
Received 7 December 2023, accepted 17 January 2024, date of publication 22 January 2024, date of current version 26 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3356865

An Efficient Numerical Technique for the
Simulation of Charge Transport in
Polymeric Dielectrics
FABIO RAGAZZI , ARTURO POPOLI , (Member, IEEE), AND ANDREA CRISTOFOLINI
Department of Electrical, Electronic and Information Engineering ‘‘Guglielmo Marconi,’’ University of Bologna, 40126 Bologna, Italy

Corresponding author: Fabio Ragazzi (fabio.ragazzi4@unibo.it)

ABSTRACT In recent years, the use of HVDC cables has grown exponentially. One of the main challenges
that remains concerns the space charge accumulation inside the insulating materials. A better understanding
of the mechanisms governing this phenomenon is essential to improve the performance of HVDC systems.
Numerical simulations are often employed to achieve this goal. For this reason, it is important to perform
them in an efficient way. In this work, we test several numerical techniques, aiming to assess which one
is the best to use for fast and reliable simulations. We consider a well-known bipolar dynamic model from
the literature for our simulations. The model considers a single level of deep traps and is implemented in
a one-dimensional Cartesian coordinate system, considering a thin specimen of polymeric material. We
compare three different time discretization methods: a fully explicit, a semi-implicit, and a fully implicit
approaches. For the advective flux discretization, we compare the first-order upwind scheme (FOU) with
a second-order upwind scheme coupled with the Koren flux limiter (SOU/KL). Regarding the computation
of the polarization current, we introduce a simple approach using Sato’s equation and compare it with the
well-established approach based on the total current density.

INDEX TERMS Bipolar charge transport, Koren flux limiter, polymeric dielectrics, drift diffusion,
polarization current, numerical simulation, efficient computation.

I. INTRODUCTION
In the last decades, high voltage direct current (HVDC)
cables have become increasingly popular. There are many
factors that contribute to the exponential growth in the use
of this kind of technology. In general, these systems allow
for efficient and reliable long-distance energy transmission.
For this reason, these are often used as cross-country
interconnections, among many other applications. However,
a number of challenges related to HVDC systems still exist
and need to be addressed [1]. One of these critical issues
is the space-charge accumulation within the extruded cable
insulation [2]. The dielectricmaterials used to insulate HVDC
systems are usually solid polymers, such as low- density
polyethylene (LDPE) or cross-linked polyethylene (XLPE).
The charge trapped inside these materials can significantly
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alter the electric field distribution within the cable insulation.
This may result, in turn, in increased electrical stresses on the
dielectric, leading to accelerated aging and premature system
failures [3]. For this reason, a deeper understanding of charge
transport and accumulation processes inside solid polymeric
dielectric materials is needed to improve the performance of
HVDC cables [4], and allow higher design temperatures and
electric fields, while maintaining the appropriate reliability
levels. Experimental measurements are a fundamental tool to
achieve this goal. The pulsed electro-acoustic (PEA) method
is one of the most widely used techniques to measure the
space-charge distribution inside a dielectric sample [5]. Such
measurements are performed by applying voltage pulses to
the material. This creates detectable acoustic signals due
to the internal space-charge motion which, when measured,
provide information on the space-charge distribution. This
technique has been applied for decades on flat specimens of
dielectric materials [6], [7], [8]. Only in recent years PEA
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measurements started to be performed on mini and full-size
cables [9], [10]. Another well-known diagnostic technique
is the polarization/depolarization current measurement [11].
One drawback of measurements on dielectric materials is that
these can be expensive and time-consuming. For this reason,
the development of physical models is a fundamental tool
to complement experiments. These models can be grouped
into two categories, i.e., analytical and numerical models.
Examples of the first category can be found in the works of
Chen and Xu [12] on trapping and detrapping mechanisms,
and in the work of Mazzanti et al. [13] on assessing apparent
trap-controlled mobility and trap distribution. However,
these models are based on several simplifying assumptions;
for example, [12] considers volume-averaged quantities,
whereas the model in [13] is directly based on measurements.
Models aiming to provide a space- and time-resolved descrip-
tion of the charged species involve the solution of systems of
partial differential equations (PDEs), which in general do not
admit analytical solutions in closed form for the quantities
of interest. In this case, it is necessary to set up numerical
simulations to compute the solution of the discretized charge
generation and transport equations. Regarding this case, one
of the first bipolar charge transport (i.e., considering both
electrons and holes) models for dielectric materials was
proposed by Alison and Hill [14]. They considered a constant
charge injection from both electrodes and, regarding the
extraction, charge was free to leave the material unimpeded.
Constant trapping and recombination coefficients were used
and the detrapping process was neglected. Fukuma et al.
added a Schottky emission law for the charge injection
and considered an energetic barrier for charge extraction.
They also considered the effect of temperature changes
over time [15]. Later on, Kaneko et al. proposed a model
to reproduce the packet-like space charge in XLPE [16].
They considered an electric field dependent mobility. The
governing equations were solved by means of a finite-
difference scheme, whereas the discretization technique is
not explicitly discussed in other referenced works. Le Roy et
al. presented a model to describe bipolar transport in LDPE,
using an effective mobility and a single trap level [17], [18].
Again, the detrapping process was not considered. In these
works, they focused also on the polarization current that
was computed using the total current density. The physical
contributions from transport and species generation/depletion
in the continuity equation are accounted for with an operator-
splitting technique. The detrapping process was added in a
later work by Le Roy et al., where the developed model
was used to study electroluminescence in polyethylene-based
materials [19]. In this work, an initial number density of
carriers, uniformly distributed throughout the domain, was
considered to obtain the best fit between experiments and
simulations. Subsequently, Baudoin et al. used a similar
model to study the current versus applied electric field
characteristic at steady state, using an under-relaxation
technique to avoid divergence in the iterative solution of

strongly nonlinear equations. [20]. Later on, Le Roy et al.
presented a model to study charge accumulation inside
electron-beam irradiated low density polyethylene [21]. They
considered the extraction of charges possible at the grounded
electrode through an ohmic law. In all the above works by
Le Roy and colleagues (except [20], where a steady-state
analysis is performed), the continuity equation is integrated
over time by means of a fully explicit method (Euler’s
method). The Poisson equation, used to compute the electric
potential, is solved with the boundary element method
(BEM). The transport equation is discretized using the
finite-volume (FV) approach. In particular, the drift term is
approximated by a third-order upwind scheme (QUICKEST),
coupled to a flux limiter (ULTIMATE) to avoid negative
number densities values caused by numerical oscillations.
Other discretization techniques have also been successfully
applied to the problem of modeling bipolar charge transport.
For example, in [22], [23], and [24] the finite element
method (FEM) was used for spatial discretization, coupled
with a Runge-Kutta time integration scheme. Meftali et
al. focused on the effect of the injection barrier height
on the results of the bipolar transport model using finite
differences and an explicit time integrator [25]. Recently,
Doedens et al. proposed a comprehensive model to describe
the effect of electrodes surface roughness on the space
charge accumulation phenomenon inside XLPE [26], [27].
They considered also Fowler-Nordheim injection processes
in addition to thewell-established Schottky law. The diffusion
of charge carriers was also added to the model. The gov-
erning equations are solved using COMSOL Multiphysics.
A similar analysis was conducted in [28], where the effect of
nanometric scale processes at play at the electrode interfaces
was studied. In this work, 2D simulations were carried
out using COMSOL Multiphysics. Regarding the charge
extraction process, all the listed models assume non-blocking
electrodes, meaning that the charge is free to leave the
dielectric under the electric field effect. Charge accumulation
is often modeled using a single level of traps although there
are works where multiple levels of traps were considered,
and also continuous trap distributions [29], [30]. These
models were often employed for simulations in 1D or 2D
Cartesian coordinates, but also for cable geometries [31],
[32] in cylindrical coordinates. The models described so far
are fluid, but other approaches are possible. For example,
Cambareri recently developed a circuital model to describe
polarization and depolarization currents [33]. His model
employs the least possible number of parameters to fit
experimental measurements and considers a single carrier
type with negative charge.

In this work, we compare the results yielded by a Cartesian
one-dimensional fluid model when using different numerical
techniques to solve the governing equations. The analysis
is focused (but not limited) on polarization current results.
The goal of this work is to determine which numerical
techniques should be employed for fast simulations of charge
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transport and accumulation inside dielectric materials, since
the charge transport problem is not always studied by
numerical specialists. Similarly to what was done in [34],
we propose an analysis of two different discretization
schemes for the advective fluxes. In our case, the schemes
are the first-order upwind scheme (FOU) and a second-order
upwind scheme with the Koren flux limiter (SOU/KL) [35].
When comparing the accuracy and computational time of the
schemes in the context of a specific physical case study, our
findings diverge from those reported by Le Roy et al. in [34].
We also add an analysis of three different time-discretization
schemes: a full explicit method, a semi-implicit method, and
a full implicit method. In addition, we show an alternative
expression to evaluate the polarization current, which allows
to avoid the displacement current calculation (required if
the total current density approach is used) and that is
based on Sato’s equation [36]. The code used to produce
the results in this work is open-source and available online
at the link https://github.com/ PTL-Unibo /CALLIOPE. The
developed model is presented in Section II. The numerical
techniques that will be compared are discussed in Section III.
In Section IV, one of the methods for the post-processing
computation of the polarization current, Sato’s formula,
is described. The comparison between the results obtained
from the simulations is presented in Section V.

II. PHYSICAL MODEL
In this work we developed and implemented a fluid model
for the bipolar charge transport in solid dielectric materials
under the effect of electric fields. This model shares many
features with those described in Section I and, in particular,
with those developed by the group of Le Roy and colleagues
and discussed in several works, including [17], [19], [21]. The
approach is based on the band theory model for dielectric
materials, which describes the conduction processes by
means of a valence band and a conduction band [37]; for a
dielectric material, these bands are separated by a forbidden
region (band gap), characterized by a wide energy gap. Due
to physical and chemical imperfections, energy states are
introduced in the band gap [38], [39]. An electron takes part in
the conduction process when located in the conduction band,
whereas a hole is available for the conduction when located
in the valence band. The energy states in the band gap are
usually referred to as traps, since electrons and holes that
occupy them are excluded from the conduction mechanism.
We made the hypothesis that a single level of deep traps is
present, for both electrons and holes, and therefore the model
described in this work considers four types of charge carriers:
free holes

(
hµ

)
; free electrons

(
eµ
)
; trapped holes (ht);

trapped electrons (et). The fast dynamics related to shallow
traps aremodeledwith amacroscopic transport parameter, the
mobility [27] . The species’ number density time evolution is
described by means of a continuity equation:

∂ns
∂t

+ ∇ · 0s = �s . (1)

In (1), ns, 0s and �s are the number density, the flux density
and the source term of the given species s; the flux density is
given by the sum of two contributions: the first one is due to
spatial concentration gradients, whereas the second is due to
the drift induced by the electric field. The expression used to
evaluate the flux density is, therefore:

0s = −Ks∇ns +
qs
|qs|

nsµsE . (2)

In (2), Ks indicates the diffusion coefficient, qs/|qs| is the
sign of the species’ charge, µs is the electrical mobility and
E is the electric field. The diffusion coefficient is evaluated
using Einstein’s relation:

Ks =
kBTsµs

e
. (3)

In (3), Ts is the species’ temperature, kB is the Boltzmann
constant and e is the elementary charge. The source term
in (1) represents the net number of charge carriers that are
generated or lost per unit-volume and per unit-time due to
elementary processes. Indeed, a free carrier can be trapped
and removed from the conduction process; a previously
trapped charge can become free due to thermal activation, and
recombination can occur between charges with opposite sign.
For each of the four carriers, the source term �s is computed
using the following equations:

�hµ = −Bhnhµ

(
1 −

nht
Nh

)
+ Dhnht

+ . . . −S2nhµnet − S3nhµneµ ; (4)

�eµ = −Beneµ

(
1 −

net
Ne

)
+ Denet

+ . . . −S1neµnht − S3neµnhµ ; (5)

�ht = +Bhnhµ

(
1 −

nht
Nh

)
− Dhnht

+ . . . −S0nhtnet − S1nhtneµ ; (6)

�et = +Beneµ

(
1 −

net
Ne

)
− Denet

+ . . . −S0netnht − S2netnhµ . (7)

In the previous equations, Dh and De indicate the detrapping
coefficients for holes and electrons respectively; Bh and Be
are the trapping coefficients; S1, S2, S3, S4, are the recom-
bination coefficients; Nh and Ne are the deep trap densities
for holes and electrons respectively. These parameters are
considered constant, but they can be expressed as functions
of the electric field, similarly to what was done in [27]. In this
way it is possible to better represent the non-linear behavior
of the material at higher electric fields. Still, it should be
noted that even with constant rate coefficients the model is
already non-linear due to the presence of a product between
the number density and the electric field in (2) and the
presence of products between number density in the source
terms (4), (5), (6), and (7). A modified Schottky emission
law is employed to compute the fluxes of electrons and holes
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injected from the electrodes into the dielectric:

0 = aT 2 exp
(

φ

kBT

)[
exp

(
βE

√
E

kBT

)
− 1

]
. (8)

In (8), a is the Richardson constant, divided by the
elementary charge, and φ is the magnitude of the energetic
barrier located at the interface between the electrode and the
dielectric; βE is a constant that can be expressed as:

βE =

√
e3

4πε0εr
, (9)

where ε0 is the vacuum permittivity and εr is the relative
permittivity. The electric potential is determined from the
Poisson equation

∇
2ϕ = −

ρ

ε0εr
, (10)

whereϕ and ρ are the electric potential and the charge density,
respectively. The model considers four species, hence the net
charge density is given by:

ρ = e
∑
s

qs
|qs|

ns . (11)

The model couples the transport equations with the Poisson
equation. Therefore, it is capable of reproducing local
enhancements of the electric field due to space charge
accumulation. This can be used to assess physical conditions
that may lead to local breakdown.

III. NUMERICAL MODEL
The physical model described in the previous section has
been applied to a one-dimensional geometry, using the finite-
volume method. The domain is subdivided into a finite
number of cells; inside each cell there is a node (domain
point), where the physical quantities are evaluated under the
assumption that nodes store cell-averaged values. When a
non-uniform cell spacing is considered, interfaces between
adjacent control volumes are placed at the midpoint between
nodes. This choice is not the only possible, as one could
chose instead the position of interfaces such that each node
is exactly at the midpoint of its control volume. We chose
the first approach over the second to maintain second-order
accuracy when centered finite difference formulas are used
to estimate physical quantities [40]. For this work, a constant
and spatially uniform mobility is considered. The diffusion
coefficient, calculated with (3), has the same properties;
the trapping, detrapping, and recombination parameters and
the deep trap density are also considered constant and
uniform. We implemented three different versions of the
model, corresponding to three different time-discretization
schemes: a full explicit method, a semi-implicit method, and a
full implicit method. In addition, two different discretization
schemes for the fluxes at the interfaces between adjacent cells
were tested: the FOU and the SOU/KL [35].

Equation (1) is integrated over the i-th cell of the domain,
giving the following:

dni,s
dt

+
1
Vi

‹

SVi

0s · dS = �i,s . (12)

In (12), Vi is the volume of the i-th cell of the domain
and the symbol SVi is used to denote the boundary surface
of that volume. We are considering a one-dimensional
geometry, thus the surface integral appearing in (12) can
be evaluated considering only the left and right boundary
surfaces, respectively Si− 1

2
and Si+ 1

2
, obtaining:

dni,s
dt

+
1
Vi

(
0i+ 1

2 ,sSi+ 1
2

− 0i− 1
2 ,sSi− 1

2

)
= �i,s . (13)

The subscript i +
1
2 in the expression is referring to the

interface between the adjacent cells i and i + 1. In the case
of a uniformly spaced domain, (13) may be rewritten as

dni,s
dt

+
1
1

(
0i+ 1

2 ,s − 0i− 1
2 ,s

)
= �i,s , (14)

where 1 is the uniform spacing between domain points. The
first and last domain interfaces represent the electrodes. Holes
are injected into the dielectric material from the positive
electrode, whereas electrons are emitted from the negative
electrode. The fluxes of injected carriers are computed
using (8). Regarding the extraction of carriers, blocking
electrodes are considered; this implies that charge carriers
cannot escape from within the dielectric but can only
accumulate at the electrode interface. This is different from
what is usually done in the literature, but in the simulations
we conducted, considering blocking electrodes produced
results very similar to the ones obtained when non-blocking
electrodes were considered.

The electric potential is computed solving the discretized
version of Poisson’s equation:

−
1

12 ϕi−1 +
2

12 ϕi −
1

12 ϕi+1 =
ρi

ε0εr
. (15)

A. FLUX DISCRETIZATION
In this section we introduce two different strategies for the
numerical discretization of advective fluxes, that will be
compared in Section V.

1) FOU – FIRST-ORDER UPWIND SCHEME
Using the FOU, the discretized flux density takes the form:

0i+ 1
2 ,s = −Ks

ni+1,s − ni,s
1

+ . . . + ni,s uMAX
i+ 1

2 ,s
+ ni+1,s uMIN

i+ 1
2 ,s

. (16)

In (16), we introduced the notation:

uMAX
i+ 1

2 ,s
= max

(
0, ui+ 1

2 ,s

)
; (17)

uMIN
i+ 1

2 ,s
= min

(
0, ui+ 1

2 ,s

)
. (18)
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The symbol ui+ 1
2 ,s indicates the velocity of a carrier for the s

species at the interface i+ 1
2 due to the electric field drift:

ui+ 1
2 ,s =

qs
|qs|

µsEi+ 1
2

. (19)

As is well known, the FOU is affected by considerable
numerical diffusivity. To overcome this issue, one may
employ higher-order schemes. This strategy, helpful in
lowering numerical diffusivity, may result in oscillations in
domain regions with strong gradients, possibly leading to
negative number densities [41]. A well-known technique to
improve on this behavior is the use of a flux limiter. There is
a vast literature on flux limiter types and their properties, see,
e.g., [42]. For this work, we tested the SOU/KL since it has
been successfully used in state-of-the-art codes such as the
Afivo software for streamer propagation [43].

2) SOU/KL – SECOND-ORDER UPWIND SCHEME WITH THE
KOREN FLUX LIMITER
Convective flux densities computed with a flux limiter at the
interface between adjacent cells are usually expressed as:

0i+ 1
2

= γ
(low)

i+ 1
2

− 8

(
γ

(low)

i+ 1
2

− γ
(high)
i+ 1

2

)
, (20)

where γ
(low)

i+ 1
2

is the flux density evaluated using a low-order

scheme and γ
(high)
i+ 1

2
represents the flux density evaluated using

a high-order scheme. The function 8 and the expressions
for γ

(low)

i+ 1
2

and γ
(high)
i+ 1

2
depend on the specific flux limiter

considered. TheKoren flux limiter function is defined as [35]:

8KN (r) = max
{
0,min

[
2r,min

(
1 + 2r

3
, 2
)]}

. (21)

In (21), r is the ratio between adjacent gradients of the
advected physical property (in our case the number density)
and depends on the velocity direction. The above expression
is also equivalent to the piecewise-defined function:

8KN (r) =



0 r ≤ 0

2r 0 < r ≤
1
4

2
3
r +

1
3

1
4

< r ≤
5
2

2 r >
5
2

. (22)

The flux limiter function 8KN (r) is shown in Fig. 1.
Piecewise definition was used in the numerical implemen-
tation in order to avoid the costly evaluation of the max
and min functions and improve code performance. γ

(low)

i+ 1
2

in (20) is evaluated with a low-order scheme, i.e., a first-
order upwind. γ (high)

i+ 1
2

is instead evaluated with a second-order

FIGURE 1. Koren flux limiter function for different values of r , the ratio
between advected property gradients, defined in (26) and (27).

FIGURE 2. Domain with equally spaced points.

upwind scheme:

γ
(low)

i+ 1
2

= ni uMAX
i+ 1

2 ,s
+ ni+1 uMIN

i+ 1
2 ,s

; (23)

γ
(high)
i+ 1

2
=

1
2

(3ni − ni−1) uMAX
i+ 1

2 ,s

+ . . . +
1
2

(3ni+1 − ni+2) uMIN
i+ 1

2 ,s
. (24)

Note that (24) is only valid in the case of uniformly spaced
domain points. A schematic representation of the considered
domain is shown in Fig. 2. Combining (20), (23), (24) and
considering the diffusion, the discretized flux density is:

0i+ 1
2 ,s

= −Ks
ni+1,s − ni,s

1

+ . . .

[
ni,s +

1
2
8max
i+ 1

2

(
ni,s − ni−1,s

)]
uMAX
i+ 1

2 ,s

+ . . .

[
ni+1,s −

1
2
8min
i+ 1

2

(
ni+2,s − ni+1,s

)]
uMIN
i+ 1

2 ,s
. (25)

In (25) we indicated with8max
i+ 1

2
and8min

i+ 1
2
the values returned

by the flux limiter function when evaluated at rmax
i+ 1

2
and rmin

i+ 1
2

respectively.

rmax
i+ 1

2
=
ni+1,s − ni,s
ni,s − ni−1,s

. (26)

rmin
i+ 1

2
=

ni+1,s − ni,s
ni+2,s − ni+1,s

. (27)

From (26) and (27) it is possible to see that the ratio ri+ 1
2
has

different expressions depending on the sign of the advection
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velocity. In general, when evaluating the flux for the interface
i +

1
2 , the denominator is given by the difference between

the two nodal number densities adjacent to the interface
upstream of i + 1

2 . The numerator is, instead, always equal
to the difference between the two nodal number densities
adjacent to i +

1
2 . Clearly, the evaluation of (25) requires

more computational resources than (16), since the Koren
flux limiter function, 8, needs to be computed. In problems
dominated by strong advection, this additional cost is often
justified by the improved accuracy with respect to the results
obtained when using the FOU [41]. The code implementation
of (25) is achieved efficiently using the following vectorized
Matlab function:

function [bphi] = KorenMlim(a, b)
% a -> matrix, dn at the current

interface
% b -> matrix, dn at the upstream

interface
% bphi -> 0.5 * b * Phi
% r = a / b
aa = a.*a; ab = a.*b;
bphi = b; % r > 2.5
ii = (aa - 2.5*ab) <= 0; % r < 2.5
bphi(ii) = (b(ii) + 2*a(ii)) / 6;
jj = (aa - 0.25*ab) <= 0; % r < 0.25
bphi(jj) = a(jj);
bphi(ab<=0) = 0; % r < 0
end

This function is adapted from the Fortran implementation
in [44], where loops are employed. Vectorization of the
Matlab code allows the computational time required to be
significantly reduced. However, the instructions to obtain ii
and jj are computationally burdensome. Such instructions
are not required in the code implementation of (16), making
it faster.

B. TIME DISCRETIZATION
In this section we discuss and compare the performance of
three different time-discretization schemes for the advection-
diffusion-reaction equations describing the evolution of
charged species.

1) FULLY EXPLICIT METHOD
For the fully explicit integration method, the time derivative
in the first member of (14) is approximated with a finite
forward difference using the forward Euler method. The
discretized expression reads as

n(k+1)
i,s − n(k)

i,s

1t
+

1
1

(
0

(k)
i+ 1

2 ,s
− 0

(k)
i− 1

2 ,s

)
= �

(k)
i,s , (28)

and thus it is possible to compute the number density at the
next time instant explicitly as:

n(k+1)
i,s = n(k)

i,s −
1t

1

(
0

(k)
i+ 1

2 ,s
− 0

(k)
i− 1

2 ,s

)
+ �

(k)
i,s 1t . (29)

The time step duration 1t can’t be arbitrary, as the Euler
method is conditionally stable [40].1t should indeed be eval-
uated at each time step to avoid numerical instabilities. A Von
Neumann stability analysis is required to rigorously assess
the right value of the time step needed to avoid instabilities.
For a convective-diffusive problem, with constant convective
velocity u, the CFL stability condition is

1t

1

(
2K
1

+ u
)

≤ Cm , (30)

with Cm = 1. This condition can also be used to estimate
the time step for the problem described by (29), using
Cm < 1. The appropriate value for Cm is often determined
by trial and error. This approach is not rigorous but allows
to simplify the computation and to avoid repeating the
Von Neumann stability analysis, for additional terms or
different discretization schemes. For this work, we propose
an alternative method to evaluate the time step, which takes
into account source terms. If the flux density is discretized
using the FOU, we can write (29) as:

n(k+1)
i,s = αn(k)

i−1,s + βn(k)
i,s + γ n(k)

i+1,s + δ . (31)

The coefficients α, β, γ and δ depend on the particular kind
of species that is being considered. In the case of free holes,
we have:

α = −
1t

1

(
−
Khµ

1
− uMAX

i− 1
2 ,hµ

)
; (32)

β = 1 −
1t

1

(
2Khµ

1
− uMIN

i− 1
2 ,hµ

+ uMAX
i+ 1

2 ,hµ

)
+ . . . − 1tBh

(
1 −

ni,ht
Nh

)
− 1tS2ni,et − 1tS3ni,eµ ;

(33)

γ = −
1t

1

(
−
Khµ

1
+ uMIN

i+ 1
2 ,hµ

)
; (34)

δ = 1tDhni,ht . (35)

Since α, γ , δ are always greater than zero, the stability
condition that we propose is determined by imposing β > 0,
resulting in

1t <

[
1
1

(
2Khµ

1
− uMIN

i− 1
2 ,hµ

+ uMAX
i+ 1

2 ,hµ

)
+ . . . + Bh

(
1 −

ni,ht
Nh

)
+ S2ni,et + S3ni,eµ

]−1

.

(36)

Note that (36) provides a time step for each cell of the
domain. Similar expressions can be derived for the other
model species, also yielding a time step for each point of the
domain. For free electrons:

1t <

[
1
1

(
2Keµ
1

− uMIN
i− 1

2 ,eµ
+ uMAX

i+ 1
2 ,eµ

)
+ . . . + Be

(
1 −

ni,et
Ne

)
+ S1ni,ht + S3ni,hµ

]−1

.

(37)
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For trapped holes:

1t <

[
Bh
Nh
ni,hµ + Dh + S0ni,et + S1ni,eµ

]−1

. (38)

For trapped electrons:

1t <

[
Be
Ne
ni,eµ + De + S0ni,ht + S1ni,hµ

]−1

. (39)

In total, we obtain a time step for each domain cell and for
each species. The minimum of these values is the one actually
used in the algorithm. This approach is more accurate than the
one proposed in (30). The two methods were implemented
and tested using the same initial conditions. We used a
value of Cm = 0.5 for the simpler stability condition.
The computational time required by the simulation using
our stability condition is approximately 33% lower than the
time required by the simulation using the simpler stability
condition.

2) SEMI-IMPLICIT METHOD
In order to develop a semi-implicit approach, the contribution
due to the source term is split from the one due to the drift and
diffusion mechanisms (operator splitting technique).

dn0
i,s

dt
= −

1
1

(
0i+ 1

2 ,s − 0i− 1
2 ,s

)
; (40)

dn�
i,s

dt
= �i,s . (41)

We used the superscripts 0 and � to indicate the number
density values obtained considering only the drift and
diffusion contribution, and the source term contribution,
respectively.

a: DRIFT-DIFFUSION CONTRIBUTION
Equation (40) may be rewritten in matrix notation as

d
{
n0
s
}

dt
= −

[
KDs

]
{ns} −

[
Kµs

]
{ϕ} . (42)

We will use square brackets and curly brackets to indicate
respectively matrices and arrays from here on in this section.
The fluxes have been rewritten isolating the number densities
for the diffusive flux contribution and the electric potential
for the advective flux contribution, respectively. Note that the
cell volumes are incorporated into the matrices

[
KDs

]
and[

Kµs

]
. We apply the Crank-Nicholson integration scheme,

which is second-order accurate in time and is unconditionally
stable [41], for the diffusive operator. Similarly to what has
been done in [45] and [46] we evaluate the drift term using a
semi-implicit scheme. This has the advantage of making the
method robust with respect to rapid electric field variations.
In contrast to [45] and [46], where the electric potential was
evaluated at the time-instant k + 1, we evaluate it at k +

1
2

({ϕ}

(
k+ 1

2

)
) for coherence with the Crank-Nicholson scheme.

The resulting numerical scheme is then:(
[ I ] +

1t

2

[
KDs

])
{n0
s }

(k+1)

=

(
[ I ] −

1t

2

[
KDs

])
{ns}(k) − 1t

[
Kµs

]
{ϕ}

(
k+ 1

2

)
. (43)

The above matrix equation represents a linear system that can
be solved at each time-instant to compute the number density
of the species at the next one.

To estimate {ϕ}

(
k+ 1

2

)
, we combine the matrix form of (15)

and (11)

[Kelet ] {ϕ}

(
k+ 1

2

)
=

∑
s

qs
|qs|

{ns}
(
k+ 1

2

)
; (44)

and we apply a forward finite difference to (42)

{ns}
(
k+ 1

2

)
− {ns}(k)

1
21t

= −
[
KDs

]
{ns}(k)

+ −
[
Kµs

]
{ϕ}

(
k+ 1

2

)
. (45)

Note that the approach used in (45) is not fully rigorous since
{ns} and {ϕ} in the right-hand-side are not evaluated at the

same time-instant. Isolating the term {ns}
(
k+ 1

2

)
from (45),

and substituting it in (44), yields:(
[Kelet ] +

1t

2

∑
s

qs
|qs|

[
Kµs

])
{ϕ}

(
k+ 1

2

)

=

∑
s

qs
|qs|

(
[ I ] −

1t

2

[
KDs

])
{ns}(k) . (46)

The above system yields the electric potential at the half
step required to solve (43). Note that the drift and diffusion
contributions regard only mobile species. The described
procedure, therefore, is carried out only for mobile holes and
mobile electrons.

b: SOURCE TERM CONTRIBUTION
The second member of (41) is expanded using Taylor series,
neglecting higher-order terms:

{�i}

(
k+ 1

2

)
= {�i}

(k)
+

{
∂�i

∂t

}(k)
1t

2
. (47)

The chain rule is applied to obtain

{�i}

(
k+ 1

2

)
= {�i}

(k)
+

[
∂�i

∂ni

](k) {
∂ni
∂t

}(k)
1t

2
. (48)

Equation (48) can be rewritten as

{�i}

(
k+ 1

2

)
= {�i}

(k)
+

1
2
[ Ji ](k)

{
1�
ni

}(k+1)
, (49)

where we denoted{
1�
ni

}(k+1)
=
{
n�
i
}(k+1)

− {ni}(k) . (50)
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FIGURE 3. Schematic representation of the algorithm used for the
semi-implicit method.

Rewriting the first member of (49) with a centered finite
difference we get{

1�
ni

}(k+1)

1t
= {�i}

(k)
+

1
2
[ Ji ](k)

{
1�
ni

}(k+1)
. (51)

Rearranging (51) yields:(
[ I ] −

1t

2
[ Ji ](k)

)
{1�

ni}
(k+1)

= 1t {�i}
(k) . (52)

Using the above expression, also employed in [47], one may
compute the number density variation of each species due
to the effect of the source term alone. This process needs
to be repeated for each domain point. The time step 1t for
the source term integration is determined by imposing the
condition

∥ I ∥ −
1t

2
∥ Ji ∥ > 0 , (53)

and therefore:

1t <
2

∥ Ji ∥
. (54)

A schematic representation of the calculation algorithm is
shown in Fig. 3. Starting with known number densities
throughout the domain at the generic time instant k , the
electric potential is computed with (46). The number
densities at the next time instant k + 1 due to drift and
diffusion fluxes are evaluated with (43). Then, the number
density variation of each species for each cell of the domain
due to the contribution of the source term alone is computed
with (52). n0 and 1�

n are added together to yield the updated
total number densities at the next time instant. The process is
then iterated to advance in time.

3) IMPLICIT METHOD
We based our implementation of an implicit solver on
the implicit adaptive scheme TR-BDF2 (trapezoidal rule /
backward differentiation formula) [48], [49] provided by the
ode23tb function from Matlab. This function is capable of
solving stiff systems of differential equations that can be
written in the form

d {y}
dt

= f (t, {y}) , (55)

where {y} represents the state vector. This vector uniquely
determines all the relevant quantities at a given time instant.
The user needs to provide f , a function that takes in input
the time instant and the state vector: the number densities of
all species over the entire domain. All the relevant physical
quantities, e.g. charge density, electric field, flux density at
domain interfaces, can be computed from the state vector.
The output of this function is the time derivative of the
state vector at the considered time instant, i.e., ∂n/∂t in (1).
Rearranging (14) to isolate the time derivative of the number
density, one gets the following:

dni,s
dt

= −
1
1

(
0i+ 1

2 ,s − 0i− 1
2 ,s

)
+ �i,s . (56)

The right-hand-side of (56) represents the computation that
the function f needs to perform. Since the JIT Matlab
compiler is not always able to handle loops with complex
expressions efficiently [50], [51], the implementation of the
function f was extensively vectorized, aiming at reducing
computational time. A drawback of using the implicit
approach is that the output of the ode23tb function is the
state vector at every required time instant. Therefore, the
computation of non-state variables, such as electric field or
flux density at domain interfaces, needs to be performed
again after the simulation ends if physical quantities other
than the number densities are needed. For this reason,
an additional post-processing phase is required in the
implicit implementation. This, however, does not affect
significantly the computational efficiency of our code thanks
to the aforementioned vectorization process. The ode23tb
function requires the estimation of a Jacobian matrix and
therefore increasing the number of domain points may
result in a significant increment in the computational time
required by the simulations. This aspect represents a potential
limitation of the proposed approach, but for domains with
approximately one-hundred points the computational time
was deemed acceptable.

C. SOFTWARE STRUCTURE
The basic steps of a simulation are illustrated in Fig. 4. The
first thing to do is to create a parameter structure P. This
structure contains the details regarding the geometry, the
material and the value of electron and hole mobility, as well
as the parameters appearing in (4), (5), (6), (7). The time
instants at which the solution is sought can be specified using
the vector time_instants. At this point the user can
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FIGURE 4. Structure of a typical simulation.

provide the specific options for the simulation, for example
it is possible to set the flux discretization scheme or the
time integration scheme. At this point the simulation can be
launched using the Run function. When using the implicit
time-integration method an additional post processing phase
is required to compute the evolution in time of the charge
density, the polarization current and the electric field. The
final output is a structure out containing all the relevant
quantities ready to be plotted.

IV. SATO’S FORMULA
The performance of the three time-discretization schemes
described above will be benchmarked based on the results of
the simulated polarization current in Section V. To compute
the polarization current, one must first obtain the total current
density J tot at each control volume interface at each time
instant. We start by recalling the common technique to
compute J tot and then introduce a simplified approach based
on Sato’s formula, originally developed for gas discharge
simulations [36]. The standard approach to evaluate J tot is
to compute the total current density

J tot = Jcond +
∂D
∂t

, (57)

at each domain interface and at a given time instant. The
polarization current value at the considered time instant is
then obtained by averaging J tot over the entire domain. In our
simulations we also computed the polarization current using
Sato’s formula [36]:

Ip =
e
Va

˚
V

(nhuh − neue) · Es dV . (58)

In (58), Ip indicates the polarization current, Va is the applied
voltage and Es is the static electric field. The static electric
field, also known as Laplacian, is obtained considering only
the applied voltage and neglecting the charge density inside
the volume. In a one-dimensional domain, the equation
becomes

Jp =
e
L

ˆ L

0
(nhuh − neue) dx , (59)

where Jp is the polarization current density and L is the
length of the specimen. It should be noted that the above

equations are valid only in the case of a constant applied
voltage between the electrodes. Equation (59) states that the
polarization current can be computed as the mean over the
specimen of the conduction current, Jcond . The advantage
of Sato’s formula is that the evaluation of the displacement
current is not required. This results in a shorter computational
time and a simpler implementation. More details on Sato’s
equation can be found in Appendix.

V. RESULT COMPARISON
In this section we compare the performances of the three
time-discretization schemes (Sections V-A,V-B), two differ-
ent flux discretization schemes (Section V-C) and of the two
above methodologies for the current density computation
(SectionV-D). The physical parameters for all the simulations
conducted are taken from the work in [18], where a similar
model was used for a charge transport study on polyethylene.
We refer the reader to [18] for a tabular description of
the parameters. A sample with thickness of 0.40mm and
subjected to a voltage difference of 4.00 kV was considered.
We simulated a time interval of 1.00 · 105 s with the three
solvers, focusing on the polarization current results.

A. IMPLICIT VS. SEMI-IMPLICIT TIME DISCRETIZATION
SCHEME
Here we compare the accuracy obtained when simulating
the same problem with the same flux discretization scheme
(FOU, (16)), using the implicit and the semi-implicit time-
discretization schemes. Accuracy-wise, throughout this study
the results yielded by the fully implicit solver were taken as
a reference for the other two schemes for two main reasons:
first, using an implicit approach, there is no loss of accuracy
since no operator splitting is performed. In other words,
the flux and source terms are integrated simultaneously
without the loss of accuracy inherently bound with fractional
time-stepping techniques where different numerical schemes
are employed to discretize the two mentioned contributions.
Second, the ode23tb uses an adaptive time-step length, which
allows to control the absolute and relative accuracy through-
out the simulation. The results are shown in Fig. 5. It is
possible to observe that there is a good agreement between
the results obtained using the implicit integration scheme and
the semi-implicit method. In particular, the error is negligible
in the first part of the simulation. After approximately
30.00 s from the beginning of the simulation, the percentage
error starts to increase and remains approximately constant
until the end of the simulation. The maximum percentage
difference between the computed current values is 23.54% at
t = 7.36 · 103 s. We deem this value acceptable considering
that it is found for polarization currents below 1.00 · 109 A.
In addition, only the implicit solver has an adaptive time-step
control. The code using the semi-implicit time-discretization
scheme was written in Fortran 90, a language known for its
high efficiency, whereas the other two using the implicit and
the explicit scheme were written in Matlab. For this reason,
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FIGURE 5. Comparison between the polarization current computed using
the implicit method and using the semi-implicit method.

FIGURE 6. Comparison between the polarization current computed using
the implicit method and using the explicit method.

we did not compare the computational time required by the
semi-implicit scheme with the other ones.

B. EXPLICIT VS. IMPLICIT TIME DISCRETIZATION SCHEME
The results obtained from two simulations are shown in
Fig. 6. The first simulation was carried out using the explicit
integration scheme with Cm = 0.8, see (30). The second
simulation was conducted using Matlab’s ode23tb function
(implicit method). For both simulations, the flux density was
discretized by means of a FOU scheme for the advective
part and a centered finite difference formula for the diffusion
part. At first glance the performance of the explicit scheme
may seem superior to the one of the semi-implicit one show
in Fig. 5. In reality, the maximum percentage error with
respect to the implicit scheme was of 23.94%, which is
larger than the one of the discussed semi-implicit scheme.
However, this time the maximum error was found in an
earlier stage of the simulated time, at t = 21.21 s, where the
current density is undergoing a rapid decrease. If the time
step is reduced in the explicit scheme (using lower values

FIGURE 7. Wall clock time versus simulation time for the explicit and
implicit time schemes.

of Cm), the maximum percentage error drops as expected.
However, this comes at the cost of a larger computational
time. The two simulations were timed using the Matlab
timeit function. The one performed using the explicit time
stepping took about 9.20 s, whereas the one with the implicit
method based on ode23tb took only about 1.30 s, making
it ∼ 7 times faster. Note that, for what concerns the implicit
scheme results, the reported time measurement includes the
time needed to complete the post processing phase to get
the polarization current from the number densities. In reality,
the most efficient solver depends on the time span covered
by the simulation. Indeed, as shown in Fig. 7, the explicit
integration scheme is the most computationally efficient for
simulated time spans shorter than 1.00 · 104 s. Nevertheless,
for the study of solid polymeric dielectric materials, it is often
necessary to perform studies over time spans considerably
longer than 1.00·104 s, where the implicit integration scheme
is clearly the fastest. This difference can be quite relevant if
many simulations need to be performed, e.g., in the case of
an optimization problem aiming to find a best fit for physical
parameters, such as those in [52], [53], [54], [55], and [56].
Such optimization problems are of interest e.g. for diagnostic
purposes. Even-though the identification of an appropriate
parameter set could be non-trivial it could provide important
insight about the condition of the material. In general, the
results in Fig. 7 show that as the simulated time interval
increases, the advantages of employing the implicit method
becomemore pronounced.We conclude that using an implicit
integration scheme is far more efficient than using the Euler
explicit method when simulating solid polymeric dielectric
materials over long time spans. The implicit scheme based
on Matlab’s ode23tb was used to obtain all the results that
will be discussed in the rest of this work.

C. SOU/KL VS. FOU FLUX DISCRETIZATION SCHEME
1) RESULT COMPARISON
In this section we study the performance of two different
schemes for the discretization of advective fluxes stemming
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FIGURE 8. Comparison between the polarization current computed using
the FOU and the SOU/KL schemes.

FIGURE 9. Comparison between the charge density computed using the
FOU and the SOU/KL schemes.

from the drift term in (2), i.e., the hyperbolic part of
the drift-diffusion equation describing the number density
evolution over time. We once again perform two simulations
where all the physical parameters are set according to the
ones in [18], as in the previous section, and only the scheme
used for the drift term is varied. The first simulation employs
a first-order upwind scheme (FOU), the second instead is
performed using a second-order upwind scheme with the
Koren flux limiter (SOU/KL). The results in Fig. 8 show the
polarization current, computed by averaging the total current
density across the domain at each time instant. The results are
close, despite the higher order of accuracy of the SOU/KL
with respect to the FOU. Throughout the simulation, the
maximum percentage difference in the polarization currents
computed with the two approaches was observed at t = 7.54 ·

103 s and has a value of 10.96%. For the same simulation,
Fig. 9 shows the charge density distribution yielded by the
two schemes over the whole domain at the last time instant of
the simulation. Themaximum absolute difference is observed

FIGURE 10. Comparison between free electron number density computed
using the FOU and the SOU/KL schemes in a domain fraction close to the
left electrode.

FIGURE 11. Comparison between free hole number density computed
using the FOU and the SOU/KL schemes in a domain fraction close to the
left electrode.

at the position x = 3.94 · 10−4m and has a value of
0.49C · m−3. The species number densities at the last time
instant of the simulation are shown in Fig. 10, 11, 12, 13.
The four figures show only a fraction of the domain, closer
to the left electrode. From these figures it is possible to
observe a significant difference in the species number density
computed using the FOU and the SOU/KL. The discrepancies
are concentrated in the region between the left electrode and
x = 4.00 · 10−5m. However, these differences have a small
impact on the polarization current and on the charge density
profile, at least for the physical conditions that we explored.
On the other hand, the computational time variation between
the two methods is not negligible. The simulation employing
the FOU scheme was timed with the Matlab timeit function
and took an average of 1.30 s.

The simulation performed with the SOU/KL scheme was
timed in the same way and took an average of 11.00 s.
This corresponds to a ratio between the two computational
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FIGURE 12. Comparison between trapped electron number density
computed using the FOU and the SOU/KL schemes in a domain fraction
close to the left electrode.

FIGURE 13. Comparison between trapped hole number density computed
using the FOU and the SOU/KL schemes in a domain fraction close to the
left electrode.

times greater than 8. In previous works by Le Roy and
colleagues, such as [17], [18], [19], and [21], a third-order
upwind scheme (QUICKEST) coupled with the ULTIMATE
flux limiter was often employed to solve the transport
equation. However, our analysis shows that the significant
computational time increase due to the usage of a high-order
scheme coupled with a flux limiter does not correspond to
a relevant difference in the polarization current and charge
density results. For this reason, we suggest to employ a high-
accuracy scheme, such as the SOU/KL or the QUICKEST-
ULTIMATE, only if the knowledge of the species number
density with great detail is desired. In general, we suggest
employing FOU when the polarization current or the charge
density profile is computed.

2) ACCURACY COMPARISON USING ANALYTICAL
SOLUTIONS
From Fig. 10, 11, 12, and 13 it is possible to see that the
two flux schemes yield greatly different results regarding

FIGURE 14. Comparison between the results yielded by the FOU and
SOU/KL schemes and the analytical solution of a stedy-state problem.

the species number density in the vicinity of the electrodes.
The most accurate results are the ones obtained with the
SOU/KL scheme, which is between first and second order
accurate in space. On the other hand, the FOU scheme is
only first order accurate. In order to better show the effect
of this difference in accuracy a comparison between the two
numerical schemes was performed considering simple test
cases for which analytical solutions exist. As a first test case
we solved the steady-state equation

∇ · 0 = 0 , (60)

where

0 = −K∇n+ nU . (61)

A one-dimensional domain with length equal to L = 1.00m,
and discretized in 100 cells was considered. The diffusion
coefficient K was set equal to 1.00 · 10−1m2 s−1 and
the velocity U was set to 5.00m s−1. Dirichlet conditions
were considered for the number density n at both domain
boundaries, in particular nW = 5.00 · 109m−3 is the number
density fixed at the western domain boundary and nE =

2.00 · 1010m−3 is the number density fixed at the eastern
domain boundary. In this case an analytical solution exists
for the distribution of the number density:

n (x) =
nE
[
1 − exp

(Ux
K

)]
1 − exp

(UL
K

)
+ . . . +

nW
[
exp

(Ux
K

)
− exp

(UL
K

)]
1 − exp

(UL
K

) . (62)

In Fig. 14 the analytical solution is comparedwith the results
yielded by the two schemes for the case presented above.
In Fig. 15 the absolute value of the percentage error of the
two schemes with respect to the analytical solution is shown.
From the two figures it is possible to see that the SOU/KL
scheme produces results closer to the analytical solution with
respect to the FOU scheme. The maximum percentage error
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FIGURE 15. Absolute value of the percentage error of the two schemes
with respect to the analytical solution for the steady-state case.

FIGURE 16. Comparison between the results yielded by the SOU/KL and
FOU schemes and the analytical solution after 1.00 s.

is always less than 3% for the SOU/KL scheme, while the
FOU scheme reaches values of almost 10%. The second
test case considered was a purely convective time dependent
problem:

∂n
∂t

+ ∇ · 0 = 0 , (63)

0 = nU . (64)

This time, a one-dimensional periodic domain with length
equal to L = 1.00m, and discretized in 1600 cells was
considered. There is no need for boundary conditions being
the domain periodic. The initial distribution for the number
density consists of a triangular shape, a rectangular shape and
a Gaussian. The velocity U was set equal to 1.00m s−1 and
a time span of 1.00 s was simulated employing the two flux
schemes. In Fig. 16 the results at the end of the simulated
time interval are shown. Again the results yielded by the
SOU/KL are more accurate than the results obtained with

FIGURE 17. Comparison between the polarization current computed
using Sato’s formula and the total current density.

the FOU. From Fig. 16 it is clearly visible the numerical
diffusion associatedwith the FOU scheme [41]. The test cases
presented highlight the improved accuracy of the SOU/KL
scheme with respect to the FOU scheme, in particular in
those regions where steep gradients of the advected property
occur. For this reason, in Fig. 10, 11, 12, and 13 the more
accurate results are the one obtained using the SOU/KL
scheme.

D. SATO’S FORMULA VS. TOTAL CURRENT DENSITY
A comparison between the polarization current obtained
using two different techniques is shown in Fig. 17. The
current is calculated starting from the output (i.e., the
computed number densities over time) of the same simulation
for the sake of consistency. In this way, it is possible to isolate
the effect of the scheme employed to compute the polarization
current. The continuous blue line in Fig. 17 shows the current
directly computed from the number densities, the mobility,
and the static electric field using Sato’s equation. The orange
dots show the current that was computed by averaging the
total current density over the domain. The figure shows that
the two methods are equivalent. The advantage of using
Sato’s equation is that the computation of the displacement
current – which requires using data from at least two instants
– is not needed. This results in a simpler implementation and
a shorter computational time compared to the total current
density method.

VI. CONCLUSION
In this work we compared several numerical techniques for
the computation of charge transport and accumulation inside
solid polymeric dielectric materials. The employed physical
model is based on the well-known drift-diffusion equation
for charged species and considers a constant mobility,
a single level of deep traps and constant recombination,
trapping, and detrapping coefficients. The model has a total
of four types of carriers and the charge injection from the
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electrodes is evaluated by means of a Schottky emission law.
We tested three different time discretization algorithms: a full
explicit method, a full implicit method (implemented using
Matlab’s ode23tb function) and a semi-implicit technique.
The full implicit method was identified as the most accurate
and computationally efficient for long simulation times.
Two different cell-centered finite volume schemes for the
flux density discretization were compared: the first-order
upwind scheme (FOU) and the second-order upwind scheme
with the Koren flux limiter (SOU/KL). We observed that
the polarization current and the charge density profiles
are weakly dependent on the employed flux scheme. For
this reason, since the code using the FOU was about
10 times faster than the (fully vectorized) implementation
of the SOU/KL, we suggest to use the FOU unless a
high accuracy in the species number density is required.
Concerning the computation of the polarization current,
we highlighted the benefits of using Sato’s equation instead of
themore common approach based on the total current density.
Indeed, we have shown that Sato’s equation yields the same
results, allowing for a simpler implementation and to avoid
the computation of the displacement current at each time
instant.

APPENDIX
SATO’S FORMULA DERIVATION
A complete step-by-step derivation of Sato’s formula is
presented in this section. A generic 3D domain with two
electrodes is considered. A generic charge distribution is let
free to evolve in time inside the domain. The total electric
field inside the domain may be expressed as the sum of two
terms: the static (or Laplacian) electric field Es, which is
dependent only on the applied voltage, and the electric field
due to the charge distribution inside the domain, Eρ :

E = Es + Eρ . (65)

We can write:

∇ · Dρ = ρ , (66)

∇ · Ds = 0 , (67)

where Dρ is the displacement field due to the charge
distribution and Ds is the static displacement field. We can
express Eρ as the gradient of an electric potential ϕρ :

Eρ = −∇ϕρ . (68)

The assumption that a constant voltage is applied between the
electrodes is made, and thus:

∂Es
∂t

= 0 . (69)

An extended version of Sato’s equationwhere time-dependent
electric fields are considered can be found in [57]. The
generic continuity equation is written:

−∇ · S = E · J +
∂D
∂t

· E+
∂B
∂t

·H . (70)

In (70), S = E × H is the Poyinting vector, B is
the magnetic flux density, and H is the magnetic field.
If we consider a constant B inside the domain and a linear
and isotropic dielectric material, with constant dielectric
permittivity ε, (70) can be rewritten as:

−∇ · S = E · J + ε
∂E
∂t

· E . (71)

Equation (71) is integrated throughout the domain, producing
the following.˚

V
−∇ · S dV =

˚
V
J · E dV +

˚
V

ε
∂E
∂t

· E dV .

(72)

The divergence theorem is applied to the first member
of (72):

−

‹
AV
S · n̂ dA =

˚
V
J · E dV +

˚
V

ε
∂E
∂t

· E dV .

(73)

Assuming that the normal component of the displacement
current is equal to zero at the domain boundary (without the
need to include the electrodes), we obtain:

VaIp =

˚
V
J · E dV +

˚
V

ε
∂E
∂t

· E dV . (74)

Using (65) and (69) it is possible to write:

VaIp =

˚
V
J · Es dV +

˚
V
J · Eρ dV

+ . . . +

˚
V

ε
∂Eρ

∂t
· E dV . (75)

Employing (68) we obtain:

VaIp =

˚
V
J · Es dV −

˚
V
J · ∇ϕρ dV

+ . . . +

˚
V

ε
∂Eρ

∂t
· E dV . (76)

We recall the identity valid for a generic vector V and a
scalar f :

V · ∇f = ∇ · (f V) −f∇ · V . (77)

Applying (77) to the second integral on the right-hand side
of (76) yields:

VaIp

=

˚
V
J · Es dV −

˚
V

∇ ·
(
ϕρ J

)
dV

+ . . . +

˚
V

ϕρ∇ · J dV +

˚
V

ε
∂Eρ

∂t
· E dV . (78)

The divergence theorem is then applied, obtaining:

VaIp

=

˚
V
J · Es dV −

‹
AV

ϕρ J · n̂ dA

+ . . . +

˚
V

ϕρ∇ · J dV +

˚
V

ε
∂Eρ

∂t
· E dV . (79)
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The surface integral in (79) is equal to zero since the
electric potential ϕρ is zero at the electrodes and the normal
component of the conduction current may be assumed to
be zero at the remaining portion of the boundary surface.
ϕρ is zero since at the electrodes the electric potential
is imposed and therefore the contribution due to internal
charges must be zero in those regions. In addition, we recall
that

∇ · J = −
∂ρ

∂t
, (80)

and using (66) we can rewrite (79) as:

VaIp =

˚
V
J · Es dV −

˚
V

ϕρ∇ ·
∂Dρ

∂t
dV

+ . . . +

˚
V

ε
∂Eρ

∂t
· E dV . (81)

Applying (77) to the second integral in the right hand side
of (81) and using (68), we get:

VaIp

=

˚
V
J · Es dV −

˚
V

∇ ·
(

ϕρ

∂Dρ

∂t

)
dV

+ . . . −

˚
V

∂Dρ

∂t
· Eρ dV +

˚
V

ε
∂Eρ

∂t
· E dV . (82)

The divergence theorem is applied, yielding:

VaIp =

˚
V
J · Es dV −

‹
AV

ϕρ

∂Dρ

∂t
· n̂ dA

+ . . . −

˚
V

ε
∂Eρ

∂t
· Eρ dV +

˚
V

ε
∂Eρ

∂t
· E dV .

(83)

The surface integral in (83) is equal to zero since ϕρ is zero at
the electrodes and the normal component of the displacement
current is zero elsewhere at the boundary surface. Using (65)
and recalling that the material is linear and isotropic, we get
the following.

VaIp =

˚
V
J · Es dV +

˚
V

∂Eρ

∂t
· Ds dV . (84)

Applying (68) we get:

VaIp =

˚
V
J · Es dV −

˚
V

∇
(

∂ϕρ

∂t

)
· DsdV . (85)

Employing (77) yields:

VaIp =

˚
V
J · Es dV −

˚
V

∇ ·
(

∂ϕρ

∂t
Ds

)
dV

+ . . . +

˚
V

∂ϕρ

∂t
∇ · Ds dV . (86)

Recalling (67) and applying the divergence theorem,
(86) can be rewritten as:

VaIp =

˚
V
J · Es dV −

‹
AV

∂ϕρ

∂t
Ds · n̂ dA . (87)

The surface integral in (87) is equal to zero if we assume that
the normal component of the static displacement field (Ds · n̂)
is zero at the domain boundary, without necessarily including
the electrodes, where the time derivative ofϕρ is equal to zero.
In this case, we obtain:

Ip =
1
Va

˚
V
J · Es dV . (88)

Considering the following expression for the conduction
current density

J = e (nhuh − neue) , (89)

we obtain the same expression as (58).
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