in presence of highly-dimensional and
strongly correlated features. Furthermore, quantifying the
validity of a synthetic tabular dataset can be practically
impossible without closely inspecting every generated data
sample and deciding whether to accept or reject each
examined data record. Correspondingly, invalidity refers to
the semantically incorrect representation of the features,
where the interdependencies between some data features
are not correctly modelled. This constitutes a challenge
when synthetic data is harnessed for knowledge exchange,
as semantically incorrect data can lead to misinterpretation
and flawed understanding of the data, hence disparaging the
effect of facilitating knowledge sharing. Notwithstanding,
there currently exists no straightforward and unified criteria
for evaluating the validity of the output generated by tabular
GANs [10].
To rectify the previously outlined limitations, we intro-

duce CasTGAN, which is a generative network framework
characterised by multiple generators connected sequentially;
each of which is designed to generate a single feature.
Meanwhile, a single discriminator validates the output of
all the generators while being trained on the output of the
final generator in the cascade. In addition, each generator is
chained to a corresponding auxiliary learner in order to obtain
more insightful losses specific to the individually generated
features. This is motivated by the fact that it has been
shown that adding more auxiliary classifiers can enhance
the quality of the synthetic output images [11]. Therefore,
we posit that CasTGAN aims to capture the highly correlated
and hierarchical relationship between features, such that the
synthetic output produced by our model closely resembles

the real data while minimising the inconsistencies in the
generated data. This is particularly important for applications
where data is widely shared between professionals, and
the slightest irregularities in the data can lead to undesired
outcomes.

We can thereby summarise our contributions in this work
as:

• Generative architecture: A cascaded based generative
framework for producing realistic tabular output which
greatly emulates the original data, while significantly
reducing the number of invalid synthetic samples.

• Synthetic data evaluation: A new metric for quantifying
the realistic-ness of the synthetic data when lacking
the domain knowledge for the provided data, and
extensively evaluate our framework and existing works.

• Privacy assessment: We launch white-box privacy
attacks on our model and analyse how the privacy
guarantees and quality of the output are impacted when
perturbing the input data during the model training.

The remainder of this paper is structured as follows.
In Section II, we present an overview of GANs and the types
of GAN privacy attacks, while we further examine the rele-
vant studies in Section III. Section IV presents a discussion of
CasTGANand a detailed description of ourmodel’s structure.
In Section V, we outline the experimental setup used in this
work and the evaluation criteria. We demonstrate our results
in Section VI and discuss our findings in Section VII. The
paper is concluded in Section VIII.

II. BACKGROUND
A. GENERATIVE ADVERSARIAL NETWORKS
A GAN is characterised by a generator G and a discriminator
D playing an adversarial game, where each component
attempts to maximise its own benefit [4]. The generator
receives a noise input sampled from a random distribution
z ∼ pz and learns to generate an output in the distribution
x ∼ pg that matches the structure of the unseen real data
x ∼ pdata. Meanwhile, the discriminator has access to
the samples produced by the generator and the real data,
and learns to distinguish between its real and fake inputs.
While the output generated by G improves during training
as a result of the loss it obtains from the discriminator, the
discriminator also becomes increasingly clever in recognising
the data produced by the generator. Subsequently, GANs are
particularly challenging to train since it must be guaranteed
that both the generator and the discriminator maintain their
competitiveness without outperforming each other early in
the training phase. In the classic GANs, the generator and
the discriminator attempt to maximise their objective by
minimising the Jenson-Shannon Divergence (JSD), however,
using JSD does not guarantee the convergence of losses,
hence leading to training instability [4].

The Wasserstein GAN (WGAN) has been proposed as
an alternative to the standard GANs in order to augment
the training stability in generative models by replacing JSD
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with the Wasserstein Distance (WD) [12]. The use of the
Wasserstein Distance ensures that the model is continuously
learning even if the quality of the output is poor, and this is
attributed to the smooth gradients produced by the Wasser-
stein cost function. The initial WGAN relied on weight
clipping to enforce the confinement of the discriminator’s
weights within a specified range [−c, c], however, the authors
demonstrate that clipping can lead to difficulties with model
optimisation [12]. Instead, the use of gradient penalty with
WGAN has been proposed to mitigate against the exploding
and vanishing gradients of the weights [13]. In this setting,
gradients are found using the linear interpolations x̂ ∼ px̂
between the real and the fake samples, where the distribution
of linear interpolation is resembled by px̂ . Additionally, the
gradient penalty coefficient λGP is used as a parameter for
controlling the level at which the gradient penalty affects the
discriminator.

The objective function for theWGAN-GP can therefore be
represented as:

min
G

max
D

V (D) Ex∼pdata [D(x)] − Ez∼pz [D (G(z))]

− λGP Ex̂∼p̂x

[
(∥∇x̂D (̂x) ∥2 − 1)2

]
(1)

WGAN-GP is increasingly becoming more prevalent than
the classic GANs in applications such as image generation
and tabular data generation, as it contributes to more stable
learning. In addition, WGAN-GP minimises the effect of
mode collapse - that is when the generator learns to ‘‘trick’’
the discriminator by producing a limited number of modes
which the discriminator incorrectly classifies as real samples,
instead of utilising the entire data feature space.

B. PRIVACY ATTACKS
In machine learning, membership inference attacks (MIA)
aim to identify whether a data sample was used in the training
of a machine learning model [14]. For instance, the attackers
might try to identify whether the records belonging a client
were used for training a loan default prediction model. In this
case, the attackers’ objective would be to determine whether
the client has taken a bank loan, with such information
being used for targeted fraud attempts. Privacy guarantees in
machine learning have been extensively studied in the form
of analysing the connection to model overfitting [15] and in
differential privacy [16].
More recently, MIA have also been explored for gener-

ative models. Privacy attacks applied on synthetic samples
generated by GAN models aim to reconstruct the real data
samples which were used in GAN training. In principle,
membership attacks on GANs can be categorised into three
types of attacks [17]; full black-box in which attackers have
access to only synthetic samples, partial black-box where
the attackers have access to the synthetic samples and the
latent codes used to generate them, and white-box which
assumes that the attackers are able to access the internal
parameters of the generator, the discriminator or both. The
trade-off between the quality of synthetic samples and the

privacy guarantees of GANs have been additionally examined
in existing works [18], [19], [20].

III. RELATED WORKS
Tabular data is broadly used in regression and classification
tasks, which facilitates a growing interest in tabular data
synthesis for machine learning applications, especially in
domains with limited training data. Bayesian networks can
be used for generating synthetic records by approximating the
conditional probability distribution from the data [21]. While
the Bayesian networks can in practice be additionally used
for exploring causal relationships between the independent
variables, estimating the distributions is often built on
simplifying assumptions on the data [22]. Meanwhile, tree-
based methods were first utilised for generating partial
synthetic data in [23], and has further explored in [24] where
adversarial random forest has demonstrated comparable
performance to deep learning techniques in terms of synthetic
data quality. However, the privacy-utility trade-offs for
synthetic data generation using tree-based density estimators
is not sufficiently explored.
Deep neural networks have been widely studied for

synthetic data generation, thanks to their capabilities for
handling and approximating the distributions of large
datasets. Variational auto-encoders (VAEs) [25] estimate the
probabilistic distribution of by finding a lower-dimensional
latent representation of the data. The application of VAEs has
been extended to image data generation [26], oversampling
of anomaly event data [27] and tabular data synthesis [28].
An underlying limitation with variational autoencoders is the
assumption of the a simple parametric form of the latent
space, which leads to a difficulty in capturing complex
data distributions [29]. Invertible neural networks have also
been proposed for tabular data synthesis through variants
based on neural ordinary differential equations [30], copula
flows [31] and normalizing flows for private tabular data
generation [32]. A drawback of the invertible neural network
based synthesis is that extensive hyperparameter tuning is
needed to achieve satisfactory classification and regression
performance.
Within deep learning based generative models, GANs

are favourable due to their ability to generate complex
synthetic data in an adversarial and unsupervised setting [37].
table-GAN [33] is one of the earliest generative models
for producing tabular synthetic output based on adversar-
ial training. Using convolutional neural networks, table-
GAN demonstrates that GANs unsurprisingly outperform
anonymisation techniques while highlighting the potential
privacy risks arising from membership attacks. Meanwhile,
in medGAN [34] an autoencoder based generative model is
developed for generating high-dimensional medical patient
records while shedding light on the privacy risks attributed
to the generated data. A long-short term memory (LSTM)
architecture for the generator was adopted in [38] demon-
strating the potential of recurrent neural networks in synthetic
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TABLE 1. Properties of some state-of-the-art tabular GANs, used as baselines later Section VI along with our proposed model, CasTGAN. When counting
the number of datasets, we only consider real datasets as opposed to simulated datasets with known distributions and priors. While some methods
conduct privacy analysis by measuring distance to closest records, this is notably different than evaluating the threat posed by privacy attacks.

data generation. A GAN approach based on an autoencoder
andKullback-Liebler divergence to tacklemode-collapsewas
proposed in [39], in which high-quality synthetic output
was produced, with comparable performance to state-of-
the-art methods. In CTGAN [28], conditional training of
a GAN is carried out by instructing the generator and
the discriminator to sample based on randomly selecting
feature category in every training iteration, where a highly
realistic tabular output can be observed from their evaluation.
In [35], the authors propose cWGAN, which is a GAN-
based oversampling technique focusing on the generation of
samples belonging to the minority class in financial credit
datasets. Zhao et al. [36] builds up on existing tabular GAN
models by employing convolutional neural network (CNN)
and conditional vectors to improve the representation of
skewed distribution of numerical features of the synthetic
output. Finally, Strelcenia et al. [40] comprehensively review
the existing tabular GAN literature and highlight that an
underlying limitation of the tabular GAN-based studies is the
lack of standarised evaluation metrics.

Acknowledging the aforementioned, it is manifested that
there is no shortage of novelties in synthetic tabular data
generation literature. Nevertheless, an underlying challenge
remains the proposal of evaluation techniques and criteria for
quantifying the reliability and the statistical properties of the
synthetic data. A further limitation is the sufficient analysis
of data with hierarchical and interdependent variables.
Therefore, our focus in this work is proposing a new
framework that alleviates the two preceding deficiencies in
the synthetic tabular data domain. A general overview of
the properties, strengths and limitations of our model and
the existing studies that we adopt as baselines is outlined in
Table 1.

IV. METHODOLOGY
Generating synthetic data from unknown and correlated
distributions is a non-trivial task. The architecture of
CasTGAN is tailored for generating mixed-type features that
have similar distributions to the ones observed in a real
dataset. Additionally, cascaded structures enable modelling
correlations among features in a sequential manner. Given a
dataset X with M features, the features of the dataset can be
represented as {m1,m2, . . . ,mM }.

A. MODEL ARCHITECTURE
The proposed CasTGAN framework is characterised by a
cascade G⃗ of multiple generators, G⃗ = {G1,G2, . . . ,GM },

in which generators G1,G2, . . . ,GM are connected sequen-
tially and coupledwith auxiliary learnersAL1,AL2, . . . ,ALM .
Generator Gi and auxiliary learner ALi for i = 1, 2, . . . ,M
are devoted for feature mi in the dataset, and the real data is
used for fitting the auxiliary learners and the discriminator
D. An illustration of the CasTGAN architecture is depicted
in Figure 1.
As can be visualised from Figure 1, each generator Gi

focuses on generating its target feature using a primary neural
network. The cascade of generators are laid out sequentially
such that generator Gi obtains its inputs from a given noise
vector z whose components are standard Gaussian and i.i.d.,
and from the outputs of the previous generator – the only
exception being the first generator which only takes a vector
of random noise as its input.

Notation-wise, generator Gi takes as input φi two objects:
the useful outputs coming from Gi−1 (i.e., the vector
Ǧi−1(φi−1)) and the noise vector z (note that the same vector
is fed to all the generators as depicted in Figure 1). The
generator Gi then produces one output, i.e., Gi(φi), that may
though be logically split in three distinct components: Zi, that
will be considered redundant information and that will not be
used by the next generator; X̂i, that is the target feature of
generator i; and Ǧi−1(φi−1), that is simply the information
from the past generator that will be forwarded to the next
one. The input and the output of generator Gi are shown in
Figure 2.
Formally, the output of generator Gi can be presented as:

Gi(φi) = Ǧi(φi) ⊕ Zi, (2)

while the information that generator Gi will pass to Gi+1 is

Ǧi(φi) =

{
X̂i if i = 1
X̂i ⊕ Ǧi−1(φi−1) if i ≥ 2 .

(3)

Note that the generator is actually composed by two distinct
neural networks: the primary one, whose input is

φi =

{
z if i = 1
z⊕ Ǧi−1(φi−1) if i ≥ 2,

(4)

and the secondary neural network, whose input is the
noise vector z above and whose output Zi is the redundant
information output mentioned above, that will not be passed
forward to Gi+1 but will instead be used by ALi.

We note that, as the losses are not backpropagated to the
secondary neural network, Gi retains its primary objective of
generating its target feature based on the input provided to it.
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FIGURE 1. The model architecture of CasTGAN. The cascade G⃗ is composed of generators G1, G2, . . . , GM sequentially lined
up. The auxiliary learners AL1, AL2, . . . , ALM are fitted on the real data, and are utilised by their respective generators for
querying the generation of the data features m1, m2, . . . , mM . The cascade of generators G⃗ takes noise vector z as input,
while the discriminator D is trained to distinguish the real data from the synthetic data. As depicted, generators
G1, G2, . . . , GM−1 receive three losses: loss directly from the discriminator, loss backpropagated from the previous generator
and the loss from the auxiliary learner. Meanwhile, GM is passed the loss from its auxiliary learner and the loss from the
discriminator.

FIGURE 2. A close in visualization of generator Gi in our GAN architecture. The structure in the figure is applicable to all generators in the
cascaded layout, except for G1, which receives only noise vector z as input.

Summarizing, the overall cascaded generator structure can be
denoted as

G⃗ (z) = X̂ , (5)

where X̂ is the generated synthetic output.
Based on our literature survey, we observe that some of

state-of-the-art tabular GANs employ a conditional setting to
enforce the representation of features in both the generator
and discriminator [28], [36]. We note that while this is indeed
an effective strategy for representing discrete categories and

preventing mode collapse, this approach is considerably
inefficient for sampling datasets with a large number of
categories and few data records, since conditioning on a
single random category at every training iteration might not
be sufficient to cover all the existing categories in the dataset.
In this paper we seek to analyse whether, how much and
under which conditions resorting to a series of auxiliary
learners – one for each feature – may encourage the models
to learn to represent based on the losses traversed, rather
than explicitly constraining the model output. The hypothesis
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is indeed that if multiple auxiliary losses are computed in
parallel, the model might be able to improve the learning
of categorical interdependence and scale up accordingly to
highly dimensional tabular datasets.

B. AUXILIARY LEARNERS ARCHITECTURE
GANs for tabular data synthesis are known to be prone to
training instability and mode collapse due to the imbalanced
feature categories [41]. Conditional GANs [7] have been
deployed to generate synthetic output belonging to specific
classes. Conditioning both on the generator and the discrim-
inator has been shown to stabilise the training process of
GANs.

On the other hand, the use of auxiliary learning for
predicting the target variable given the data represents an
alternative approach for capturing the characteristics of the
data attributed to given target feature. It has been demon-
strated that the auxiliary loss further stabilises the training
process in comparison to conditional generation, and leads
to a representation that is independent of target label [42].
We observe that while auxiliary learners are traditionally
embedded within the discriminator [11], we instead propose
designing auxiliary learners as independent structures.

In the CasTGAN, we craft M auxiliary learners
AL1, . . . ,ALM for learning to predict the individual features.
Due to its scalability on large datasets and the relatively
fast convergence speed, we focus on building the auxiliary
learners using the Light Gradient Boosting Machine
(LightGBM) [43], which we pre-train prior to the GAN
training. An auxiliary learner ALi corresponding to feature
mi is trained on X̸∈i in order to predict Xi. Following standard
strategies for such tasks, for predicting the numerical features,
the mean-squared error loss is used in the training of the
auxiliary learners, whereas cross-entropy loss is used for
predicting the categorical and binary variables. As with other
decision tree basedmodels, there is no need to one-hot encode
the categorical features in X̸∈i, but instead the categories are
converted into integer encodings. Meanwhile the LightGBM
auxiliary learners are capable of handling numerical features
with extreme magnitudes, and therefore numerical features
are not scaled for auxiliary training.

As LightGBMmodels have low computational complexity
and are generally fast to to train [43], assigning an auxiliary
learner for every feature is a reasonable approach for
representing the auxiliary loss LAL for predicting a feature
given all the other features. It is worth noting that for the early
auxiliary learners in the cascaded sequence AL1 to AL⌈M/2⌉,
the generated data feature space X̸̂∈i is heavily dominated
by redundant variables Z which subsequently lead to
increased auxiliary losses. However, these losses help the
early generators in producing features that closely match
the distributions of the training data. Meanwhile, the task
for the later generators and auxiliary learners in the cascade
becomes increasingly focused towards generating features
that can be predicted from the initially generated target
features Ǧi−1 (φi−1).

FIGURE 3. A detailed depiction of auxiliary learner ALi in CasTGAN. The
training of the LightGBM model on the real data occurs prior to
the training of the GAN model. Meanwhile, the synthetic data from the
generator Gi is queried against the auxiliary learner ALi during the
training iterations of the GAN to compute the auxiliary loss of the
generator’s target feature.

To ensure that the auxiliary losses LAL1 , . . . ,LALM do
not overexceed the generator’s ones, there is the need for
scaling down the losses from the auxiliary learners. In this
paper we analyze the choice of performing this scaling down
by means of constant coefficients λAL . In principle, λAL
could be a single scalar value that is applied to all the
auxiliary losses. However, we consider a vector of auxiliary
loss coefficients λAL1 , . . . ,λALM since it is fundamentally
important for the early generators to generate variables that
conform to the original feature distributions, since this will
prompt the next generators in the cascade to effectively
learn the feature correlations. Though this a hyperparameter,
we set λAL1 = 0.75 and λALM = 0.10 while the auxiliary
coefficients in between are linearly and equidistantly scaled
in the [0.75, 0.10] range in our experiments. The same
auxiliary setting is applied for all the datasets in this work.
The overall structure of auxiliary learner ALi is illustrated in
Figure 3.
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C. TRAINING DATA TRANSFORMATION
The main novelty in this paper comes from testing the
effects of designing multiple generators in a cascaded layout,
where each generator focuses on generating a single data
feature. To represent the numerical features we propose to
use Variational Gaussian Mixture models (VGM) [44] to
estimate the number of modes for a numerical feature, as it
has been demonstrated that correctly representing multi-
modal numerical data objectively reduces the incidence of
mode collapse [39]. In this context, each mode is essentially
a Gaussian model on its own, where in the transformation
process a single mode is selected for a feature and a scalar
value is calculated for quantifying the magnitude of the
mode. As such, the transformation of a numerical feature
changes the initial unscaled real number into a vector of
size equivalent to the number of Gaussian mixture models
+ 1 (the 1 being the magnitude value of the respective mode
and the vector being a one-hot encoded representation of the
selected mode). The representation of continuous features
using variational Gaussian models is not exclusive to this
work as it has been adopted with notable success in earlier
tabular GANs [28], [36].

Meanwhile, the categorical features of the training data
are transformed into one-hot encodings before being fed
to the discriminator. For GANs, the one-hot encoding
vectorisation of the categorical features presents an intuitive
approach to process the data as it can be scaled and can
be appropriately used by the model without issues such
as exploding gradients. Furthermore, the use of one-hot
encoding simplifies the task of introducing non-linearities
by the generator for guaranteeing that the model gradients
are differentiable. It is worth reiterating that categorical and
numerical transformations of the data for use by the generator
and discriminator differ from the representation of the same
data used for training and evaluating the auxiliary learners.

D. GENERATORS AND DISCRIMINATOR
The generators receive input in the form of noise vector z and
the untransformed meaningful output Ǧi−1(φi−1). As with
other GAN applications, we highlight that using a larger
noise vector leads to a better output of the features and
can mitigate against mode collapse [39]. Throughout all the
experiments, we use a noise vector of size 128, though this is
a hyperparameter that can be tuned accordingly [45]. Since
each generator dedicates its effort into generating one feature
at a time, we use a simple primary neural network of hidden
sizes (128, 64). Additionally, we use layer normalisation after
the hidden dimension [46] for standardizing the weights into
zero mean and unit variance and for speeding up the training
process. We also use the LeakyReLU activation function with
a small negative slope as opposed to ReLU in order to remove
the constraints associated with setting the negative gradients
to zero.

The dimension of the output layer of the generator for
producing the target feature is equivalent to the number of

one-hot encodings if the feature is categorical or equal to the
number of VGM modes +1 if the target feature is numerical.
A hyperbolic tangent (tanh) activation is applied to the
scalar value of the numerical VGM representation. For the
categorical output and the one-hot encoded vector of the
VGM vector we use gumbel softmax activations for intro-
ducing non-linearities to the output. The Gumbel-softmax
works by adding noise from the Gumbel distribution to the
vectorised logit output of the generator while maintaining
the differentiable nature of the GAN training. The Gumbel-
softmax function exhibits also a temperature parameter τ that
may be used to control the diversity of the output generated
by the function. In our experiments τ = 0.8 was assessed
as proper to generate a diversified output that reduces the
effects of mode collapse, while conforming to the distribution
of categories of the feature within the training set.

We then note the risk that the discriminator may learn to
distinguish between real and generated data by discriminating
between the hard one-hot encoded real data and the float
values from the generator. To minimize this risk we add
an i.i.d. Gaussian noise distributed as N (0, 0.01) [12]
to the columns of the real samples before feeding them
to the discriminator. Consequently, all the inputs to the
discriminator (i.e., numerical and categorical features of real
and generated data) are float values. The weights of the
discriminator are then trained using only the outputs from the
final generator GM . The parameters of the various generators
are though updated based on the loss of the discriminator, that
is thus computed for this reason.

We maintain a simple architecture for the discriminator
comprising two hidden layers of sizes (256, 128). As with the
generator, layer normalization and LeakyReLU activations
are used between the hidden layers. The final layer consists
of a single output node without an activation function.
To alleviate against mode collapse&GAN training instability
issues we additionally compute theWasserstein loss [12] with
gradient-penalty [13] for the calculation of the discriminator
losses.

As the CasTGAN is built up using M generators,
we have multiple min-max games between the generators
and the discriminator. Therefore, the value function for the
discriminator can be expressed as

min
G⃗

max
D

V (D) = Ex∼pdata [D(x)]

− Ez∼pz

[
D

(
G⃗(z)

)]
− λGPEx̂∼p̂x

[
(∥∇x̂D (̂x) ∥2 − 1)2

]
(6)

and value function for generator Gi is hence given by

min
Gi

max
D

V (Gi) = − Eφ∼pφ

[
D

(
Gi(φ)

)]
+ λALi Eφ∼pφ

[
LALi

]
. (7)

V. EXPERIMENTAL SETUP
Evaluating the performance of GANs is a non-trivial task, and
this is evident from literature, where no standard approach
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for evaluating GANs on tabular data can be found. In this
section, we describe the experimental design for CasTGAN,
with a thorough discussion of the metrics used for the
model’s analysis. We implemented our model using PyTorch
in Python on a LinuxUbuntu 20.04machine running onAMD
Ryzen Threadripper 3990X and Nvidia GeForce RTX 3090.
Our CasTGAN source code is publicly available.1

A. DATASETS
Our CasTGAN is designed for synthesis of tabular data that
can be typically found in the financial and healthcare sectors.
We therefore use tabular mixed datasets characterised by a
combination of categorical and numerical features. We use
four datasets where the task is the binary classification of
the target label - Adult [47], Bank Marketing [48], Taiwan
Credit [49] and Diabetes [50]. Meanwhile, we use the
House Prices [51] and Cars [52] datasets for regression.
We additionally highlight that binary columns in the datasets
are handled as categorical variables. An overview of the
datasets used is presented in Table 2. For synthesising data
with CasTGAN and other baselines, we use 50% of the
datasets’ total number of samples for training themodels. The
remaining 50% of the data samples is dedicated for evaluating
the generated synthetic output.

TABLE 2. Datasets used in this study.

B. BASELINES
We compare the synthetic output of CasTGAN against
five state-of-the-art tabular generative adversarial network
models: table-GAN [33], medGAN [34], CTGAN [38],
cWGAN [35] and CTAB-GAN [36]. Given that some of
the datasets that we use in this study were not evaluated
previously by the existing methods, we selected the optimal
hyperparameters recommended by the baseline methods’
authors in this study.

C. HYPERPARAMETER SELECTION
We emphasise that while our framework comprises an ample
number of hyperparameters, we state that our reasoning
for refraining from fine-tuning our model’s hyperparameters
in our experimental results is twofold. First, an extensive
hyperparameter tuning would need to be conducted on
a data-level basis and on a criteria level. To demon-
strate that our framework is compatible with any dataset,
we conduct our experimental analysis and train CasTGAN
on all the datasets in this work using the same set of

1https://github.com/abedshantti/CasTGAN

parameters in Appendix A-A. The choice of these parameters
is based on preliminary, yet limited experimentation of
our framework which yielded satisfactory and promising
synthetic output during the conceptualisation phase. From
a criteria-level perspective, we highlight that the model
settings that attain the best performance on an evaluation
criterion do not necessarily improve the synthetic output
on all performance evaluation fronts. For instance, there
might exist a hyperparameter trade-off between maximising
the machine learning utility and improving the univariate
feature representation. Second, given that we refrain from
conducting hyperparameter tuning for the benchmark models
and instead adopt the recommended hyperparameters of the
benchmarks across all datasets, the comparison between
our method and the baselines can be regarded as fair and
equitable, provided that no extensive tuning of CasTGAN is
undertaken correspondingly. Notwithstanding, we refer the
reader interested in strategies for selecting hyperparameters
for training CasTGAN on their own data to Appendix A-B.

D. EVALUATION CRITERIA
1) TRAIN ON SYNTHETIC, TEST ON REAL (TSTR)
We measure reliability of the synthetic output produced
by CasTGAN by training machine learning models on the
generated data. We fitted three machine learning models
on the generated output - namely AdaBoost, random forest
and logistic regression for classification tasks and AdaBoost,
decision trees and Linear SVM for regression tasks. We then
used the trained models to predict the target label of the
test data and we report the precision-recall area under curve
(PR-AUC) for binary classification tasks and the R2 score
for regression tasks. Since our main objective is to measure
the machine learning utility of the generated data rather
than assessing the individual performance of each classifier,
we average the metrics produced by the three machine
learning models.

2) UNIVARIATE DISTRIBUTIONS
We also assess the extent at which the individual features
generated by CasTGAN resemble the features of the real data.
As we quantitatively analyse how well our model learns the
univariate feature distributions, we first one-hot encode and
normalise the synthetic and real datasets. We calculate the
dimension-wise mean of the individual features of the syn-
thetic output and training data and report the RMSE between
the real and the synthetic output. Additionally, we report the
Kolmogorov-Smirnov two-sample test score [53] between the
real univariate features and the synthetic ones.

3) CORRELATION AND DIVERSITY
Measuring the validity of the synthetic output represents
a significant challenge for GAN frameworks. In computer
vision applications of GANs, the synthetic images can be in
some cases distinguished from the real images by a human
observation of irregularities in the output such as pupil
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orientation in human eyes and out-of-place pixels. In tabular
GANs, similar challenges exist as there is no standard
approach in the literature for quantifying the proportion
of invalid samples in the synthetic output. For instance,
a common example in the tabular synthesis literature is
highlighting how an entry such as gender = ‘‘Female’’
and diagnosis = ‘‘Prostate Cancer’’ is by definition an
invalid record, as no such entry exists in the original data,
nor can a female be diagnosed with prostate cancer by a
physician. In financial datasets, such nested relationships
also exist between features if for example we inspect a
dataset with a city column and a country column. In such
cases, a record with city = ‘‘Buenos Aires’’ and country =

‘‘Malta’’ is by definition invalid. Meanwhile, entries with
city = ‘‘Alexandria’’ and country = ‘‘United States’’ is valid
as Alexandria exists in the United States even though it is
more commonly attributed to the country ‘‘Egypt’’. It is for
this reason that quantifying the invalid output generated by
tabular GANs is no easy task, even in the presence of domain
knowledge.

While a GAN model needs to ensure that its synthetic
output is as valid as possible, there also needs to be some
considerations for the diversity of the generated output.
As such, the generative models should not significantly
restrict the possible feature combinations between the
different categorical features. Ensuring the diversity of the
synthetic output enables the model to be less deterministic
and increases its robustness against privacy attacks that aim
to identify sensitive information. Therefore, the GAN model
should be encouraged to explore unique feature combinations
as long as such combinations can be considered valid.

Given that public datasets are used in this work for the
purpose of reproducability, we do not have the full domain
knowledge for these datasets, thus, we propose an alternative
method for quantifying the validity of the synthetic data. First,
we consider calculating the difference in feature correlations
between the training data and the fake data. For computing the
correlations between numerical features we use the Pearson’s
correlation coefficient, while the Cramer’s V measure is used
for capturing the correlation between categorical features.
The correlation score is found by calculating the root mean
squared error (RMSE) score between the elements of the
triangular matrix of the synthetic dataset and the real dataset.

For measuring the diversity of the categorical output,
we propose a new metric - Unique Pairwise Categorical
Combinations (UPCC). In essence, we count the total number
of unique interactions between any pair of categorical
features in the dataset. For instance, in the Adults dataset
the combinations [education = ‘‘Bachelors’’ and marital-
status = ‘‘Never-married’’], [education = ‘‘Bachelors’’ and
sex = ‘‘Male’’] and [marital-status = ‘‘Never-married’’ and
sex= ‘‘Male’’] each counts as a single pairwise combination,
regardless of how many times they appear in the data.
A reliable model therefore ensures that the UPCC of its
output should be comparable to that of the original data.
Subsequently, the UPCC Ratio is the number of unique

pairwise combinations of synthetic output divided by the total
number of unique combinations of the training data.

Finally, we estimate the validity of the model’s output
by dividing the correlation RMSE score of the model by
the UPCC Ratio. We name this measure as the CORDV
score. A lower CORDV score indicates that the model
is able to minimise the difference in feature correlation
between its synthetic output and the real data, while
simultaneously not impeding its ability in generating unique
feature combinations. Meanwhile, a worse generative model
is reflected by a greater CORDV score, indicating that the
model poorly captures the correlations while potentially
restricting the uniqueness of the categorical pairs.

4) WHITE-BOX PRIVACY ATTACKS
Traditionally, white-box membership inference attacks on
GANs assume that the attacker has access to the synthetic
data and at least one generative component of the model.
In this work, we formulate white-box privacy attacks in
a different setting. We highlight that while using multiple
auxiliary learners help in generating more realistic and
reliable synthetic output, the use ofmultiple auxiliary learners
leads to a more susceptible model for privacy breaches by
attackers.

In this work, we devise white-box attacks by assuming that
an attacker has access to the trained auxiliary learners and
attempts to reconstruct training samples through an iterative
process of estimating a hidden feature. In essence, the attacker
with the synthetic datawill at a given time remove one column
from the data, use the corresponding the auxiliary learner to
predict the masked feature using the remaining features, and
then replacing the masked column with the predicted output
from auxiliary learners. In this setting, a single iteration
refers to a walk-through over all the auxiliary learners and
subsequently replacing all the columns in the dataset once.

For evaluating how effective such white-box attacks on
our model, we control the training the of the auxiliary
learners using a perturbation parameter ϵ. The perturbation
parameter translates to the proportion of label samples that
are modified when training the auxiliary learners prior to
the GAN training. For an auxiliary learner corresponding to
a numerical column Xi, we perturb the numerical variables
such that perturbed variable for a given sample x̃ can be
calculated as x̃i = xi + αxi, where α is a floating number
randomly sampled from [−1.0, 1.0]. Meanwhile, we perturb
the categorical features by randomly selecting a category
from the list of all the unique categories of the said feature.
In our analysis, we experiment with ϵ = 0.0, implying that no
perturbation takes place, and gradually increment this value
to ϵ = 0.3, implying that 30% randomly chosen samples for
each auxiliary learner were perturbed prior to the auxiliary
training.

Furthermore, we analyse whether an attacker possessing
the original data preprocessing transformers has an additional
advantage in recovering the training samples.We hypothesise
that an attacker with access to the data transformations used
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for the auxiliary training can simply convert the synthetic to a
data structure that aligns with the existing transformer. On the
other hand, an attacker without access to the preprocessors
needs to fit and transform the data independently before
launching membership attacks. This is especially prevalent
for categorical features, where transforming the categories
into ordinal encodes that do not match the ones learned by
the auxiliary learners might lead to less effective attacks.

VI. RESULTS
A. MACHINE LEARNING UTILITY
We use the synthetic data generated by CasTGAN for fitting
machine learning classification and regression supervised
models on the six datasets and compare our performance
on the test set against models fitted on the training set
and models fitted on the five synthetic output of the five
baseline methods. Additionally, we compare the performance
of our model and the other baselines against the real training
datasets used for fitting the predictive models, which we refer
to as Identity. We note that we were unable to run the highly-
dimensional Cars dataset on CTAB-GAN to exceedingly
large memory requirements attributed to representing very
high-dimensional data in the convolutional neural network
GAN-based approach. The results are computed in Table 3.

TABLE 3. Binary classification (PR-AUC score) and regression (R2 score)
evaluation on the test sets.

From Table 3 we can observe that the TSTR metrics for
our CasTGAN is consistently within the best performing
synthetic output, outperforming all the baselines on three out
of six datasets. On the Bank dataset, we can observe that
CasTGAN’s PR-AUC score of 0.5657 ranks closer to the
classification models trained on the Bank real training data
with a score of 0.6085, than the second best classification
by CTAB-GAN with a score 0.4920. Similarly, CasTGAN
falls 0.0114 short of the PR-AUC score exhibited by the real
data on the Diabetes dataset, whilst outperforming the second
best synthetic model, CTGAN, with a PR-AUC difference
of 0.0155. We also observe that CasTGAN also ranks first
among the GAN models on the Credit dataset, despite being
closely challenged by CTAB-GAN. For the datasets which
CasTGAN did not achieve the highest machine learning
utility, the results in Table 3 show that CasTGAN narrowly
underperformed against two of the baselines on the Adult
dataset. Furthermore, we note that medGAN demonstrated
the best results on regression datasets, whereas, synthetic data
from CasTGAN followed as the second best in terms of the
R2 score on the regression datasets. In general, the prediction
results on the test sets suggest that synthetic data produced by

CasTGAN is well suited to fitting machine learning models,
as the predictive performance is comparable to training on the
real data, and in-line with the best performing state-of-the-art
tabular GANs.

B. UNIVARIATE SIMILARITY
It is imperative that synthetic data generation techniques
need to emulate the distribution of the features of the real
data. One method for qualitatively evaluating the statistical
similarity between the real data and the synthetic data is
to visually compare the distributions for categorical and
numerical attributes. Subsequently, we choose to display the
comparison between the synthetic and real features for the
Bank dataset, as it consists of a diverse and heterogeneous
set of features. The depiction is demonstrated in Figure 4.
From Figure 4, we can observe how well CasTGAN

performs in approximating the distributions for the categor-
ical and numerical attributes. For categorical variables in
Figure 4a, it is evident that CasTGANpreserves the frequency
of unique categories under each discrete variable. It can also
be observed that our framework can successfully represent
and sample the less frequent categories in the dataset. For the
numerical features in Figure 4b, we can find that the synthetic
data distribution closely approximates the numerical distri-
bution the real data. While adopting the Variational Gaussian
Mixture models in CasTGAN helps in improving the density
estimation of numerical features, as indicated by the number
of peaks and the extensive coverage of the numerical bounds,
we notice that approximation is slightly conservative, thus,
does not represent extreme values in the real data’s numerical
range to avoid violating boundary constraints and generating
invalid records. The combined results of the numerical and
categorical features distributions of the synthetic data from
CasTGAN, in addition to the reasonable sampling of less
frequent features, as demonstrated in Figure 4, signifies that
our framework clearly does not suffer from mode collapse.

To quantitatively analyse how well CasTGAN represents
the feature distributions of the original data, we compare
the Euclidean distance RMSE and Kolmogorov-Smirnov
statistic between the synthetic data and the real data in
Table 4. We find that CasTGAN performs considerably the
best in terms of the Euclidean distance RMSE on three of
the six benchmark datasets: Adult, Bank, and Cars, while
ranking comparatively to the best performing GANs on the
three remaining datasets. It can also be observed that while
CasTGAN only achieves the best KS statistic on the Cars
dataset, and often trailing only slightly behind CTAB-GAN
on the other datasets, the KS statistic by our model regularly
maintains a small value, which can be interpreted as the
higher likelihood of CasTGAN’s synthetic data to come from
the same distribution as the real data. Generally, we note
that our CasTGAN, along with medGAN and CTAB-GAN
dominate the dimension-wise statistical similarity test. It is
also apparent that CasTGAN represents the features of the
Adult and Cars datasets particularly well, while performing
comparatively on the remaining datasets. We can therefore
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FIGURE 4. Discrete and continuous univariate features distribution plots for the bank dataset.

TABLE 4. Univariate dimension-wise statistical comparison showing the Euclidean root mean squared error (Euc. RMSE) and the Kolmogorov-Smirnov
two-sample test score (KS statistic).

deduce that CasTGAN is particularly useful for datasets with
a greater number of unique categories.

C. OUTPUT VALIDITY
In addition to ensuring univariate similarity, it is equally
fundamental to evaluate how well the synthetic models
preserve the interactions between the different features of
a dataset. Inspecting the correlations between the data
features of the real data and comparing the correlations
with the synthetic data representation can indicate whether
the generative data models are capable of simulating the
relationship between the data variables from the real data
representation. Figure 5 depicts the correlation matrices for
the Adult real training data and the synthetic Adult data
generated by CasTGAN. We can see from Figure 5 that
our model notably learns the correlations between the real

data features during the training process. By comparing
Figure 5a and Figure 5b, it is evident that there is only
a marginal difference between the correlations of the real
data and the CasTGAN synthetic data, the highest of which
we note is a correlation difference of 0.14 between the
‘‘native-country’’ and ‘‘education-num’’ features. Otherwise,
the model successfully emulates both the magnitude of
the correlations and the sign, as to whether the feature
correlations are positive or negative.

As emphasised in the motivation for this work, there is a
need to establish evaluation frameworks that can critically
assess the realistic-ness of the synthetically generated data.
We therefore quantify the validity of the output by consider-
ing the number of unique pairwise categorical combinations
(UPCC), the correlation error between the synthetic and
the real data, and the CORDV score, which is essentially
the correlation divided by the UPCC ratio. From Table 5,
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FIGURE 5. Adult dataset correlation map plots for the real and the synthetic data generated by CasTGAN. Larger absolute values indicate
a stronger correlation, either positively or negatively.

TABLE 5. Diversity and correlation comparison demonstrating the number of unique pairwise categorical combinations (UPCC), the correlation root mean
squared error (Corr. RMSE) and the CORDV score.

we can observe how the different generative methods rank
among the three aforementioned metrics. First, we note that
CTGAN and medGAN perform well in generating a large
number of unique feature combination, in most cases, even
more than the number of combinations that can be found
in the training data. This is particularly impressive for the
Cars dataset, where both models managed to generate more
than twice the number of categorical combinations of the
training set. Similarly, we also observe that CTAB-GAN
performs relatively well in exploring diverse categorical
combinations. Meanwhile, we notice that our CasTGAN
is more conservative when it comes to generate unique
categorical combinations. For all the datasets, CasTGANpro-
duces a marginally lower number of pairwise combinations

than can be typically found in the training set. Moreover,
the UPCC can be a good indicator of mode collapse and
this is reflected by the significantly low UPCC values for
table-gan and cWGAN, where it can be deduced that these
models generated a limited number of modes for some
categories.

In contrast, it can be observed from Table 5 that CasTGAN
generally outperforms the other baselines in capturing the
feature correlations of the datasets. The lower correlation
RMSE score entails that CasTGAN prioritises the repre-
sentation of correlations and feature interdependence in the
real data. Meanwhile, the CORDV score aims to quantify
the trade-off between the diversity and the proximity of the
synthetic data to the real data. We observe from the results
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that the highest CORDV scores are evenly split among our
CasTGAN and CTGAN.

Despite lacking the full domain knowledge in our datasets,
we nonetheless measure the synthetic invalidity on the Adult,
Cars and Housing datasets as follows:

• Adult dataset: we use the fields ‘‘relationship’’ and
‘‘sex’’ to calculate the number of invalid records.
We posit that if ‘‘relationship’’ = ‘‘Husband’’, then the
sex feature needs to be set to ‘‘Male’’. Likewise, the
‘‘relationship’’ = ‘‘Wife’’ needs to align the gender
field assigned as ‘‘Female’’. This is not based on
our assumptions, but rather running exploratory data
analysis on the training set confirms that the records are
matched in such a manner.

• Cars dataset: we use the fields ‘‘make’’ and ‘‘model’’
and classify a synthetic sample as invalid if the synthetic
car’s ‘‘model’’ does not in fact belong to the ‘‘make’’ that
can be found in training data.

• Housing dataset: the housing dataset consists of the
fields ‘‘year built’’ and ‘‘year renovation’’. Logically,
a property cannot be renovated before it was built, and
further inspecting the data indeed confirms that there are
no observations with ‘‘year renovation’’ that precedes
‘‘year built’’.

Based on the aforementioned fronts, the ratio of invalid
records generated by CasTGAN and three baseline methods
are demonstrated in Table 6. We chose not to include table-
GAN and cWGAN in the comparison as their synthetic output
was found to be characterised by major mode collapse.

TABLE 6. An outline of the ratio of invalid synthetic records of the
baseline GANs and our model.

From Table 6 we can observe that CasTGAN remarkably
reduced the number of invalid synthetic records of the Adult
dataset. Our method also significantly decreased the number
of invalid records in the Cars dataset. This resembles a major
improvement from CTGAN, while noting the challenging
nature of modelling the Cars dataset due to the large
number of categories present. Furthermore, it is evident that
CasTGAN outperforms the other generative approaches on
the numerical features of the Housing dataset.

D. ROBUSTNESS AGAINST PRIVACY ATTACKS
For conducting white-box privacy attacks, we set the number
of attacking iterations to five, where each feature in the
synthetic data is updated five times based on the output of
the auxiliary learners. Moreover, the membership attacks are
launched on 10% of the total number of overall samples.
We highlight that the ratio of attacked samples does not
impact the evaluation of the robustness of our approach as

we only compute the attack distance metrics with respect to
the attacked samples. The Euclidean distance of the attacked
samples to the training data and to the synthetic data prior to
the membership attacking is computed in Table 7.

From Table 7, it can be observed that the perturbation
coefficient ϵ greatly impacts the closeness of attacked
samples to the training data. For unperturbed and minimally
perturbed data features, it can be noticed that the attacked
samples are relatively close to the training samples, indicating
that the attackers might succeed in recovering training
datapoints. We observe that the proximity to the training
samples increases for greater ϵ values, which demonstrates
the additional privacy guarantees that can be provided when
altering the labels. We additionally notice how access to
the data processors gives a major advantage to the attackers
attempting to recover the training samples. This holds true
especially for the Adult dataset, where using the trained label
encodings of the auxiliary learners lead to more targeted
attacks that are even closer to the training samples than
attackers on unperturbed data with no access to the data
preprocessors. Another interesting observation is that the
attacks on the Housing dataset are greatly impacted by
incremented in ϵ, which is plausible, given that the dataset
mainly consists of numerical features.

In addition to the proximity to the training samples,
we also investigate whether perturbing the labels of the
auxiliary learners can contribute to a reduction in the quality
of unattacked synthetic data as demonstrated in Table 8.
For the Adult, Bank and Credit datasets it can be evident
that applying perturbations insignificantly impacts the the
evaluation metrics of the synthetic datasets. We observe
that the PR-AUC scores on the test data and KS statistic
for univariate distributions are minimally influenced by the
changes in ϵ. In contrast, it appears that perturbing the data
impacts the CORDV scores as a result of the correlation errors
between the synthetic and the real datasets. Interestingly,
applying perturbations on the Housing dataset appear to
improve the quality of the synthetic output in addition to
increasing its robustness against white-box privacy attacks.

E. IMPACT OF AUXILIARY LEARNERS LOSS
We further analyse the impact of the auxiliary learners
on the quality of the synthetic data samples produced by
CasTGAN. To this end, we conduct experiments on our
model by tuning the auxiliary loss coefficient parameters
λAL1 , λAL2 , . . . ,λALM . This is implemented by adjusting λAL1
and λALM , as the auxiliary loss coefficients in between
are linearly and equidistantly scaled between the loss
coefficients of the first and final auxiliary learners. Given that
there is an indefinite number of auxiliary loss coefficients
combinations and a diverse set of evaluation metrics and
datasets, we conduct our the analysis on the Adult dataset
by experimenting with a set of auxiliary loss coefficient
values: {0, 0.25, 0.5, 0.75, 1}. As the focus of our work is
improving the realistic-ness and maximising the number
of semantically valid synthetic records, we quantify the
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TABLE 7. White box privacy attacks on the auxiliary learners proximity measures.

TABLE 8. Impact of auxiliary learners imputation on the synthetic output.

number of invalid records of the synthetic samples as per the
description of invalid records of the Adult dataset defined in
Section VI-C. Figure 6 demonstrates the fraction of invalid
records generated by CasTGAN for various auxiliary loss
coefficients.

As shown in Figure 6, adjusting the auxiliary loss coeffi-
cients is reflected by a modest change in the ratio of invalid
synthetic records of the Adult dataset. As demonstrated,
it appears that using a fixed auxiliary loss coefficient
across the auxiliary learners by setting the value λAL1 and
λALM generally increases the number of invalid records.
Meanwhile, it can be observed that having a smaller
difference between λAL1 and λALM leads to an improved
performance in contrast to when the difference is 0.5 or
greater in general. We can notice that the lowest fraction of
invalid synthetic observations is obtained by setting λAL1 =

0.25 and λALM = 0. By comparing the ratio of invalid records
in Table 6 and Figure 6, it is clear that the default auxiliary
loss coefficient parameters that we used in our experimental
setup do not yield the most optimal results, whereas further

FIGURE 6. Proportion of invalid synthetic records of the Adult dataset
generated by CasTGAN using various auxiliary loss coefficient settings.

hyperparameter tuning can in practice help reduce the number
of invalid records. Meanwhile, it is evident that not relying
on auxiliary learners by setting the loss coefficients to
zero contributes to the highest fraction of invalid synthetic
records. However, we can observe that the ratio of invalid
records generated when using loss coefficients of 0, thereby
nullifying the effect of auxiliary learners, is nevertheless
lower than the proportion of the invalid synthetic records
generated by the baseline models, as displayed in Table 6.
This suggests that while the improved quality of synthetic
records can be to a great extent be attributed to the design
of the cascaded generator architecture and employment of
the WGAN-GP, the use of auxiliary learners and fine-tuning
the auxiliary loss coefficients can further contribute to the
generation more semantically valid records.

VII. DISCUSSION
Data in tabular form is widely used across organisations
in various domains for decision support systems. In such
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systems, data mining techniques and statistical models
are employed to enhance the predictability of significant
events and to gain a deeper insight into user behaviour.
Moreover, mixed-type tabular data is commonly used for
facilitating knowledge exchange between domain experts and
stakeholders. Given the privacy concerns associated with
sharing confidential information, in addition to the scarcity
of available data to share across organisations, there has been
a growing interest in tabular data synthesis using generative
adversarial networks, in which realistic synthetic data can
be safely shared across operational units. In literature, the
focus of generative models has been primarily directed
towards generating synthetic data that yields acceptable
machine learning utility and exhibits statistical properties
which are similar to the real data. While these objectives
are relatively significant, an underlying limitation is that the
semantic integrity of the synthetic output is not thoroughly
examined. Given that GANs attempt to approximate the
data distributions loss minimising functions for the generator
and the discriminator, it is imperative that GAN-based
synthesis models are unable explicitly distinguish between
semantically valid and invalid data records.

To this end, the cascaded tabular GAN architecture we
propose in this study contributes to the reduction of the
number of invalid generated observations by dedicating a
generator for every feature of the dataset. The sequential
cascading of generator passes incomplete synthesisation of
the data to subsequent generators, in which each generator
attempts to predict its target feature from the incomplete
feature space it receives from the preceding generator.
As the generator fills the remaining feature space with
noise, the output is queried against the discriminator and the
discriminator loss for the queried sample is backpropagated
to the generator for improving its overall generation. For
obtaining meaningful feedback to the generator’s designated
feature, an auxiliary learner is coupled to the generator that
calculates the prediction loss for the specific feature and
propagates the loss to the generator, such that it can learn
to reduce the auxiliary learner’s loss during GAN training.
In such an architecture, the GAN attempts to learn the
dependencies between the dataset’s features, and thereby
gradually reduces the losses for the components of the GAN
during the training process. Hence, the aim of CasTGAN is to
increase the semantic integrity of the synthetic and reduce the
invalid records that are generated. This is highly significant
as the generation of invalid records may have adverse effects
on knowledge sharing, potentially fostering an inaccurate
comprehension of the data among stakeholders and other
external entities granted access to the synthesized data.

Notably, our results indicate where our proposed gener-
ative model has remarkably performed. First, the machine
learning utility results demonstrate that the synthetic output
from CasTGAN is particularly useful for constructing
predictive models, as reflected by the classification and
regression performance metrics. The results show that
CasTGAN is competitive with the state-of-the-art tabular

GANs, outperforming them on some datasets, and barely falls
short to the predictive performance obtained by training on
the real data. Regarding the univariate variable properties,
we visually demonstrate the synthetic output has a striking
similarity to the the real data numerical and categorical
variables. Furthermore, it can be observed that quantitative
similarity analysis indicates a very close similarity between
the data distributions of the real and the CasTGAN synthetic
output. In accordance to addressing the gap in literature
for better exploring the semantic integrity of the synthetic
data, we evaluate the output validity of our synthetic data
on several fronts. The correlation mapping shows that the
synthetic data from our model exhibits a strong resemblance
to the real data used for training. We also notice that CORDV
metric which we design for measuring the correlation error
as a fraction of the unique pairwise combination successfully
shows that our approach is well capable of capturing the
dependencies between the data features. In general, the
performance of CasTGAN for machine learning usability,
statistical similarity and correlation and diversity was mostly
comparable with CTGAN and CTAB-GAN. This can be
attributed to the use of WGAN-GP in the case of CTGAN,
or classification loss and information loss in the case of
CTAB-GAN, both of which contribute to the training stability
and the mitigation against mode collapse. Meanwhile,
calculating the ratio of invalid records on a number of datasets
demonstrates that CasTGAN excels in reducing the number
of invalid data observations in comparison to the existing
tabular GAN approaches, thereby improving the potential of
using the synthetic data for knowledge exchange. Further
analysis unveils that applying perturbations on the auxiliary
learners can increase the robustness of our model against
privacy attacks without notably sacrificing our model’s
synthetic output quality.

We also note that using the auxiliary learners leads to a
more conservative approach for the GAN training process.
The reduction of the invalid records comes at the expense
of reducing the number of unique pairwise combinations
of the data categories that CasTGAN can synthesise, and
additionally not fully simulating numerical values around the
boundaries for numerical features. Nevertheless, we highlight
that the reduction of invalid records and improving the
model’s representation of feature dependency was the focus
of this work, and that CasTGAN demonstrates success in
these two aspects.

VIII. CONCLUSION
In this work, we presented CasTGAN as a generative
framework for creating synthetic tabular data samples that
are representative of the real data attributes. Our motivation
for this work stems from the need for realistic tabular data
that can be exchanged amongst experts, while focusing
on the reliability and the sensitivity of such information.
We therefore directed our focus towards generating fake
output that capture the correlations and interdependence
between the data features.We demonstrated that our cascaded
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generator architecture supported by auxiliary learners are
able to generate realistic output given highly dimensional and
largely imbalanced tabular datasets. Our results indicate that
CasTGAN is capable of significantly reducing the number
of invalid records while exhibiting strong statistical and
correlational similarities to the real data.We further evaluated
the robustness of our model against targeted privacy attacks
and showed that perturbing the auxiliary learners by a small
scale can mitigate against attacks aiming to recover the real
data samples.

Given the challenging nature of generating realistic
synthetic tabular data, there are several paths for future
work. This work can be extended by incorporating additional
data types within the tabular data generation such as free
text and timestamps. Due to cascaded architecture and
the presence of multiple auxiliary learners, we point out
that our framework does not offer improvements to the
training speed over the existing tabular GAN models, which
presents a potential opportunity for future optimisation
efforts. Moreover, we intend to explore how our approach can
generate more diversified combination of categories, while
maintaining its ability in minimising the number of invalid
data records.

APPENDIX A
IMPLEMENTATION DETAILS
A. HYPERPARAMETERS

TABLE 9. CasTGAN hyperparameters used for all datasets.

B. STRATEGIES FOR HYPERPARAMETER CONFIGURATION
There are various hyperparameters in CasTGAN, and there-
fore selecting the optimal hyperparameters is a non-trivial
task. Defining what is considered as optimal also poses a
challenge, as there may be a trade-off between enhancing
the suitability of synthetic output for machine learning
model fitting and increasing the semantic validity of the
synthetic data. In light of this, we outline the parameters
that have some significant impact on training our GAN
model, and we describe how they can be tuned for optimising
the performance. The parameters with less significance in
correspondence to the quality of the synthetic data can utilise
the default values from Appendix A-A.

1) EPOCHS
Tuning the number of training iterations can offer improve-
ments to the quality of the synthetic output. For smaller
datasets, it can be sufficient to train for a smaller number of
iterations, in which the training completes faster. Meanwhile,
larger datasets may require a greater number of epochs to
demonstrate an improved synthetic output. It is recommended
to train for a minimum of 100 epochs, though training the
GAN for too long can lead to the memorisation of records
by the GAN, inducing potential data records leakage and
susceptibility to privacy attacks.

2) BATCH SIZE
Batch size refers to the number of samples stored in memory
for updating the internal model parameters at every training
iteration. A larger batch size is more suitable for datasets
with a greater number of features and categories, whereas
datasets with fewer features can be sufficiently trained with a
smaller batch size. It is worth noting that a larger batch size
contributes to a relatively slower training of the GAN and can
contribute to a poor model convergence if not trained for a
sufficient number of epochs.

3) GENERATORS NOISE INPUT DIMENSION
The optimal size of the noise vector used as the input for
the generators is best determined through experimentation.
Wasserstein GANs commonly exhibit a higher resolution of
the synthetic output through the utilisation of larger noise
vector [54], though the significance of input noise size is
largely dependent on the data and the other model parameters.

4) GENERATORS PRIMARY NETWORKS HIDDEN SIZES
The number and the sizes of the hidden layers can sig-
nificantly impact the quality of the synthetic output from
the generators. Despite designating a generator for each
data feature, the generators employ a common hidden layer
configuration rather than a specific configuration for each
generator. As each generator is responsible for generating one
primary feature, the linear layers do not need to be overly
sophisticated.

5) DISCRIMINATOR PRIMARY NETWORKS HIDDEN SIZES
The architecture of the discriminator should be able to
foster the competitiveness between the discriminator and
the generator, hence maintain the adversary throughout the
GAN training. If the neural network architecture is relatively
simpler than that of the generators, the discriminator will
poorly distinguish between the synthetic and the real
samples. Meanwhile, a complex discriminator architecture
might suppress the learning of the generators, thus, degrade
the synthetic output quality of the generators. Therefore,
the number and the size of the discriminator’s hidden
layers should be comparable to those employed by the
generators.
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FIGURE 7. CasTGAN training loss plots.

6) DISCRIMINATOR UPDATES PER GENERATORS UPDATE
It might be worthwhile to adjust the number of discriminator
iterations for each generator iteration, if it helps in converging
the losses during training. This might be particularly the
case if the discriminator is visibly weaker than the generator.
If there is no major disparity between the discriminator’s
architecture and the generators’ hidden layers, then there is
no proven benefit in employing more than 1 discriminator
gradients update for each step of the generators training [55].

7) WASSERSTEIN LOSS GRADIENT PENALTY (λGP )
We find that using a Wasserstein loss gradient penalty of
10 works well, based on the training stability during our
preliminary model conceptualisation. This is supported by
the authors of the original WGAN-GP paper [13], who found
the gradient penalty of 10 works well on various datasets and
GAN architectures. This is also in accordance to the baseline
tabular GANs with WGAN-GP we compare our approach
against [28], [35], whom also employ λGP = 10.
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8) AUXILIARY LEARNER 1 LOSS COEFFICIENT (λAL1)
The first auxiliary learner in the cascaded generator is
assigned with the largest loss coefficient among to ensure that
the univariate statistical representation of the first features of
the data conforms to the real data distributions. The particular
value for the first auxiliary learner’s coefficient is chosen
such that large prediction errors attributed to the deviation
in distributions are sufficiently penalised, without making it
too large such that training instability is introduced to the
generators.

9) AUXILIARY LEARNER M LOSS COEFFICIENT (λALM)
The final auxiliary learner can benefit from low loss
coefficient values to minimise the errors propagated to the
preceding generators. The purpose of the auxiliary loss
coefficient of auxiliary learner M is to reduce the correlation
error in the synthetic data towards the end of cascaded
generator, as opposed to the first generators that prioritise the
univariate similarity. In a similar manner to the first auxiliary
learner, this is a hyperparameter that is largely dependent on
the dataset used for training and sampling of CasTGAN. It is
however advisable to set λALM with a very small value if a
small value is selected for λAL1 .

C. TRAIN ON SYNTHETIC, TEST ON REAL
See Tables 10–15.

TABLE 10. Adult dataset classification.

TABLE 11. Bank dataset classification.

TABLE 12. Credit dataset classification.

TABLE 13. Diabetes dataset classification.

TABLE 14. Cars dataset regression.

TABLE 15. Housing dataset regression.

D. CASTGAN TRAINING STABILITY
See Figure 7.
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