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ABSTRACT In this paper, we introduce a data-driven approach to wind farm control, offering an alternative
to the FLORIS wind farm simulator. Our method estimates the power of a wind farm and determines the
optimal yaw angle to maximize power generation. Initially, we develop a power estimation neural network
using data from FLORIS for power estimation and validate its accuracy and reliability. Subsequently, this
power estimation neural network is employed to determine the optimal yaw angle for maximum power
production. The efficacy of this yaw decision neural network is verified through various performancemetrics.
We then present dynamic simulations by integrating the yaw decision neural network, constructed through
our data-driven approach, with a dynamic wind farm simulator. We believe this addresses the limitations of
FLORIS, a steady-state simulator. Our results demonstrate the effectiveness of the proposed yaw decision
neural network in dynamic environments, underscoring the potential of a data-driven approach to overcome
the challenges posed by the steady-state wind farm simulator. This study offers innovative solutions for the
efficient control and optimization of wind farm.

INDEX TERMS Wind farm control, data-driven approach, deep neural network, optimal yaw.

I. INTRODUCTION
Wind energy has emerged as a critical renewable energy
source due to its sustainability, abundance, and potential
to decrease greenhouse gas emissions. With the ongoing
momentum in the development and deployment of wind
power technologies, wind farms have been established
worldwide to harness energy efficiently. However, wake
interactions among turbines substantially influence the power
production efficiency of wind farms, resulting in decreased
output, increased mechanical loads, elevated maintenance
costs, and shortened lifetimes. Addressing these issues neces-
sitates the evolution of innovative control and optimization
strategies [1].

To provide a comprehensive understanding of our approach
towards addressing these challenges, Figure 1 offers a
visual representation of the entire research process and
methodology we have proposed.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaowei Zhao.

Within the evolving landscape of wind farm control,
a notable challenge emerges: the long-standing reliance on
model-based optimization methods. While these traditional
approaches, grounded in predefined mathematical models,
have been instrumental, they occasionally exhibit limitations,
especially when faced with the multifarious intricacies
inherent to real-world wind farm dynamics. Our paper
advocates a paradigm shift, emphasizing a model-free, data-
driven approach. Harnessing the richness of real-world data,
this methodology promises solutions marked by enhanced
accuracy, adaptability, and freedom from the constraints
intrinsic to conventional models.

In light of recent strides in wind farm control, research
has progressively underlined the necessity for adept control
strategies. Various studies have ventured into domains from
power curve optimization to wake steering optimization,
emphasizing collaborative strategies and the integration of
diverse renewable energy sources [2], [3], [4], [5], [6].
Our work seeks to further this narrative, pioneering a
pragmatic, innovative, data-driven solution. Although the
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FIGURE 1. Overview of the research framework.
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current emphasis is on simulations, the methodology we
advocate sets the stage for subsequent research centered on
actual wind farm data.

Wind farm simulators, such as the FLORIS model, play
an indispensable role in shaping our understanding of wind
farm aerodynamics, subsequently informing the genesis of
tailored control strategies [7]. Amid myriad control tactics to
boost wind farm power output, the yaw control strategy has
garnered significant attention. It optimizes the yaw angle to
minimize the wake effect of downstream turbines, bolstering
overall power production while reducing energy costs [8],
[9], [10], [11], [12], [13], [14]. Additionally, the application
of reinforcement learning in yaw angle control has carved
out a promising niche in recent years [15], [16], [17], [18],
[19], [20].

Our contributions in this paper are fourfold:

1) We propose and evaluate a data-driven power estima-
tion neural network as a replacement for the FLORIS
model.

2) We introduce a methodology that uses the power
estimation neural network to determine the yaw angle
that maximizes the power output of a wind farm under
various wind conditions.

3) We construct, evaluate, and validate yaw decision
neural networks for optimal yaw angle identification
using data-driven methods.

4) We integrate the yaw decision neural network into
a dynamic wind farm simulator to demonstrate its
capability and efficiency.

While our research accentuates a specific turbine layout
to underscore our data-driven approach’s advantage, its
scope is not circumscribed to this layout. The methodology
we propound forms a foundational scaffold, extendable to
diverse wind farm structures, ensuring adaptability across a
spectrum of wind energy setups.

The remainder of this paper is structured as follows:
Section II provides an in-depth overview of the theoretical
background required to understand the proposed work.
Section III discusses the development and evaluation of
power estimation neural networks using a data-driven
approach as an alternative to FLORIS. Section IV describes
howwe use the power estimation neural network to determine
the optimal yaw angle for maximizing wind farm power and
details the configuration and evaluation of the yaw decision
neural network for various wind conditions. In Section V,
we demonstrate the capability of the proposed approach by
applying the yaw decision neural network to a dynamic
wind farm simulator. The final section summarizes the
paper, discusses its limitations, and presents future research
directions.

II. THEORETICAL BACKGROUND
A. WIND FARM SIMULATOR AND TURBINE MODEL
In this study, we utilize two key tools: the FLORIS wind farm
simulator [7], a product of the National Renewable Energy

Laboratory (NREL), and FLOW Redirection and Induction
Dynamics (FLORIDyn) [21], developed by the Delft System
and Control Center at Delft University of Technology. Our
in-depth analysis of these wind farm simulators is grounded
in the academic research conducted by Kim et al. [22].
The utility of FLORIS becomes evident as we harness it to
construct the data-driven power estimation neural network
proposed in this study. Conversely, FLORIDyn is employed
to provide comparative insights into the data-driven method
under realistically simulated conditions, furthering our inves-
tigation into the efficacy of the proposed approach.

For this study, we utilize the NREL 5MW wind turbine
model. This particular model is held in high regard and
is commonly employed within the domain of wind energy
research, primarily due to its detailed and reliable speci-
fications. The comprehensive specifications for the 5MW
turbine model were sourced from the review of relevant
literature [23].

B. TURBINE COORDINATE SYSTEM AND TERMINOLOGY
Figure 2 provides a visual representation of the wind turbine
coordinate system. This system is vital for measuring the
wind direction φ and the heading of the turbine θ . The
coordinate system is defined with reference to the north
direction. The wind direction and the heading direction of
the turbine are measured clockwise relative to this northern
reference.

FIGURE 2. Coordinate system for wind turbines.

In this coordinate system, the desired yaw offset of the tur-
bine, denoted as γ , is a crucial measure. It indicates the
deviation of the turbine’s heading from the direction of the
incoming wind. The yaw offset is determined relative to
the oncoming wind direction. It is set to positive (+) if the
turbine is oriented counterclockwise from the wind direction,
and negative (−) if it is oriented clockwise. The difference
between the heading direction of the turbine and the desired
yaw offset is epsilon ϵ and follows the following equation 1.
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The yaw angle is controlled by reducing the ϵ values. In the
context of our study, we have taken steps to set the ϵ value to
zero. This decision emphasizes our methodology’s specific
approach to achieve the desired turbine orientation relative to
the incoming wind, ensuring optimal power capture.

ϵ = (φ − γ ) − θ. (1)

A thorough understanding of the turbine coordinate system
and the concept of yaw offset (hereafter referred to as ‘yaw’)
is essential for discussing and implementing the control
strategies and optimization methods highlighted in this study.

C. YAW CONTROL IN WIND FARM
Yaw control is essential for optimizing wind farm perfor-
mance due to its influence on wake interactions among
wind turbines. By adjusting the yaw angle—the orientation
of the turbine rotor relative to the wind direction—the
downstream wake can be effectively managed. This wake,
characterized by increased turbulence and reduced wind
speeds, decreases the power production of downstream
turbines, thereby emphasizing the importance of yaw control.

Adjusting the yaw angle allows the wake to be redirected
away from downstream turbines, reducing interference and
enabling increased power production. For instance, Figure 3
depicts how adjustments in the yaw angle can redirect
wake flow, minimizing interference and enhancing power
generation.

FIGURE 3. Effect of yaw angle control on wake.

Furthermore, yaw control can diminish the mechanical
load on turbines, potentially extending their lifespan, reduc-
ing maintenance costs, and ensuring efficient wind resource
utilization. Therefore, it plays a pivotal role in wind farm
optimization. In this study, we focus on introducing a novel,
data-driven methodology for yaw control.

D. DATA-DRIVEN APPROACHES: TECHNIQUES AND
ADVANTAGES
Data-driven approaches, recognized for their efficacy in
analyzing and learning from vast datasets, facilitate the
creation of accurate models that predict and optimize
performance across diverse conditions. Accordingly, several
researchers have adopted a data-driven approach in wind farm
research [24], [25], [26]. In the context of wind farm control,
these techniques utilize the data-driven methods proposed in
this study to predict wind performance and determine the
optimal yaw angle for generation.

The key component of our data-driven approach is the
use of neural networks, which are complex nonlinear

relationships between variables. Compared to traditional
methods like FLORIS, which rely on physical modeling
and computational fluid dynamics simulations, data-driven
models can handle large datasets and provide faster compu-
tation times. Furthermore, data-driven models can represent
complex interactions more accurately that might not be
entirely captured by physical models, resulting in more
reliable predictions.

In this study, we aim to introduce a data-driven approach
to wind farm control. We are confident that our proposed
approach will provide a rapid, precise, and effective means
of optimizing wind farm performance.

III. A DATA-DRIVEN APPROACH FOR POWER
ESTIMATION
A. EXPERIMENTAL SETUP
In the present section, we detail the experimental setup,
which includes both the turbine layout and the array of
input/output variables used for the neural network’s training
process. The selected turbine layout for our experiment is a
1×3 configuration, maintaining a turbine-to-turbine distance
of 5D. This specific configuration is commonly recognized
as a foundational unit in wind farm research, as it effectively
captures the wake effects produced by the turbines. In this
context, ‘D’ denotes the rotor diameter of the turbine. For
our experiment, the rotor diameter is set at 126m, adhering
to the specifications of the NREL 5MW turbine. A graphical
depiction of the experimental arrangement can be found in
Figure 4.

FIGURE 4. Turbine layout used in experiments.

The input/output variables used in neural network learning
for the wind farm power estimation were collected within
Region 2, where power generation is proportional to the cube
of wind speed based on the power curve. The details of the
data collection and experimentation are provided in Table 1.
Wind speed measurements were conducted within the range
of the NREL 5MW turbine’s cut-in wind speed of 3 m/s and
its rated wind speed of 11.4 m/s. The wind direction was set
at 0 degrees north latitude, with angles defined in a clockwise
fashion. In this study, the wind direction was limited to a
range between 180 and 360 degrees, which was considered
appropriate due to the symmetrical nature of the turbine.
Furthermore, the yaw angle of the turbine was limited to a
specific range to consider the mechanical load on the system.
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TABLE 1. Range of input/output variables for power estimation neural
network training.

While this study focused on these specific conditions, future
investigations have the potential to expand the scope.

B. DATA ACQUISITION AND PREPROCESSING
This section presents the development of the power esti-
mation neural network (PENN) designed to estimate the
power of a wind farm based on wind speed, wind direction,
and turbine’s yaw angle. The training data for PENN is
primarily obtained from the FLORIS simulator, consisting
of 30,000 input/output pairs. The input variables encompass
wind speed, wind direction, and yaw angle, while the output
variable corresponds to the power of the wind farm. Each
input variable is randomly selected within a predefined range
specified in Table 1, and the corresponding power from
FLORIS is recorded. This collected training data serves as the
input and output variables for training the power estimation
neural network.

The quality and uniformity of training data are pivotal
for the performance of deep learning models. Rigorous
data collection was undertaken to minimize biases and
comprehensively capture factors affecting the power of the
wind farm. The uniform data distribution ensures effective
pattern recognition by the model, enhancing its accuracy on
new data. Figure 5 illustrates the uniform distribution of key
input variables such as the wind speed, wind direction, and
yaw angle.

Using input variables with diverse units and ranges
directly can impede neural network training. To remedy this,
we utilized z-score normalization, which shifts the data’s
mean to zero and standardizes the standard deviation to one.
This approach not only uniformly scales the data but also
facilitates comparisons between data points and diminishes
the effects of outliers. The transformation follows the given
formula:

Z =
X − µ

σ
. (2)

where X represents a data point, µ denotes the mean
of all data points, and σ signifies the standard deviation
of all data points. The normalized values of the input
variables can be verified through the accompanying Figure 6,
which demonstrates successful normalization across all
variables. This clearly demonstrates that every variable, post-
normalization, is bounded within this range.

Finally, to assess the PENN’s generalization performance,
an additional test dataset of 10,000 samples, distinct from the
training data, was collected. This dataset was not used during
the PENN’s training phase but was employed to evaluate the
model’s performance after the training process concluded.

TABLE 2. Hyperparameters used in PENN.

C. MODEL ARCHITECTURE AND TRAINING
The PENN is meticulously designed to capture the inherent
complexity of estimating power output based on wind speed,
wind direction, and the turbine’s yaw. As depicted in Figure 7,
the neural network model consists of an input layer, five
hidden layers, and an output layer. The input layer takes
normalized data, which includes wind speed, wind direction,
and the yaw angle of each turbine. In contrast, the output
layer predicts the power generated by the wind farm. The
hidden layers are fully connected, with 64, 256, 512, 256, and
32 neurons, respectively. Furthermore, the hyperbolic tangent
function (tanh) was chosen as the activation function due to
its proficiency in learning complex patterns and nonlinear
relationships, while also addressing the vanishing gradient
problem.

Additionally, the hyperparameters such as learning rate,
batch size, and the number of epochs were fine-tuned
to optimize the model’s performance. These values were
established based on a series of preliminary experiments and
cross-validation, all aimed at ensuring the robustness and
accuracy of the neural network models. The hyperparameters
utilized in the PENN are detailed in the Table 2.
The training process commences with random weight

initialization. Next, the input data is input into the neural
network to compute the output, and the error between the
network’s output and the output of FLORIS is calculated.
The weights are then adjusted through backpropagation of
this error through the neural network. This propagation
and backpropagation process is repeated for several epochs
until the model’s prediction error is minimized. The mean
squared error (MSE) was used as the loss function. The
MSE loss function calculates the mean squared difference
between the predicted output and the actual output, providing
a comprehensive measure of prediction error. The formula is
follows:

Loss =
1
2

N∑
i=1

(PFLORIS − PPENN )2. (3)

where PFLORIS represents the power from FLORIS and
PPENN denotes the power from PENN. Themodel was trained
using the Adam optimizer, an optimization algorithm that
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FIGURE 5. Distribution of training dataset.

FIGURE 6. The normalized values of the input variables in the training
data.

FIGURE 7. Power estimation neural network architecture.

adjusts the learning rate of the model’s weights to enhance
the speed and performance of the training process. The
hyperparameters for the Adam optimizer, such as β1 ≈

0.9, β2 ≈ 0.999, ϵ ≈ 10−8, and η = 0.0001, were used

during the training process [27]. Furthermore, the PENN
model was trained using 10-fold cross-validation to ensure
balanced training, maintain generalization capabilities, and
achieve reliable neural network results.

D. MODEL EVALUATION AND VALIDATION
1) EVALUATION METRICS
The evaluation and test phase of the model is considered the
most critical phase of this study as it aims to assess the trained
PENN’s accuracy in predicting the wind farm’s power output.
In this study, various performance metrics were employed to
evaluate the model’s performance. The metrics used in the
model performance evaluation are as follows.

Mean Absolute Error (MAE):

MAE =
1
N

N∑
i=1

|PFLORIS − PPENN |. (4)

Mean Squared Error (MSE):

MSE =
1
N

N∑
i=1

(PFLORIS − PPENN )2. (5)

Root Mean Squared Error (RMSE):

RMSE =

√√√√ N∑
i=1

(PFLORIS − PPENN )2

N
. (6)

Mean Absolute Percentage Error (MAPE):

MAPE =
1
N

N∑
i=1

|PFLORIS − PPENN |

PFLORIS
. (7)
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TABLE 3. Performance for testset.

Coefficient of Determination (R2):

R2 = 1 −

∑
i=1(PFLORIS − PPENN )2∑
i=1(PFLORIS − P̄FLORIS )2

. (8)

where N denotes the number of samples in the test
dataset, PPENN represents the power predicted by the PENN,
PFLORIS denotes the power derived by FLORIS, and P̄FLORIS
represents the mean power derived by FLORIS.

In addition, the prediction results of FLORIS and PENN
were visually validated using the coefficient of determination,
which evaluates the model’s performance under various
conditions. These assessments affirm the model’s generaliza-
tion and robustness. We have demonstrated that our neural
network models ensure consistent reliability across different
scenarios.

2) SIMULATION RESULTS AND COMPARISON WITH FLORIS
The test dataset used for the simulation was sourced from
data collected in advance during the time of gathering training
data. The input wind conditions, namely wind speed and
direction for the test dataset, were generated within the range
specified in Table 1. This dataset represents a new set of data,
distinct from the training and validation datasets, ensuring an
unbiased evaluation of the PENN model’s performance.

The simulation results indicated that the PENN model
outputs power predictions with remarkable accuracy. A com-
parative analysis with FLORIS revealed a high degree of
correlation in the predictions predicted by the PENN model.
Key performance indicators for the PENN model, including
MAE, MSE, RMSE, MAPE, and R2, are detailed in Table 3.
This table demonstrates that the PENN model performs
nearly as well as FLORIS.

The PENN model accurately predicts wind farm power
output, as evidenced by its R-squared values nearing 1,
suggesting a strong correlation with the power data from
FLORIS. Figure 8 visually confirms this. When compared
to the established FLORIS model, the PENN model’s
performance is on par. Thus, these simulation results validate
the data-driven approach to power estimation at wind farm.

The results of this study carry profound implications.
The PENN model’s ability to precisely forecast power
output suggests its substantial promise for practical use
in wind farms. This opens avenues for enhancing the
reliability and efficiency of these power facilities, facilitating
improved planning and upkeep, and ensuring optimal power
generation. Fundamentally, this research underscores the
value of integrating data-driven techniques in the realm of
renewable energy, laying a foundation for future progress in
the domain.

FIGURE 8. Comparison of FLORIS and PENN through coefficient of
determination.

IV. A DATA-DRIVEN APPROACH TO DETERMINING
OPTIMAL YAW
A. OPTIMAL YAW DETERMINING USING THE POWER
ESTIMATION NEURAL NETWORK
1) METHODOLOGY FOR YAW OPTIMIZATION
In this section, we introduce a methodology for determining
the optimal yaw angle using a PENN, as depicted in
Figure 9. The term ‘optimal yaw’ denotes the yaw angle
of a turbine that maximizes the wind farm’s power output.
This method incorporates a novel neural network, termed the
‘policy neural network’. Its primary function is to compute
the optimal yaw angle through backpropagation learning,
using input pairs of wind speed and wind direction. This
optimization is continuously updated to maximize the power
of the wind farm, leveraging the PENN pre-trained in the
previous section.

In this methodology, the input variables, namely wind
speed and wind direction, are confined to the range specified
in Table 1. The yaw angle, which serves as the output of the
policy neural network and the input to the PENN, exhibits
a discontinuity at a wind direction of 270 degrees. Such
discontinuities can complicate data analysis and modeling,
and they may also pose challenges in controlling the actual
turbine. To address this, the yaw angle of the turbine is
restricted to a positive range, specifically between 0 and
25 degrees. This approach effectively mitigates the yaw
angle’s discontinuities and is anticipated to be crucial for the
efficient operation of actual wind turbines.

The policy neural network is designed with wind speed
and wind direction as input variables and yaw angle as output
variables. This network has a simple architecture, composed
of three fully connected layers with 128, 256, and 64 nodes
respectively. The output obtained from the policy neural
network is then inputted into the PENN,whichwas developed
in a previous section of this dissertation. Consequently, the
power produced by the wind farm informs the learning
process of the policy neural network, using the prediction
from the PENN as a loss function. The optimization of this
network is carried out using Adam optimization.
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FIGURE 9. Conceptual diagram of determining optimal yaw using a PENN model.

TABLE 4. Test wind conditions for experiments.

2) ANALYSIS OF THE OPTIMIZATION RESULTS
This section details the analysis of the optimization results
and compares the performance of the proposed data-driven
approach to the serial-refine (SR) method, an optimization
technique provided by FLORIS. The optimization process
was performed under nine different wind conditions, includ-
ing both wind speed and wind direction changes as indicated.
The nine cases were selected as the wind direction conditions
for the best observation of the wake effect in the 1×3 turbine
layout. Additionally, these test conditions are summarized in
Table 4.

The optimal yaw angles obtained using the SR method in
FLORIS, as well as the yaw angles derived from our proposed
policy neural network under these nine distinct wind input
conditions, are depicted in Figure 10. The figure clearly
illustrates that the results from the proposed policy neural
network closely align with those produced by the SR method
in FLORIS. This underscores the efficacy of the data-driven
approach in determining optimal yaw angles, achieving
performance comparable to the established FLORIS method.

Moreover, the policy neural network is compared to two
other control methods: the greedy control method and the SR
method of FLORIS, as illustrated in a power output graph.

This graph depicts the power generated by the wind farm,
as calculated using the PENNnetwork discussed in a previous
section. Figure 11 shows the power comparison among the
three yaw control methods. It’s clear that both the policy
neural network and the SR method of FLORIS consistently
outperform the greedy control method in power generation.
Additionally, the policy neural network and the SR method
display similar power output patterns, underscoring their
effectiveness in maximizing power production.

Furthermore, we validated the performance of two other
strategies, namely the power growth rate of the SR method
and the policy neural network (Policy NN), compared with
the greedy control approach. The power growth rate was
computed using the following formula:

PGRSR =
PSR − Pgreedy

Pgreedy
∗ 100. (9)

PGRPolicyNN =
PPolicyNN − Pgreedy

Pgreedy
∗ 100. (10)

where PGRSR means the power growth rate of the SR method
as compared to greedy, and PGRPolicyNN represents the power
growth rate of the policy neural network as compared to
greedy. The simulation results derived from the formula are
presented in Table 5.

As shown in Table 5, these findings underscore the near-
identical performance of the SR method and the data-driven
policy neural network method, emphasizing the potential
of data-driven approaches. The results also indicate that
yaw control can enhance wind farm power generation. The
efficiency of the data-driven method, combined with results
comparable to the FLORIS’ SRmethod, suggests its viability
as an alternative for specific turbine layouts.

In summary, the data-driven method emerges as a promis-
ing approach for determining optimal yaw angles in wind
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FIGURE 10. Comparison of yaw angle between SR method and policy neural network model.

FIGURE 11. Power comparison for the three yaw control methods.

farms, delivering results consistent with the FLORIS’ SR
method and showing superior computational efficiency. The

subsequent chapter will delve into and validate a yaw decision
neural network founded on this approach.
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TABLE 5. Power growth rate for serial-refine and policy neural network.

B. DEVELOPMENT OF THE NEURAL NETWORK MODEL TO
DETERMINE OPTIMAL YAW
1) DATA ACQUISITION AND PREPROCESSING
The development of our yaw decision neural network
(YDNN) model requires meticulous data acquisition and
preprocessing. Our training set is composed of 30,000 input-
output pairs, with wind speed and direction as inputs, and the
turbine’s yaw angle as the output. Data is randomly selected
based on parameters from Table 1, and the optimal yaw angle
is ascertained using the policy neural network algorithm.
Preprocessing, especially normalization, is crucial to ensure
all input features are standardized. We utilize z-score
normalization for both wind speed and direction values.
This methodical approach to data management lays a solid
foundation for our YDNN, facilitating precise predictions of
optimal yaw angles across varied wind conditions.

2) MODEL ARCHITECTURE AND TRAINING
To achieve optimal yaw control for wind turbines, we utilize
neural network models, particularly those based on the
multilayer perceptron (MLP) architecture. This architecture
is renowned for its adaptability and its ability to capture
intricate nonlinear relationships within datasets. The neural
network’s design commences with an input layer comprised
of two nodes. These nodes have been strategically crafted
to process normalized data points representing wind speed
and wind direction. Both factors significantly influence the
yaw angle, which, in turn, determines the power generation
efficiency of the turbine. The architecture also incorporates
five fully connected sequential hidden layers. The number of
neurons in these layers, specifically 64, 256, 512, 256, and
32. This ensures an optimal balance between computational
efficiency and the model’s learning capability. These layers
are instrumental in transforming the raw input data by
extracting critical features and forwarding them to subsequent
layers. Each neuron within these hidden layers employs the
hyperbolic tangent (tanh) as its activation function. The tanh
function adeptly addresses a prevalent issue in deep neural
networks: the vanishing gradient problem, thus guaranteeing
a more seamless and efficacious training process. The
architecture concludes with an output layer with three nodes.
Each of these nodes is designed to predict the optimal yaw
angle for a turbine. The predictions from this layer are
subsequently compared with actual yaw angles. Throughout

the training phase, the model fine-tunes its weights utilizing
the mean squared error (MSE) loss function to enhance the
accuracy of its yaw angle predictions.

This model is termed the yaw decision neural net-
work (YDNN) given this methodological approach and the
architecture. Its design and functionalities underscore our
commitment to optimizing yaw control in wind turbines,
thereby promoting superior efficiency and sustainability in
wind power generation.

Loss =
1
2

N∑
i=1

(γSR − γYDNN )2. (11)

where γSR denotes the power of the wind farm for the yaw
obtained from the SR technique of FLORIS, and γYDNN
denotes the power of the wind farm for the yaw obtained from
the yaw decision neural network.

For weight updates, we use the Adam optimization
algorithm in conjunction with backpropagation. The Adam
optimizer is renowned for its efficiency because it dynam-
ically adjusts the learning rate during training, taking into
account the first and second moments of the gradients.
This approach ensures optimal weight adjustments. Training
persists either until the loss function attains its minimum
value or after a specified number of epochs. The model’s
generalization capability is then tested on a validation
dataset. The chosen architecture, which includes a fully
connected MLP, specific activation functions, and the MSE
loss function, allows the model to predict optimal yaw angles
across different wind conditions.

3) MODEL EVALUATION AND VALIDATION
Following the completion of the YDNN model’s training
phase, rigorous evaluation and validation become crucial.
This step ensures that our model, while theoretically robust,
is also practically dependable when addressing real-world
challenges. By rigorously evaluating and validating the
trained model, we can discern its ability to generalize
effectively, especially when presented with novel data.

For an exhaustive evaluation, we tested the model against
an independent dataset comprising 10,000 distinct input-
output pairs. This dataset, distinct from the training set,
offers a thorough and unbiased measure of the model’s
performance. To provide a detailed quantification of the
model’s performance, we deployed a suite of evaluation
metrics: MAE, MSE, RMSE, and R-squared. Each metric
offers unique insights into the model’s effectiveness. The
results of these evaluations are systematically presented in
Table 6, which breaks down the model’s performance in
predicting yaw angles for individual turbines—represented as
γT1, γT2, γT3—and for the entire dataset, represented as γall .
A review of Table 6 reveals the model’s stellar perfor-

mance. The near-zero values of MAE, MSE, and RMSE
signify the model’s adeptness at making accurate yaw angle
predictions that align closely with actual values. A standout
metric is the R-squared value of 0.96, suggesting that the
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TABLE 6. Performance for testset (units: deg).

model can account for an impressive 96% of the variance
in the dependent variable. Collectively, these metrics bolster
the model’s robustness, precision, and reliability, instilling
confidence in its applicability across real-world scenarios.

V. APPLICATION OF YAW DECISION NEURAL NETWORK
MODEL TO DYNAMIC ENVIRONMENT
A. ACTUATOR MODEL
To regulate the yaw angle of wind turbines, a first-order
actuator model is employed. This actuator model is a linear
time-invariant (LTI) input/output system, characterized by
a first-order differential equation. The transient response
characteristics of the actuator model depend solely on the
time constant, which determines the rate at which the
system responds to changes in the nacelle of the turbine
instigated by the commanded yaw angle. The actuator model
is mathematically represented by the following first-order
differential equation:

θ = φ − γ. (12)

τ θ̇ + θ = θcmd . (13)

where τ represents the time constant, γ denotes the yaw
offset angle derived from the neural network model, φ is
wind direction, θ is actual turbine’s heading angle and θcmd
represents the commanded turbine’s heading angle.

In this study, we integrate an actuator model into the yaw
decision neural network to achieve a dynamic yaw control
response. Given that the turbine’s heading angle θ is restricted
to 0.3 degrees per second in our study, τ is set to 90.

B. INTEGRATING CONTROLLER INTO DYNAMIC
ENVIRONMENTS
We used the FLORIDyn wind farm simulator, known for
its ability to simulate dynamic wind conditions, to evaluate
our yaw decision neural network (YDNN) model. Given
that the YDNN was trained under steady-state conditions,
we integrated an actuator model to facilitate dynamic
simulations, mirroring real-world wind fluctuations and
turbine constraints. As depicted in Figure 12, the YDNN
continuously gathers wind and turbine data from FLORIDyn,
computes the optimal yaw angles γ , and relays them to the
actuatormodel. Thismodel subsequentlymodifies the turbine
heading angles θ to emulate real-world limitations. These
adjusted angles are reintegrated into FLORIDyn, influencing
both turbine power output and conditions for downstream
turbines. This comprehensive integration allows for a robust
assessment of the YDNN in fluctuating wind environments,
highlighting its real-world application potential.

FIGURE 12. YDNN models working in dynamic environments.

C. SIMULATION RESULTS AND ANALYSIS
This study conducted a series of simulations to evaluate the
effectiveness of the proposed data-driven yaw determination
neural network model, specifically in a 1 × 3 turbine layout.
The wind conditions utilized in the simulations were based
on 3,000 seconds of wind field-measured data, collected at
1-second intervals. The wind speed included in the model
ranged between the cut-in wind speed and the rated wind
speed. The wind direction was simulated within the range
where the wake effect could be most effectively observed.
The wind conditions used to evaluate the model performance
are shown in the Figure 13. By simulating these time-
varyingwind conditions, we evaluated the performance of our
proposed yaw decision neural network model.

FIGURE 13. Wind conditions used in dynamic simulations.

In each simulation scenario, the output and yaw angle
of each turbine can be visualized using Figures 14 and 15.
Figure 14 depicts the accumulated power of the wind farm
using three different control methods over a span of 3,000
seconds. Both the SR-based LUT and YDNN demonstrate
nearly identical trends, and outperforming the greedy control.
Figure 15 shows the yaw angle of each turbine under the three
control techniques. As indicated by the figure, SR-LUT and
YDNN display similar patterns.

The simulation results reveal that the YDNN model
effectively increases the wind farm’s output by adjusting the
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FIGURE 14. Comparison of wind farm power results for dynamic
simulation.

FIGURE 15. Comparison of yaw angle for dynamic simulation.

yaw angle to dynamic wind conditions. This aligns with our
predictions, confirming the model’s ability to optimize power
production. In essence, our proposed YDNN model has
proven effective, showing potential to significantly enhance
wind farm power output. Future work should focus on
refining the model and exploring its practical applications in
various wind farm scenarios.

Additionally, the proposed YDNN model was compared
to the greedy control and SR-based LUT control methods in
terms of cumulative power and power growth rate. The power
growth rate is depicted as the cumulative power growth rate
for greedy control, as illustrated in the following equations:

PGRSR−LUT (%) =
PSR−LUT − PGreedy

PGreedy
∗ 100. (14)

PGRYDNN (%) =
PYDNN − PGreedy

PGreedy
∗ 100. (15)

Table 7 presents the cumulative power growth rates for
SR-based LUT control and YDNN. It reveals that both
methods produce about 2% more power than greedy control.
Notably, the difference in cumulative power between the

TABLE 7. Comparison of three control methods.

SR-based LUT control and YDNN is a mere 0.014GW,
underscoring their nearly identical ability. This observation
further substantiates the equivalent performance of the two
methods in power generation optimization.

Furthermore, the cumulative power growth rates of SR-
based LUT control and YDNN are strikingly similar,
suggesting their equivalent performance in optimizing power
generation.

These findings demonstrate the effectiveness of the
proposed YDNN model in wind farm control, outperforming
traditional greedy control methods. Furthermore, the simi-
larity in performance between SR-based LUT control and
YDNN suggests the potential of our data-driven approach as
an alternative to existing control methods.

VI. CONCLUSION AND FUTURE WORK
This paper presents a new data-driven approach for wind
farm control as an alternative to the traditional FLORIS
simulator. The proposed approach involves the utilization
of two neural networks: one is the power estimation neural
network based on wind conditions and turbine yaw angle,
and another neural network to determine the optimal yaw
angle. The PENN serves as a loss function in the optimization
process, with the policy neural network deriving the optimal
yaw. Using this methodology, we developed a YDNN model
that determines the optimal yaw angle, integrating seamlessly
with the actuator model in dynamic wind conditions. The
uniqueness of this data-driven approach lies in its reliance
solely on data. The simulation results were found to be
nearly identical to those obtained using the FLORIS simu-
lator. This suggests that the data-driven approach proposed
in this paper can replace FLORIS for specific turbine
layout.

Future research will emphasize validating this method with
real-world data, encompassing larger wind farms and extreme
weather conditions, to ensure its practical applicability. Thus,
this study underscores the potential and efficacy of a data-
driven approach to wind farm control, offering innovative
solutions for efficient control and optimization by accurately
estimating power output and optimizing yaw.

REFERENCES
[1] H. Dong, J. Xie, and X. Zhao, ‘‘Wind farm control technologies: From

classical control to reinforcement learning,’’ Prog. Energy, vol. 4, no. 3,
Jun. 2022, Art. no. 032006.

[2] S. Tamaro and C. L. Bottasso, ‘‘A new wind farm active power control
strategy to boost tracking margins in high-demand scenarios,’’ in Proc.
Amer. Control Conf. (ACC), May 2023, pp. 192–197.

[3] R. Jahantigh, S. M. Esmailifar, and S. A. Sina, ‘‘Wind farm control and
power curve optimization using induction-based wake model,’’ Meas.
Control, vol. 56, nos. 9–10, pp. 1751–1763, Jun. 2023.

13338 VOLUME 12, 2024



M. Kim, S. Park: Data-Driven Approach for Wind Farm Control: Toward an Alternative to FLORIS

[4] B. Foloppe, L. Dewitte, and W. Munters, ‘‘Exploring cooperation
between wind farms: A wake steering optimization study of the Belgian
offshore wind farm cluster,’’ J. Phys., Conf. Ser., vol. 2505, Jun. 2023,
Art. no. 012055.

[5] N. Kumar, M. G. Mishra, and I. Luthra, ‘‘Modelling and simulation of
hybrid renewable energy system using real-time simulator,’’ in Artificial
Intelligence and Machine Learning in Satellite Data Processing and
Services, vol. 970. Springer, Jan. 2023, pp. 79–87. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-981-19-7698-8_9

[6] B. Desalegn, D. Gebeyehu, B. Tamrat, and T. Tadiwose, ‘‘Wind energy-
harvesting technologies and recent research progresses in wind farm con-
trol models,’’ Frontiers Energy Res., vol. 11, Feb. 2023, Art. no. 1124203.

[7] P. Fleming, J. King, C. J. Bay, E. Simley, R. Mudafort, N. Hamilton,
A. Farrell, and L. Martinez-Tossas, ‘‘Overview of FLORIS updates,’’
J. Phys., Conf. Ser., vol. 1618, no. 2, Sep. 2020, Art. no. 022028.

[8] B. M. Doekemeijer, D. van der Hoek, and J.-W. van Wingerden, ‘‘Closed-
loop model-based wind farm control using FLORIS under time-varying
inflow conditions,’’ Renew. Energy, vol. 156, pp. 719–730, Aug. 2020.

[9] F. González-Longatt, P. Wall, and V. Terzija, ‘‘Wake effect in wind farm
performance: Steady-state and dynamic behavior,’’Renew. Energy, vol. 39,
no. 1, pp. 329–338, Mar. 2012.

[10] S. K. Kanev, F. J. Savenije, and W. P. Engels, ‘‘Active wake control: An
approach to optimize the lifetime operation of wind farms,’’Wind Energy,
vol. 21, no. 7, pp. 488–501, Feb. 2018.

[11] C. L. Archer and A. Vasel-Be-Hagh, ‘‘Wake steering via yaw control
in multi-turbine wind farms: Recommendations based on large-eddy
simulation,’’ Sustain. Energy Technol. Assessments, vol. 33, pp. 34–43,
Jun. 2019.

[12] E. Simley, P. Fleming, J. King, and M. Sinner, ‘‘Wake steering wind farm
control with preview wind direction information,’’ in Proc. Amer. Control
Conf. (ACC), May 2021, pp. 1783–1789.

[13] G.-W. Qian and T. Ishihara, ‘‘Wind farm power maximization through
wake steering with a newmultiple wake model for prediction of turbulence
intensity,’’ Energy, vol. 220, Apr. 2021, Art. no. 119680.

[14] M. F. Howland, S. K. Lele, and J. O. Dabiri, ‘‘Wind farm power
optimization through wake steering,’’ Proc. Nat. Acad. Sci. USA, vol. 116,
no. 29, pp. 14495–14500, Jul. 2019.

[15] Z. Xu, H. Geng, B. Chu, M. Qian, and N. Tan, ‘‘Model-free
optimization scheme for efficiency improvement of wind farm using
decentralized reinforcement learning,’’ IFAC-PapersOnLine, vol. 53, no. 2,
pp. 12103–12108, 2020.

[16] H. Dong and X. Zhao, ‘‘Composite experience replay-based deep
reinforcement learning with application in wind farm control,’’ IEEE
Trans. Control Syst. Technol., vol. 30, no. 3, pp. 1281–1295, May 2022.

[17] H. Zhao, J. Zhao, J. Qiu, G. Liang, and Z. Y. Dong, ‘‘Cooperative wind
farm control with deep reinforcement learning and knowledge-assisted
learning,’’ IEEE Trans. Ind. Informat., vol. 16, no. 11, pp. 6912–6921,
Nov. 2020.

[18] S. Vijayshankar, P. Stanfel, J. King, E. Spyrou, and K. Johnson, ‘‘Deep
reinforcement learning for automatic generation control of wind farms,’’
in Proc. Amer. Control Conf. (ACC), May 2021, pp. 1796–1802.

[19] P. Stanfel, K. Johnson, C. J. Bay, and J. King, ‘‘A distributed reinforcement
learning yaw control approach for wind farm energy capture maximiza-
tion,’’ in Proc. Amer. Control Conf. (ACC), Jul. 2020, pp. 4065–4070.

[20] J. Xie, H. Dong, X. Zhao, and A. Karcanias, ‘‘Wind farm power generation
control via double-network-based deep reinforcement learning,’’ IEEE
Trans. Ind. Informat., vol. 18, no. 4, pp. 2321–2330, Apr. 2022.

[21] M. Becker, D. Allaerts, and J. W. van Wingerden, ‘‘FLORIDyn—A
dynamic and flexible framework for real-time wind farm control,’’ J. Phys.,
Conf. Ser., vol. 2265, May 2022, Art. no. 032103.

[22] M. Kim, H. Lim, and S. Park, ‘‘Comparative analysis of wind farm
simulators for wind farm control,’’ Energies, vol. 16, no. 9, p. 3676,
Apr. 2023, doi: 10.3390/en16093676.

[23] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, ‘‘Definition of a 5-
MW reference wind turbine for offshore system development,’’ National
Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/TP-500-38060,
Feb. 2009.

[24] N. Zehtabiyan-Rezaie, A. Iosifidis, and M. Abkar, ‘‘Data-driven fluid
mechanics of wind farms: A review,’’ J. Renew. Sustain. Energy, vol. 14,
no. 3, May 2022, Art. no. 032703.

[25] C. Adcock and R. N. King, ‘‘Data-driven wind farm optimization
incorporating effects of turbulence intensity,’’ inProc. Annu. Amer. Control
Conf. (ACC), Jun. 2018, pp. 695–700.

[26] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural
Netw., vol. 61, pp. 85–117, Jan. 2015.

[27] D. P. Kingma and J. L. Ba, ‘‘Adam: Amethod for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent., San Diego, CA, USA, 2015,
p. 2. [Online]. Available: https://arxiv.org/abs/1412.6980

MINJEONG KIM received the B.S., M.S., and
Ph.D. degrees in aerospace engineering from
Sejong University, Seoul, South Korea, in 2016,
2018, and 2023, respectively. She is currently a
Postdoctoral Researcher with the Flight Dynamics
and Control Laboratory, Sejong University. Her
primary research interests include the modeling
and control of dynamic systems, data analytics,
and machine learning.

SUNGSU PARK received the B.S. and M.S.
degrees from Seoul National University, and the
Ph.D. degree from UC Berkeley. He is cur-
rently a Professor in aerospace engineering with
SejongUniversity, Seoul, South Korea. His current
research interests include machine learning and
optimization applications in guidance, navigation,
and control system design.

VOLUME 12, 2024 13339

http://dx.doi.org/10.3390/en16093676

