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ABSTRACT Natural language processing (NLP) models find extensive applications but face vulnerabilities
against adversarial inputs. Traditional defenses lean heavily on supervised detection techniques, which
makes them vulnerable to issues arising from training data quality, inherent biases, noise, or adversarial
inputs. This study observed common compromises in sentence fluency during aggression. On this basis, the
Zero Sample Defender (ZDDR) is introduced for adversarial sample detection and recovery without relying
on prior knowledge. ZDDR combines the log probability calculated by the model and the syntactic normative
score of a large language model (LLM) to detect adversarial examples. Furthermore, using strategic prompts,
ZDDR guides LLM in rephrasing adversarial content, maintaining clarity, structure, and meaning, thereby
restoring the sentence from the attack. Benchmarking reveals a 9% improvement in area under receiver
operating characteristic curve (AUROC) for adversarial detection over existing techniques. Post-restoration,
model classification efficacy surges by 45% compared to the offensive inputs, setting new performance
standards against other restoration techniques.

INDEX TERMS Adversarial defense, large language model, natural language processing, model security,
prompt engineering.

I. INTRODUCTION
Recent advancements in natural language processing (NLP)
have revolutionized human-machine textual interactions,
finding applications in domains such as reading compre-
hension [1], [2], machine translation [3], [4], [5], question
answering [6], [7], text classification [8], [9], sentiment
analysis [10], [11] and dependency parsing [12]. However,
these NLP models grapple with the threats of adversarial
text attacks. Attackers craft adversarial samples by sub-
tly altering input texts, intending to deceive the victim
models [13]. These manipulations, often imperceptible to
human observers, can distort information flow, compromise
data security, and erode public trust, thereby posing signifi-
cant societal and technological challenges [14]. Despite their
resemblance to genuine samples, models tend to misinterpret
these adversarial samples with misplaced confidence [15],
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resulting in compromised efficacy and augmented computa-
tional burdens.

The research community has been vigorously explor-
ing new algorithms for generating adversarial texts [16],
[17], [18]. Adversarial attacks in NLP can be categorized into
three types: character-level, word-level, and sentence-level
attacks [9], [19]. Character-level offensives tweak individ-
ual characters within words, although such maneuvers are
typically thwarted by spell checkers. Word-level strategies,
on the other hand, substitute words with semantic equiva-
lents, aiming to deceive without semantic shift, and present a
particularly intricate defense challenge, as discussed herein.
Sentence-level attacks reframe an entire sentence while
retaining its core meaning, effectively serving as an exten-
sion of word-level strategies by modifying constituent words.
As adversarial strategies evolve, they can be operational-
ized in both transparent (white-box) and opaque (black-box)
environments. Their heightened efficiency and preserved
semantic integrity render defenses ever more demanding.
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FIGURE 1. Illustration of fluency score calculation: given a victim model
F: X → Y , X = (x1, x2, x3, . . . xn) input data domain,
Y = (y1, y2, y3, . . . yn) is the output data domain. Suppose x ∈ X is a test
input and the model correctly predicts its label as y = F(x) ∈ Y .
An adversarial example of x is x′ ∈ X ′ , such that F(x′) /∈ Y . First we use
the victim model F to calculate the negative log-likelihood of all texts.
Original texts x1origin, x2origin, x3origin, . . . , xnorigin usually exhibit lower
negative log-likelihoods. When weighted according to the grammar score,
the fluency score of the original text x1fluence, x2fluence,
x3fluence, . . . , xnfluence dropped further.

In NLP’s adversarial defense landscape, three primary
strategies have been proposed to develop supervised meth-
ods [20], [21]: creating similar environments during neu-
ral network training, demonstrating the robustness of the
input region of the network, and identifying malicious
inputs and correcting them with specialized techniques
during training. Mimicking potential attack environments
during the neural network’s training phase, termed as
‘‘adversarial training’’ [22]. This approach enhances model
robustness against perturbations by introducing adversar-
ial disturbances into the training data, simulating poten-
tial attack scenarios. However, its effectiveness hinges on
having a vast dataset. To consolidate model robustness,
some researchers have aimed to verify the anti-interference
ability of the network’s input regions against adversarial
attack. For instance, interval bound propagation (IBP) [23]
offers a boundary strategy designed to train expansive
and verifiable neural networks while ensuring robust-
ness. Notwithstanding, such verifications aren’t foolproof.
Skilled attackers might still pinpoint unaccounted vulnera-
bilities, thereby circumscribing the defense’s efficacy. Cer-
tain techniques actively scout for and address adversarial
inputs during the training process. Notably, RDE [24] and
UAPAD [25] stand out as supervised detection method-
ologies. By discerning the distinct traits of classifiers and
gleaning relevant information, they have adeptly devised
new classifier simulators attuned to adversarial text clas-
sification. However, as adversarial methodologies evolve,
there’s a pressing need to perennially update and recali-
brate the identified adversarial dataset. In another approach,
BERT-Defense [26] suggests a technique that assimi-
lates context-dependent probabilities with embeddings of
context-irrelevant hypotheses into a consolidated embed-
ding. By masking tokens and leveraging masked language
modeling (MLM) for predictions, they iteratively refine

the approximation. While this heightened the restoration
precision on adversarial sets, it somewhat diminished accu-
racy on the origin dataset, potentially impacting real-world
applications.

This research introduces Zero-Shot Defender for Adver-
sarial Sample Detection and Restoration (ZDDR), an inno-
vative zero-shot, unsupervised framework tailored for the
detection and restoration of adversarial samples in NLP.
Uniquely, ZDDR stands resilient against both known and
emergent attack vectors, sidestepping the need for labeled
datasets. A pivotal observation underpinning this frame-
work is the modus operandi of adversarial attacks in NLP.
Notably, most adversarial strategies tamper with seman-
tic constituents, modify structural elements, or intersperse
extraneous characters, invariably resulting in compromised
text fluency. In many instances, such alterations involve
unwarranted word substitutions or structural tweaks that
deteriorate sentence cohesiveness. The intent of this study
is to harness these distributional discrepancies engendered
by diminished fluency. To realize this, the study begins
by quantifying the negative log-likelihood of sentences
using the victim model. Subsequently, large language model
(LLM) [27] is deployed to discern and score segments that
deviate from grammatical conventions. These dual metrics,
when weighted appropriately, facilitate the determination of
a threshold for flagging adversarial samples, as depicted
in Figure 1. For restoration, the research leans into the
prompt engineering of LLM [28]. By crafting a universal
prompt, the framework instructs LLM to rephrase iden-
tified adversarial constructs. Essentially, sentences tainted
with adversarial elements are inputted into LLM. Guided
by the prompt, the model is prompted to generate a
new expression that’s semantically congruent, yet distinct
in phrasing, aiming to replace it with a more accurate
rendition.

The contributions of this study can be summarized as
follows:

1. This research introduces ZDDR. ZDDR represents a
novel zero-shot, unsupervised framework that defends
against adversarial samples, comprising two primary
modules: DetectAttack (DA) and Restoration;

2. In its detection phase, the proposed DAmethod utilizes
both the victim model to compute the negative log
likelihood of the sentence, as well as a language model
to comprehensively evaluate sentence fluency. Empir-
ical assessments, spanning four attack algorithms
and three representative datasets, underscore DA’s
superior detection performance relative to prevailing
baselines;

3. This study champions the use of LLM for tex-
tual restoration post-attack. Through a meticulously
designed generic prompt, adversarial constructs are
rephrased to recover their original sentence mean.
Comparative evaluations affirm the model’s height-
ened defense efficacy when juxtaposed with compared
attack scenarios.
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II. RELATED WORK
A. ATTACK METHODS IN NLP
Within the domain of NLP, adversarial attacks predominantly
manifest in three distinct forms: character-level, word-level,
and sentence-level attacks [9], [29]. Character-level attacks
focus on subtle manipulations within individual words.
For instance, DeepWordBug [16] introduces an innovative
character-level attack for black-box contexts. By determin-
ing word significance, it discreetly modifies selected words
using tactics such as character swapping, flipping, insertion,
or deletion. Another notable approach is HotFlip [30] which
crafts adversarial samples via atomic character replacements,
or flips, informed by the gradient of the one-hot input
vector.

While word-level attacks pivot around the replacement
of entire words, different strategies are often employed to
find keyword and synonym replacements. A quintessential
example is TextFooler [18], a black-box assault mechanism
targeting BERT [31] for text classification. This method
identifies key words from the victim model and clev-
erly replaces them with semantically consistent synonyms.
PWWS [32] offers a similar strategy, but diverges in its
methodology for synonym selection. Another salient study
introduces TextBugger [17], adept at crafting adversarial
samples in both black-box and white-box environments.
In the latter, salient words are discerned via the Jacobian
matrix, while in the former, pivotal sentences are ear-
marked first, followed by a scoring function pinpointing
key word.

Sentence-level attacks typically involve sentences at var-
ious positions, ensuring linguistic fluency and semantic
integrity. For instance, SCPLAN [33] crafts adversarial
narratives that sustain semantic linearity but bewilder mod-
els by meticulously manipulating the syntactic parse tree.
In another work adversarial perturbations are applied to the
word embedding layer of CNN for text classification tasks,
making the classification model robust against the worst per-
turbations.

B. DEFENSE
Defensive strategies against adversarial attacks in NLP can be
delineated into three primary strategies: adversarial training,
robustness certification, and adversarial identification and
restoration.

Adversarial Training: Initially proposed by Goodfel-
low [34], adversarial training fortifies models against adver-
sarial intrusions by embedding adversarial examples into the
training dataset. The potency of these adversarial examples
directly influences the model’s robustness and its generaliza-
tion capabilities. Follow-up research, such as LexicalAT [35],
harnessed adversarial attacks in tandem with reinforcement
learning to spawn resistant adversarial samples. Another
intriguing direction involved leveraging adversarial training
for cross-lingual text categorization, where a model trained
on English data [36] was then employed to predict labels
for non-English data, subsequently using these predictions

as adversarial samples to bolster robustness. However, this
adversarial training approach has limitations. It requires a
large number of labeled clean samples and adversarial exam-
ples for supervised training, and cannot be easily generalized
to real-world scenarios with imbalanced data and missing
sample labels.

Robustness Certification: Primarily acknowledged for its
efficacy in image processing, IBP ensures neural networks
are sculpted to mitigate the extreme disparities between clas-
sification delineations and perturbed input zones. Within
the task of textual classification, a study [37] proffered
a rigorously vetted robust model capable of countering
maximal perturbations. Through this approach, the peak
disturbance’s boundary is optimized using IBP, provid-
ing an upper limit for the discrete perturbation set in
the word vector space. When encountering adversarial dis-
turbances, IBP systematically computes an upper thresh-
old for model losses. A noteworthy caveat of IBP is
its computational heft, as it necessitates the demarcation
of input-output frontiers at each network layer. Succes-
sive research introduced a perturbation space estimation
technique anchored in model interpretation [38], which cur-
tails computational demands while preserving estimation
precision. Nonetheless, given constraints in segmentation
techniques, it remains computationally intensive. Although
these methods have achieved some success in addressing
adversarial attacks, they have some limitations in adapting
to different data distributions due to the constraints of super-
vised learning, especially insufficient adaptability to novel
attacks.

Adversarial Identification and Restoration provide insights
into various approaches. FGWS [39], a novel approach,
identifies and replaces rare words in an input with preva-
lent synonyms. While efficacious for word-level attacks
(where typical words are substituted with obscure syn-
onyms), FGWS is less adept at countering character-level
assaults where the adversarial entities are not recognized
words, and thus, appropriate synonyms can’t be ascertained.
RDE [24] promotes robustness using disturbance detection
via feature density estimation. Contrasting the traditional
frequency-based likelihood estimation, RDE harnesses prob-
ability density models derived from features of pretrained
architectures, such as BERT, emphasizing sentence density
characteristics. Semi-character level recursive neural net-
work (ScRNN) [40] model, functioning analogously to a
spell-checker, predicts the appropriate word in the presence
of disturbances. Its architecture mirrors traditional RNNs,
ingesting semi-character vectors to anticipate the correct
word in each interval, whilst contending with noise manifes-
tations like jumbles, deletions, and insertions. Building upon
ScRNN, ScRNN with Fallbacks [41] offers mechanisms to
handle ‘unknown’ words by either leaving them as is, sub-
stituting with a neutral term, or turning to an extensive word
recognition model. TREATED [42] stands out by defending
against universal disturbances without assumptions, rely-
ing on multiple reference models to predict on both clean
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FIGURE 2. Defense framework structure diagram.

and adversarial samples. The consistency of these models
across datasets is its key strength. Lastly, BERT-Defense [26]
addresses the constraints of traditional spell-checkers in
identifying and rectifying perturbations, this methodology
harnesses BERT for tokenizing perturbed sentences. It subse-
quently computes context-irrelevant probability distributions
via an adapted Levenshtein distance. By amalgamating con-
textually relevant probabilities and embeddings from all
irrelevant hypotheses into a unified weighted embedding,
it strives for restoration. The objective of recuperating tam-
pered samples is realized through iterative token masking and
subsequent prediction using MLM to achieve a proximate
approximation. These methods heavily rely on resources
such as dictionaries and corpora. This dependence causes
the models to potentially fail when facing unknown language
resources. It limits the model’s comprehensive understanding
of language, and the model’s robustness is severely chal-
lenged.

III. METHODS
A. ZERO-SHOT DEFENDER FOR ADVERSARIAL SAMPLES
DETECTION AND RESTORATION
A novel zero-shot defense framework has been intro-
duced, tailored for addressing various text-based adversarial
attacks.

At its core, the framework hinges on two pivotal strategies.
First, it employs Adversarial Sample Detection, leveraging
zero-shot capabilities to identify adversarial text samples.
This method discerns adversarial text samples by exploit-
ing the differential sensitivities of victim models to the
negative log-likelihood of original and adversarial texts,
thereby providing a scoring mechanism for various texts.
LLM is employed to detect grammatical inconsistencies.
By weighting the scores from both adversarial detection
and grammatical analysis, a comprehensive text score dis-
tribution is derived. A threshold is then determined that

maximizing AUROC for the identification of adversarial
samples. The integration of grammatical scores with negative
log-likelihoods results in comprehensive fluency scores for
sentences. With the quantified score distribution, we can
effectively distinguish adversarial samples with the help of
some pre-calculated local sample thresholds. In the subse-
quent restoration phase, a rephrasing technique is advocated,
leveraging LLM’s grammatical analysis to comprehend and
rectify adversarial content contextually. Through strate-
gic text paraphrase, the framework enhances the model’s
comprehension of original content, effectively sidestepping
adversarial manipulations. This holistic approach is depicted
in Figure 2.

B. DETECTATTACK
Before delving into the proposed method, it is pertinent
to understand the nuances of adversarial sample gener-
ation, which serves as the foundational inspiration for
DA initiative. An examination of recent attack algorithms
reveals a shared pattern. It begins by identifying vul-
nerable words and assessing them based on importance
scores. The algorithms then iteratively modify words using
character-level or word-level attacks, prioritizing words
according to their importance rankings. As the iterative
process continues, model confidence declines and sentence
fluency deteriorates, ultimately leading to an altered pre-
diction. Delving deeper into attack types, character-level
attacks predominantly substitute task-relevant characters
with aberrant or non-existent ones, word-level attacks often
replace common words with complex or neutral variants,
and sentence-level attacks modify a model’s interpreta-
tive framework by adjusting a sentence’s core structure
and content, using tactics like restructuring, resequenc-
ing, or inserting/deleting key information, thus altering
the model’s understanding of the sentence’s core message.
In an ideal scenario, textual content, encompassing its
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FIGURE 3. Negative log-likelihood score distributions for original vs. PWWS-attacked samples across datasets (IMDB, SST-2, AGNews): Attacked
sentences exhibit a dispersed and elevated score range, whereas original samples cluster closely around zero.

Algorithm 1 DetectAttack detection adversarial samples
1: Input: text x of length n, victim model F, LLM,

decision threshold ε
2: −logP (x) = −logP (x1) + logP (x2 | x1) + . . .

+P
(
xi | x1x2 . . . xn−1

)
//calculate negative log

probability with victim model.
3: S (x) = LLM(x) // LLM Inference score.
4: g (x) = −logP (x) + S (x) //fluence score calculation.
5: if g (x) > ε then:
6: return true // probably adversarial sample
7: else:
8: return false // probably not adversarial sample

vocabulary, grammatical structure, and semantics, should
exhibit inherent consistency. However, adversarial interven-
tions fracture this harmony, obfuscating model interpretation
and yielding text that strays from its natural fluency and
coherence.

1) CALCULATE NEGATIVE LOG PROBABILITY WITH VICTIM
MODEL
To elucidate the fluency disparity between original and
adversarial samples, the negative log-likelihood scores of
both sample types were computed and their respective
distributions are illustrated in Figure 3. A pronounced
distinction is evident between the negative log-likelihood
distributions of the original and adversarial texts. Scores
for the original samples gravitate towards 0, whereas the
adversarial samples exhibit greater variability and magni-
tude. This observation aligns with the premise that more
coherent text yields lower scores. These discernible con-
trasts provide a foundation for the subsequent detection
method, which will be expounded upon in the ensuing
sections.

Given a victim model F : X → Y as input data domain
of X and output data domain of Y. Assume x ∈ X as a test
input, the model correctly predicts its label as y = (x) ∈ Y.
The joint probability predicted by the victim model on a text
x of length n is denoted as follows:

P (x) = P(x)P(y|x)

= P (x1)P(x1|x2) . . . P(xi|x1x2 . . . xn−1) (1)

where xj denotes the j-th word of text x and the conditional
probability of the j-th word given the preceding words is as
follows:

P(xj|x1x2 . . . xj−1) (2)

The negative log of the joint probability for text x can be
expressed as follows:

−logP (x) = −(logP (x1) + logP(x1|x2) + . . .

+ P(xi|x1x2 . . . xn−1) (3)

Transformer-based architectures, including BERT, XLNet,
and GPT [43], employ tokenization techniques such as
WordPiece [35] to shape their vocabulary. This stands in
contrast to RNN-derivedmodels like RNN, GRU, and LSTM,
which lean more towards using the comprehensive English
vocabulary. The tokenization strategy adopted by transform-
ers truncates intricate words into shorter tokens, markedly
diminishing vocabulary size. In the context of adversarial
attacks, assailants deploy less frequently used token com-
binations, inducing segments of text to deviate in terms
of grammar and semantics. Following tokenization, there
might be deliberate distortions in sentence construction,
diverging from standard linguistic patterns. This deviation
amplifies the model’s decoding uncertainty, culminating in
heightened negative log-likelihood values for these tokens.
A heightened negative log-likelihood can suggest that a
text contains excessive redundancy not typically found in
standard text. On the other hand, a diminished negative
log-likelihood can hint at a higher concentration of informa-
tion within the text. Higher negative log-likelihood indicates
that the text contains too much redundant information that
normal text does not possess. Conversely, lower negative
log-likelihood suggests that the information in the text is
concentrated.

2) LLM INFERENCE ERRORS
Tokenization techniques provide a fine-grained way to assess
sentence fluency. It is pivotal to understand that these
methods don’t directly compute the negative log-likelihood;
they instead shape the model’s text decoding process and
its probability distribution estimation. Elevated negative
log-likelihood values in adversarial text don’t unequivocally
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TABLE 1. An examination of sentence fluency from the perspective of adherence to English grammar norms. Sentences are evaluated based on the
following linguistic components.

TABLE 2. Examples of adversarial sentence: rephrased and restored. While TextFooler and TextBugger deploy word-level attacks, HotFlip combines
character and word-level attacks. Note: OpenAttack toolkit standardizes text to lowercase, a factor that remains inconsequential to model classification.

label the text as adversarial. At times, attackers craft perplex-
ing structures intentionally, leading the model to register high
negative log-likelihood even for standard sentences.

Therefore, a new detection approach is put forth. This
approach harnesses the prompt engineering strategy of the
pretrained LLM [44] to scrutinize the comprehensive fluency
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TABLE 3. Summary of benchmark datasets. For SST-2, to ensure that some attack algorithms can generate 500 adversarial samples, we randomly selected
5000 data points from the training set while removing them from the training set.

TABLE 4. Detection performance of DA compared to FGWS, RDE, UAPAD, and Log P.

of sentences. The specific prompts formulated for this pur-
pose are shown in Table 1.

The designed prompt is inputted into the original text x ∈

X and the adversarial text x′
∈ X′ for fluency assessment.

LLMmodel comprehensively includes fluency aspects of the
sentences and provides an overall judgment score S (x).

The prompt engineering technique capitalizes on LLM’s
profound linguistic comprehension and its capacity to man-
age vast contextual data. This method provides a holistic
approach to gauging sentence fluency, offering advan-
tages over mere negative log-likelihood comparisons by
minimizing the risk of misinterpretation from isolated
features.

3) SCORE CALCULATION
The process of DetectAttack is presented in Algorithm 1.
After obtaining the negative log-likelihood scores for each
input, the original text x ∈ X, and the attack text
x′

∈ X′, these parameters are combined with the judgment
score from LLM to calculate the final fluency score g (x)
for text x.

g (x) = −logP (x) + S (x) (4)

C. LLM RESTORE ADVERSARIAL SAMPLES
As attack algorithms advance, the text they produce increas-
ingly mirrors genuine samples, posing challenges in model

discernment and amplifying defense complexities. It is rec-
ommended to harness the capabilities of LLM [44] for
pinpointing and rephrasing ungrammatical segments in sen-
tences. LLMs, underpinned by the Transformer architec-
ture, recognize long-range textual dependencies using the
Self-Attention mechanism. With extensive parameterization
and comprehensive training datasets, these models cultivate
nuanced language representations, enabling proficient text
understanding and generation. Throughout their pre-training
phase, LLMs assimilate various linguistic dimensions—
lexical, syntactic, and semantic—by engaging in tasks like
tokenization and predictive modeling, while deploying opti-
mization strategies for enhanced efficiency. Subsequently,
during output formulation, techniques in NLP, such as gram-
mar rectification and semantic coherence, are deployed
to refine generated sentences, ensuring linguistic integrity
aligns with task objectives. To guide this recovery process,
the following prompt is provided: ‘‘Disregard the content,
background, or inherent meaning of this text. The sentence
may possess grammatical or punctuation inaccuracies. Grasp
its essence and offer a rephrased version with improved
fluency.’’ This prompt strategy aids in effectively rephras-
ing and restoring adversarial attacked text, as demonstrated
in Table 2.
The above statement is formalized with the concept of

adversarial perturbation, where an adversarial samples for x
is denoted as (x+ ξ ), thereby (x+ ξ ) /∈ Y, but the values of x
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TABLE 5. Model classification accuracy after restoration using different LLM for different attack algorithms.

TABLE 6. Model classification success rates for rephrased adversarial samples compared to original samples by different attack algorithms.

and (x + ξ ) are very close. ξ is a perturbation generated by
an attack algorithm targeting text x, introducing the concept
of text perceptibility. In general, a normal human would not
classify (x+ξ ) incorrectly, whereas the model would make a
misclassification. This study performs rephrasing restore on
the text to make ξ close to 0. The equation is expressed as
follows:

F(T(x + ξ )) ≈ (x) ∈ Y (5)

Rephrasing of the attack text T(x + ξ ) is performed to
ensure that it can be correctly classified by the proposed
model.

IV. EXPERIMENTS
A. MODEL
In experiments addressing adversarial sample detection, this
study employs a pre-trained RoBERTa-Base model from
the HuggingFace Transformers library [45] as the victim
classification model. This model has a 768-dimensional
hidden layer size, 12 multi-headed self-attention heads,

and 12 Transformer encoder layers. With an overall param-
eter size of 125M, vocabulary size of 50265, and support
for position embeddings with a maximum of 512 posi-
tions. These parameters tuning and architectural designs
result in significant performance improvements, including
enhanced model capacity, better language representation
learning, improved adaptability to textual data, ability to
process longer sequences, and increased robustness. Using
an NVIDIA 3090 GPU, after five epochs of fine-tuning
with a batch size of 8 and sequence length of 512 by
the Adam optimizer with a learning rate of 1e-5, this
model demonstrates praiseworthy classification accuracy of
over 92%.

For tasks related to attack text detection and restoration,
models GPT-3.5 [46], Vicuna-13b [47], and Claude 2 [48],
were deployed for text rephrasing. GPT-3.5, an enhancement
by OPENAI from its predecessor GPT-3, retains its 17.5 bil-
lion parameters but outperforms due to refined techniques
like knowledge distillation and model compression. While
utilizing a Transformer decoder framework, GPT-3.5 has
been modularized for enhanced iteration and upgrades.
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TABLE 7. Model classification success rates after restoration for ZDDR compared to BERT-Defense and TREATED.

Anthropic’s Claude 2, an evolved LLM, facilitates extended
interactions up to 100k context length, prioritizing safe,
controlled outputs that emulate natural, logical conversa-
tion. Lastly, Vicuna-13b, a collaborative creation by several
esteemed institutions in 2023, including UC Berkeley and
CMU, is fine-tuned on LLaMA proposal. With 13 billion
parameters, it adopts a Sparse Transformer architecture,
optimizing for computational and storage efficiency, mak-
ing it apt for on-premises use. Vicuna uniquely balances
efficiency and performance by integrating sparse attention
mechanisms.

B. DATASET
For binary classification tasks, the defense efficacy of ZDDR
was assessed using IMDB [49] movie review dataset and
SST-2 [50] sentiment analysis dataset. AGNews [51] dataset
served multiclass classification objectives. 5000 entries from
each dataset were randomly sampled and adversarial samples
were generated via specific attack algorithms.

C. METRICS
Building on prior research, four metrics were deployed to
gauge the efficacy of defensive measures against adversarial
samples:

Attack Success Rate (ASR): A prevalent metric that quan-
tifies the ratio of successful adversarial samples to original
ones. A higher ASR either signifies a potent attack algorithm
or a less effective defense mechanism.

Area Under Receiver Operating Characteristic Curve
(AUROC): This evaluates a model’s prowess in detecting
adversarial samples without being tethered to any fixed
thresholds.

F1 Score: An amalgamation of precision and recall,
it offers a holistic assessment of detection efficiency concern-
ing adversarial samples.

Accuracy (ACC): Reflects a model’s classification accu-
racy on the dataset, highlighting performance variations
pre/post-attack and on rectified adversarial samples.

D. ATTACKER
Since sentence-level attacks do not affect the fluency of
the sentence, they are outside the scope of our assumption.
Therefore, we conduct experiments using character-level and
word-level attacks as samples. Utilizing OpenAttack [43],
a renowned open-source toolkit for textual adversarial strikes,
attacks were orchestrated using prominent algorithms. These
included:

PWWS [32]: A word-level attack algorithm leveraging
WordNetfor synonym candidates.

TextFooler [18]: This word-level approach, akin to
TextBugger, targets pivotal words in models, swapping them
with synonyms until predictions shift.

HotFlip [30]: An innovative strategy for spawning adver-
sarial samples via character substitutions, also accommodat-
ing insertions and deletions.

TextBugger [17]: A unique word-level attack methodology
apt for both black-box and white-box contexts.

E. BASELINE DEFENSE METHODS
The proposed method was compared with four strong detec-
tion baselines:

RDE [25]: An approach grounded on feature density
estimation to identify perturbations, pivoting from fre-
quency to sentence probability density, utilizing models like
BERT.

UAPAD [24]: This method gleans unique features from
model outputs during the classification of both original and
adversarial samples.

FGWS [39]: Recognizing word substitutions via fre-
quency disparities between original words and substitutes, the
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FIGURE 4. ROC curves for adversarial sample detection from ALBERT-Base-V2 attacks. Detection encompasses four attack algorithms across three
datasets, with RoBERTa-Base as the detection model.

FIGURE 5. ROC curves for adversarial sample detection from ALBERT-Base-V2 attacks. Detection encompasses four attack algorithms across
three datasets, with RoBERTa-Base as the detection mode.

method substitutes infrequent terms with more prevalent syn-
onyms, marking a sample as adversarial if prediction shifts
surpass set limits.

Furthermore, two restorations baselines were also
considered:

TREATED [42]: Presents a universal defense strategy
named TREATED, which leverages multiple reference mod-
els to differentiate predictions between original and adversar-
ial data. Adversarial samples, when identified, are restricted
from entering the classification model to enhance model
robustness.

BERT-Defense [26]: Implements BERT tokenization to
segment perturbed sentences. It employs an adapted Leven-
shtein distance to generate a context-independent probability
distribution.

V. RESULTS
A. MAIN RESULTS
Detection Performance. Table 4 showcases detection out-
comes for DA across three datasets under five attack scenar-
ios. Optimal average metrics are emphasized in bold. Of the
12 dataset-attack pairings, DA excels in 11 regardingAUROC
and all 12 in F1 score, underscoring its formidable detection
prowess against diverse attack algorithms. Notably, consis-
tent high-performance detection is observed for both IMDB
and AGNews datasets, suggesting the method’s insensitivity

to data categories. A minor performance decrement is noted
for SST-2 dataset. This can be attributed to its abbrevi-
ated average sentence length, engendering negligible fluency
variances between adversarial samples produced by attack
mechanisms and their native counterparts. For IMDB dataset,
which boasts an average sentence span of 268, DA ele-
vates detection precision by 3-11% relative to benchmark
methods.

Adversarial Restoring. Table 5 displays the efficacy of
prominent LLMs in restoring adversarial text given certain
prompts. To account for LLM’s inherent variability, each
adversarial sample undergoes multiple restorations, with out-
comes subsequently averaged. Vicuna-13b exhibits the least
effective restoration, possibly due to its limited model size
of 130 billion parameters. Conversely, Claude 2 stands out
in restoration quality, attributed to its capacity to process
and rephrase in expansive contexts up to 100k tokens. This
suggests that the quality of restored text is influenced by the
magnitude of LLM parameters. Thus, restorations rendered
by Claude 2 are prioritized.

Table 6 presents restoration results of detected adver-
sarial samples using LLM. ‘‘Model ACC’’ denotes the
initial classification accuracy of the model on the dataset.
‘‘Attacked Model ACC’’ portrays the classification accu-
racy post-attack. ‘‘Detect Attack Accuracy’’ reveals the
precision of the proposed detection method in identifying

39090 VOLUME 12, 2024



M. Chen et al.: ZDDR: A Zero-Shot Defender for Adversarial Samples Detection and Restoration

adversarial instances. ‘‘Rephrase Text Accuracy’’ measures
the restoration method’s efficacy. Adversarial instances
undergo a restoration process before model classification;
‘‘Restoration Model ACC’’ illustrates classification accuracy
post these combined operations.

Two leading restoration techniques were assessed for
comparison shown in Table 7. ‘‘TREATED’’ a comprehen-
sive defense strategy that utilizes various reference models
to distinguish predictions between genuine and adversar-
ial data. Once identified, adversarial samples are prevented
from entering the classification model. It is worth noting
that ‘‘BERT-Defense’’ is exclusively a restoration technique
and lacks inherent adversarial detection capabilities. For this
study, adversarial content detected by the proposed method
was restored using ‘‘BERT-Defense’’.

B. CROSS-MODEL VALIDATION
DA on ALBERT. The detection efficacy of DA across
various model architectures is examined. For cross-model
validation, ALBERT is employed to gauge the adaptabil-
ity of Detect Attack technique, discern disparities among
diverse models, and ascertain its applicability across diverse
scenarios.

ALBERT-Base-V2 model serves as the benchmark for
Detect Attack detection strategy. Initially, ALBERT-Base-V2
Model is pretrained and subsequently fine-tuned over three
cycles on an NVIDIA 3090, employing a batch size of 16 and
a sequence length of 512. Adam optimizer with a learning rate
of 1e-5 is utilized. Post-finetuning, a classification accuracy
surpassing 92% is achieved. Consistent datasets and AUROC
metric are applied. For TextFooler attack detection on IMDB,
SST-2, and AGNews datasets, AUROC scores are 99.4%,
91.1%, and 94.8% respectively. These scores outstrip several
algorithms outlined in Section V-A, marking a notable pro-
gression. Figure 4’s AUROC curves underscore the consistent
performance over varied Transformer structures, highlight-
ing commendable adaptability. Moreover, with a capped
false positive rate (FPR) at 5%, true positive rate (TPR)
in detecting TextFooler attacks for IMDB, SST-2, and
AGNews datasets are 96.5%, 51.4%, and 73.4% respectively.
This accentuates the capability of this method to discern
adversarial instances effectively, even with a 5% FPR con-
straint. The findings underscore the method’s efficiency and
robustness.

DA in Black-box Scenario. While zero-shot detection of
adversarial samples experiments was executed in a white-
box setting, practical application of detection methods often
encounter challenges in accessing the internal weight infor-
mation of the victim model, necessitating a shift to a
black-box approach. This section delves into the performance
in such black-box scenarios. Cross-validation was per-
formed using RoBERTa-Base and ALBERT-Base-V2 mod-
els, wherein RoBERTa-Base model served to detect attack
text generated by ALBERT-Base-V2model. A comparison of
results from Figure 5 and 4 reveals a significantly diminished
area under ROC curve when deploying ALBERT-Base-V2

model for detection. For IMDB and SST-2 datasets, AUROC
for HotFlip attacks witnessed a drop by 29.1% and 15.1%,
respectively. Meanwhile, for AGNews dataset, AUROC for
TextBugger plunged by 29.6%. To detect adversarial exam-
ples fashioned by TextFooler attacks on IMDB, SST-2,
and AG-News datasets, with a stipulated 5% TPR, FPRs
documented were 16.9%, 22.2%, and 15.7%, respectively.
Such experimental outcomes suggest that DA predomi-
nantly aligns with white-box settings, positioning zero-
shot black-box detection as a promising avenue for future
research.

VI. DISCUSSION
Advancements in NLP technology, especially the rise of
LLM, have made significant inroads in sectors like educa-
tion, news, and arts. However, the arena faces a considerable
threat from text adversarial attacks. Such attacks, where
the input text is subtly altered to mislead victim models,
can lead to the dissemination of false information, threaten
security and privacy, undermine trust, and disrupt auto-
mated systems, thereby challenging societal trust, security,
and reliability. In response, this study delves into zero-shot
defenses against such adversarial threats. A notable obser-
vation was the stark contrast in fluency scores between
original and adversarial text samples. The approach capi-
talizes on the negative log-likelihood to gauge the victim
model’s performance and leverages LLMs to assess sen-
tence grammaticality. A threshold is identified within this
distribution, maximizing AUROC score, to pinpoint adver-
sarial instances. Additionally, a novel universal prompt steers
LLM to restructure adversarial samples, modifying language
nuances, structures, and rhetoric to maintain clarity, gram-
mar, and original intent. Experimental evaluations underscore
the method’s superior efficacy against contemporary defense
strategies.

A. LIMITATION
The defense strategy showcased efficacy against diverse
attack methodologies across multiple datasets, however
inherent constraints persist. One critical limitation of the
zero-shot adversarial sample detection lies in its white-
box premise, which predicates upon accessibility to the
model’s weight parameters. In real-world applications, this
supposition might not consistently be met. As illustrated
in Section V-B, utilizing RoBERTa-Base model to iden-
tify adversarial samples within ALBERT-Base-V2 consider-
ably diminishes the potency of zero-shot detection. Future
endeavors will pivot towards devising techniques to discern
adversarial samples in a model-agnostic black-box milieu.
Additionally, when restoring adversarial samples through
rephrasing, the local deployment of the extensive language
model, Vicuna-13b, faces challenges. Constrained compu-
tational resources at the local level lead to marginally
suboptimal outcomes in comparison to established com-
mercial API platforms, like GPT-3.5 or Claude 2, thereby
inducing resource overheads.
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FIGURE 6. ZZDR uses victim model to calculate FLOPs of IMDB, SST-2,
AGNews data sets. (Billion).

FIGURE 7. ZZDR uses the victim model to calculate the time consumption
of IMDB, SST-2, and AGNews data sets. (Second).

B. RESOURCE CONSUMPTION
ZDDR uses victim model to calculate the negative log
probability of text. Our ultimate goal is to transform the
detection problem into a binary classification task, i.e., deter-
mine whether the text is an attack text. Therefore, different
categories of data sets do not increase GPU resource con-
sumption. As text length increases, the sequence length
processed by the model also increases, which results in the
model requiring more memory storage for intermediate rep-
resentations and gradients. Processing long text may require
more GPU memory to store intermediate activations and
gradients, increasing computational complexity. As shown
in the Figure 6 and 7, when using a 3090 GPU, taking the
IMDB data set as an example, to process one piece of data, the
number of floating point operations required is 15.75 billion,
and the calculation time is 0.26 seconds. For the recov-
ery and LLM detection steps of subsequent experiments,
in order to achieve experimental results, we used the claude2
commercial API interface, which does not consume GPU
resources.

C. POTENTIAL IMPACT
A potential drawback of this approach lies in its potential
misuse by malicious entities. Such actors might exploit the
methodology, manipulating sentence fluency to craft targeted
attacks, which could proliferate misleading or harmful tex-
tual content, leading to security vulnerabilities. In view of
this situation, we will implement a more stringent secu-
rity and ethics review process, use generative detection
technology and rule engines to achieve end-to-end abuse

monitoring, comprehensively assess the risk of malicious use
of the model before deployment, and introduce mechanisms
Enhance the overall robustness of the system against potential
threats.

VII. CONCLUSION AND FUTURE WORK
This study delves deep into adversarial attack algorithms in
NLP, empirically establishing that such attacks frequently
compromise sentence fluency. Stemming from this observa-
tion, the research introduces ZDDR, an innovative zero-shot
unsupervised framework for the detection and restoration
of adversarial samples. Unlike preceding methodologies,
ZDDR operates without prior knowledge, employing neg-
ative log-likelihood to assess model capability and fluency
scoring via LLM to evaluate sentence grammaticality. This
culminates in determining a threshold that maximizing
AUROC for adversarial sample detection. Should an input
text’s fluency score exceed this threshold, it is labeled as
an adversarial sample. Further, the framework capitalizes
on the prompt-driven capabilities of LLM. It harnesses
LLM to reconstruct adversarial samples, altering expression
and linguistic style, while ensuring syntactic consistency
and semantic integrity post-reconstruction. Comprehensive
experimental evaluations affirm the efficacy of ZDDR in
countering adversarial samples.

As discussed in limitation, including the difficulty in
converting detection performance under white-box premise
to black-box scenarios, and the computational resource
constraints of language model deployment, our follow-up
research will focus on adversarial robust technology with-
out parameters and low resources. Specifically, we plan to
explore the effective fusion of large-scale language models
with surrogate models or data to enable cross-model black-
box adversarial example detection. In addition, wewill design
a parameter-free adversarial detection method that relies on
the statistical characteristics of the input text, completely
avoiding dependence on model parameters and structure.
We hope that by combining the expressive capabilities of
mature language models with the efficient implementation of
other alternative technologies, the detection and recovery of
adversarial samples can be transformed into practical appli-
cations, thereby improving the security and credibility of the
model.
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