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ABSTRACT This paper studies the advanced methodologies of differential cryptanalysis with a particular
emphasis on higher-order differentials and higher-order differential-linear cryptanalysis, along with their
application to the ChaCha stream cipher. The study focuses on the impact of higher-order differential
cryptanalysis on different rounds of the ChaCha stream cipher and analyzes how the cipher resists higher-
order differential cryptanalysis. Additionally, we apply higher-order differential-linear cryptanalysis to target
the reduced rounds of the ChaCha stream cipher, achieving reduced time complexity compared with existing
studies. Furthermore, we introduce the first-ever higher-order differential-linear attack on ChaCha 6 and
ChaCha 7 with 239.07 and 2135.07 time complexity, respectively. We substantially enhanced the attack
complexity by a margin of 211.93 on ChaCha 6 and 231.82 on ChaCha 7. Moreover, for the first time, we report
significantly larger higher-order differential biases of ChaCha, which were previously unknown for internal
rounds beyond 3.5 rounds. Furthermore, this research reveals new linear approximations of certain bits from
the 4th to the 6th and 7th rounds, thereby reducing the complexity of the distinguisher attack on the 5.5th,
6th, and 7th rounds of ChaCha.

INDEX TERMS Higher-order differential cryptanalysis, differential-linear cryptanalysis, symmetric
cryptography, ChaCha, stream cipher.

I. INTRODUCTION
Given today’s modern age of computing, symmetric ciphers
are playing a crucial role in the security of digital commu-
nications, transactions, data exchange, and more. It helps us
encrypt data at rest and data in transit. In symmetric cryptog-
raphy, many algorithms are used as stream and block ciphers.
Among stream ciphers, Salsa20 [1] and ChaCha [2] are
particularly critical ciphers that have been deployed in a wide
range of hardware and software products.1,2 Substitution-
permutation networks (often referred to as SPNs) and
Addition, Rotation, and XoR (ARX) operations are applied
to design the stream and block ciphers. ARX involves three
basic operations: modular addition, constant distance left and
right rotations, and bitwise exclusive OR. The security of

1https://ianix.com/pub/chacha-deployment.html
2https://ianix.com/pub/salsa20-deployment.html
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ARX-based ciphers mainly depends on modular addition,
whereas rotation helps ciphers increase the diffusion. ARX
ciphers have several exciting advantages, such as fast
performance, simple algorithms, and resistance to many
attacks, including algebraic and timing attacks. Although
ARX-based ciphers with fewer rounds are susceptible to
differential and linear attacks, the differential bias and linear
correlation significantly decrease as the number of rounds
increases. In April 2005, Daniel J. Bernstein introduced the
Salsa20 [1] stream cipher, which was followed by ChaCha [2]
in January 2008. These ciphers were specifically designed
to offer a high level of security with 256-bit protection
against key-recovery attacks. In addition, both ciphers have
a variant of 128 key bits. Salsa20, particularly its 20-round
version was submitted by its designer to the ECRYPT
Stream Cipher Project [4] also known as eSTREAM to
position it as a candidate for stream ciphers suitable
for software applications requiring high throughput and
hardware applications constrained by resource limitations.
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The eSTREAM portfolio was finalized in September
2008 and Salsa20/12 a 12-round version of Salsa20 was
designated as one of the finalists for the eSTREAM software
portfolio. ChaCha also has a 12-round variant. However,
JP-Aumasson [3] proposed reducing ChaCha’s rounds from
the original 20 to 8 asserting that this modification does not
compromise its security. This reduction would result in a
significant speed increase of approximately 2.5 times.

A. MOTIVATION
ChaCha stream cipher has demonstrated resilience against
first-order differential cryptanalysis. However, it remains
untested against variations of differential cryptanalysis tech-
niques, specifically higher-order differential cryptanalysis.
This can potentially render ChaCha susceptible to the
variations of differential cryptanalysis. For instance, the
COCONUT98 [8] block cipher was initially invulnerable
to first-order differential cryptanalysis, yet succumbed to a
variant known as the Boomerang attack proposed by David
Wagner [9]. Acknowledging this precedent, we aim to con-
duct a rigorous higher-order differential attack on ChaCha.
This investigation aims to assess ChaCha’s robustness against
the variations of differential cryptanalysis, thus contributing
to a comprehensive understanding of its security strengths
and potential vulnerabilities. We have extensively explained
that recent studies have not explored the resilience of ChaCha
against higher-order differential and higher-order differential
linear cryptanalysis. Consequently, the study field lacks a
clear understanding of ChaCha security against higher-order
differential and higher-order differential linear attacks. This
paper aims to bridge this gap by conducting an in-depth
examination and application of higher-order differential and
higher-order differential linear cryptanalysis on ChaCha
stream ciphers. The objective of this study is to uncover
vulnerabilities within the ChaCha stream cipher concerning
higher-order differentials and to report novel biases in various
rounds.

B. OUR CONTRIBUTIONS
The key points presented in this paper are outlined as follows:

• We comprehensively explore higher-order differential
(second-order and third-order) cryptanalysis of the
ChaCha stream cipher and report new higher-order dif-
ferential biases for ChaCha 3, ChaCha 3.5, and ChaCha
4. The median bias for the mentioned three rounds is
0.00002. The details are presented in Tables 6 and 7,
respectively.

• We report new ID,OD positions for higher-order
differential cryptanalysis of ChaCha. Where 1X (0)

12,[0] ⊕

1X (0)
13,[0] and 1X (0)

12,[0] ⊕ 1X (0)
13,[0] ⊕ X (0)

13,[31] are used as
ID positions for the second and third order differentials,
respectively. The OD positions vary. Please refer to
Tables 6 and 7.

• We present a new linear approximation of the ChaCha
stream cipher. We report the linear approximation from

the 4th rounds to the 6th round with probability 1/22.
Please refer to Lemma 6.

• We presented an attack on ChaCha 6 and ChaCha
7 which enhanced the attack complexity by a margin of
211.93 on ChaCha 6 and 231.82 on ChaCha 7.

• This paper delineates a distinguisher attack on ChaCha
5.5, ChaCha 6, and ChaCha 7 offering improved attack
complexity compared with existing studies. The new
complexities are listed in Table 9.

• Our findings reveal significant higher-order differential-
linear biases for various versions of ChaCha. Specifi-
cally, we observed a bias of 2−17.53 for ChaCha 5.5,
2−19.5 for ChaCha 6, and an exceptional bias of 2−67.5

for ChaCha 7.

C. ORGANIZATION OF THIS PAPER
The rest of this paper is organized as follows. Section II
provides an overview of existing studies on ChaCha stream
cipher security including differential cryptanalysis, linear
cryptanalysis, and higher-order differential-linear crypt-
analysis which is the primary adversary model for this
research. Section III, presents the results obtained from
our cryptanalysis approach applied to ChaCha. Finally,
Section IV concludes this research and suggests potential
future directions.

II. RELATED WORK
This section highlights principal cryptanalysis studies on
ChaCha stream ciphers over the last 14 years. To make it
easier to understand the research background, we structured
this section according to the types of cryptanalysis rather than
the chronological order in which the researchers conducted
their work.We divided the cryptanalysis of ChaCha into three
types. 1) single-bit differential cryptanalysis, 2) differential-
linear cryptanalysis, and 3) higher-order differential crypt-
analysis. In addition, we explained the past studies’ findings,
attack approaches, essential proofs, and ideas to better
position our work in this research field.

A. NOTATIONS
Throughout this paper, we have used the following
notations.

B. SPECIFICATION OF CHACHA
Bernstein introduced ChaCha to improve the diffusion
properties of its predecessor, Salsa20. ChaCha updates
its state matrix by performing four additions, four XOR
operations, and four rotations with a notable difference
being that ChaCha updates each word twice instead of
once compared to Salsa20. ChaCha adheres to the same
fundamental design principles as Salsa20, utilizing 32-bit
word units and starting with an initial state of 512 bits.
This initial state includes four constant words (c1 =

0×61707865, c2 = 0×3320646e, c3 = 0×79622d32,
c4 = 0×6b206574), a 256-bit key, and four nonce words
as inputs. ChaCha functions as an iterative stream cipher
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TABLE 1. Notations.

employing 20 rounds of operations. In each round, the state
of ChaCha denoted as the ith state undergoes modification
via a set of operations referred to as a quarter-round (QR),
which involves four input words (xa, xb, xc, xd ). For ChaCha,
the initial state matrix is as follows:

X (0)
=


x(0)0 x(0)1 x(0)2 x(0)3
x(0)4 x(0)5 x(0)6 x(0)7
x(0)8 x(0)9 x(0)10 x(0)11
x(0)12 x(0)13 x(0)14 x(0)15



=


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 .

The ChaCha round function involves four simultane-
ous executions of the quarter-round function. A vector
(x(r)a , x(r)b , x(r)c , x(r)d ) within the internal state matrix X (r)

is modified by performing the following computations
sequentially:

x(r)a′ = x(r)a + x(r)b x(r+1)
a = x(r)a′ + x(r)b′′

x(r)d ′ = x(r)d ⊕ x(r)a′ x(r)d ′′′ = x(r)d ′′ ⊕ x(r+1)
a

x(r)d ′′ = x(r)d ′ ≪ 16 x(r+1)
d = x(r)d ′′′ ≪ 8

x(r)c′ = x(r)c + x(r)d ′′ x(r+1)
c = x(r)c′ + x(r+1)

d

x(r)b′ = x(r)b ⊕ x(r)c′ x(r)b′′′ = x(r)b′′ ⊕ x(r+1)
c

x(r)b′′ = x(r)b′ ≪ 12 x(r+1)
b = x(r)b′′′ ≪ 7

(1)

where:

• The subscripts indicate the positions and rounds.
• ⊕ represents the bitwise XOR operation.
• ≪ represents a left rotation by a specified number of
bits.

For rounds with odd numbers, designated as column
rounds, the quarter-round operation is performed on four
column vectors: (x(r)0 , x(r)4 , x(r)8 , x(r)12 ), (x(r)1 , x(r)5 , x(r)9 , x(r)13 ),
(x(r)2 , x(r)6 , x(r)10 , x(r)14 ), and (x(r)3 , x(r)7 , x(r)11 , x(r)15 ). In contrast,
for even numbered rounds, known as diagonal rounds, the
quarter-round operation is applied to the following four
diagonal vectors: (x(r)0 , x(r)5 , x(r)10 , x(r)15 ), (x

(r)
1 , x(r)6 , x(r)11 , x(r)12 ),

(x(r)2 , x(r)7 , x(r)8 , x(r)13 ), and (x(r)3 , x(r)4 , x(r)9 , x(r)14 ). To compute a
512-bit keystream block, we sum the initial state X (0) with
the state after the final round X (R), where R represents
the last round. The original ChaCha version comprises
20 rounds, and the notation ChaCha20/R denotes a reduced
round variant of ChaCha. It is worth noting that the round
function of ChaCha is reversible, meaning that an input
vector (x(r+1)

a , x(r+1)
b , x(r+1)

c , x(r+1)
d ) in the internal state

matrix X (r+1) can be retraced by sequentially computing the
following steps:

x(r)b′′′ = x(r+1)
b ≪ 25, x(r)b′′ = x(r)b′′′ ⊕ x(r+1)

c ,

x(r)c′ = x(r+1)
c − x(r+1)

d , x(r)d ′′′ = x(r+1)
d ≪ 24,

x(r)d ′′ = x(r)d ′′′ ⊕ x(r+1)
a , x(r)a′ = x(r+1)

a − x(r)b′′ ,

x(r)b′ = x(r)b′′ ≪ 20, x(r)b = x(r)b′ ⊕ x(r)c′ ,

x(r)c = x(r)c′ − x(r)d ′′ , x(r)d ′ = x(r)d ′′ ≪ 16,

x(r)d = x(r)d ′ ⊕ x(r)a′ , x(r)a = x(r)a′ − x(r)b

(2)

C. SINGLE-BIT ATTACKS
In 2008, Aumasson et al. [5] introduced a significant crypt-
analysis attack on the reduced rounds of both Salsa20 and
ChaCha. Aumasson et al. [5] proposed a differential attack
based on the concept of Probabilistic Neutral Bits (PNB). The
concept of PNB involves dividing secret key bits into two
groups: m for significant key bits and n for non-significant
key bits. The key bits neutrality measure is used as a threshold
to distinguish between these groups. The sizes of subsets m
and n have a significant impact on the attack complexity.
Aumasson’s research on ChaCha 7 revealed an attack with
a time complexity of 2248 and data complexity of 227.
Subsequently, nearly all cryptanalysis techniques have been
iteratively improved and followed Aumasson’s approach. Shi
et al. [6] introduced the notions of the Column Chaining
distinguisher (CCD) and Probabilistic Neutral Vector (PNV).
These concepts were applied to target ChaCha 7, resulting in
an attack with time complexity of 2246.5 and data complexity
of 227. In 2015, Maitra et al. [7] revisited the concept of
Probabilistic Neutral Bits (PNBs) and provided insights into
specific parameters aimed at reducing the complexity of
existing attacks. Their research successfully achieved a key
search with a complexity of 2247.2. In 2016 Maitra et al. [10]
introduced a chosen IV attack strategy applicable to Salsa20
and Chacha stream ciphers. In this context, they proposed
an attack on ChaCha 7, characterized by a time complexity
of approximately 2238.94 and a data complexity of roughly
223.89. In 2017, Dey and Sarkar [13] enhanced the attack
on Salsa20 by incorporating additional PNBs. Furthermore,
Sabyasachi Dey [13] conducted an attack on ChaCha 7,
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resulting in a time complexity of approximately 2235.2.
In 2021, Miyashita et al. [15] employed PNB-focused
differential cryptanalysis on the ChaCha stream cipher. Their
method introduced an attack on ChaCha 7.25 rounds, with a
time complexity of 2255.62 and a data complexity of 248.36.
Ghafoori et al. [24] applied Miyashita’s approach to Salsa20
ChaCha. Ghafoori enhanced the key recovery attack on
ChaCha 7.25 with a complexity of approximately 2254.011.
Thus far, all of the aforementioned attacks have utilized
single-bit differential cryptanalysis.

D. DIFFERENTIAL-LINEAR ATTACK
In 2016, Choudhuri and Maitra [12] revolutionized Salsa20
and ChaCha cryptanalysis using differential-linear tech-
niques [33]. Their groundbreaking work introduced new
linear approximations for these ciphers resulting in an attack
on ChaCha 7 with time complexity 2237.65, data complexity
231.6. In 2020, Coutinho et al. [21] improved the work
proposed in [12] and attacked ChaCha 6 and ChaCha 7 with
2102.2 operation and a 2231.9 operation respectively. In 2020,
Coutinho et al. [34] introduced a novel method known as
Continuous Diffusion Analysis (CDA) which can be used to
examine the diffusion characteristics of the ChaCha stream
cipher. In 2021, Coutinho et al. [22] derived a new linear
approximation and reported a noteworthy attack on ChaCha
6 which had a complexity of 251, and a key recovery attack
on ChaCha 7, characterized by a complexity of 2228.51.
In 2021, Beierle et al. [14] introduced a framework for
differential linear adversaries in the context of ARX ciphers.
Within this framework, an attack on ChaCha 7 was presented
featuring a time complexity of 2230.86 and a data complexity
of 248.83. In 2022, Dey and Sabyasachi [16] enhanced the
field of differential-linear cryptanalysis. They proposed an
attack on ChaCha 7 with a time complexity of 2221 and a
data complexity of 290. In addition, Dey et al. [36] revisited
Cryptanalysis on ChaCha from Crypto 2020 and Eurocrypt
2021. Furthermore, Dey et al. [35] recently introduced an
attack on ChaCha 7.25 which displayed a complexity of
2244.85. Subsequently, Niu et al. [17] presented an improved
differential-linear distinguisher designed for four rounds
of ChaCha. In 2023, Coutinho et al. [18] introduced a
distinguisher attack with 2214 operations on ChaCha 7 and
reported a new linear approximation for the Chacha sub-
round. Following this, Dey et al. [19] reported a 299.48

operations attack on ChaCha 6. Afterward, Wang et al. [20]
reported an attack with 2210.3 operations and 2103.3 data on
ChaCha 7, a 2244.9 operations and 2104.9 data on ChaCha
7.5 rounds. In 2023, Bellini et al. [23] studied differential-
linear cryptanalysis and introduced a key recovery attack on
ChaCha 7 with complexity 2206.8 and a distinguisher attack
on ChaCha 7 and ChaCha 7.5 with complexity 2166.89 and
2251.54, respectively. In 2023, Dey et al. [38] introduced
distinguisher attack on ChaCha 7 with complexity 2207 and
a distinguisher attack on ChaCha 7.25 with complexity
2231. For a better understanding of the existing attacks on

ChaCha, we present the key recovery attack in Table 2 and
distinguisher attacks in Table 3.

E. HIGHER ORDER DIFFERENTIAL-LINEAR ATTACK
Kai [37] introduced a differential-linear attack on ChaCha
3.5, ChaCha 4, and ChaCha 4.5 with the bias of 1/2, 2−1.19,
and 2−4.81, respectively. In existing studies on the security
analysis of ChaCha, it is clear that all the attacks presented so
far have focused only on single-bit differential or single-bit
differential-linear attacks. Consequently, there is a noticeable
lack of research on higher-order differential and higher-
order differential-linear attacks on ChaCha. Our research will
further explore the field of higher-order differential-linear
cryptanalysis to assess the security of the ChaCha stream
cipher against a significant adversary model.

TABLE 2. Overview of the most effective key recovery attack on a 256-bit
key of ChaCha.

TABLE 3. Summary of best distinguisher attacks on ChaCha.

F. CRYPTANALYSIS METHODS: A COMPARATIVE REVIEW
In this section, we provide a thorough explanation of the
primary cryptographic techniques. We explain differential
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cryptanalysis, linear cryptanalysis, differential-linear attack,
and higher-order differential adversary model.

1) DIFFERENTIAL CRYPTANALYSIS
Biham and Shamir [26] initially introduced differential
cryptanalysis as a framework for assessing the security of
DES-like cryptosystems. Over time, it has evolved into a
primary method for analyzing the security of block ciphers,
stream ciphers, and hash functions. It is a chosen plain
text attack that attempts to track the probability of and
input different ID to an output difference OD. At its
core, this cryptanalysis method aims to exploit the ID
propagation through n rounds in a cipher to find bias.
It observes how an ID changes in the initial state lead to
corresponding changes in the OD. Cryptanalysts can use
this information to perform key recovery attacks. The XOR
operation computes the difference. Attackers aim to find the
ID and OD denoted by 1x and 1z or alternatively as α and
β, respectively. Limpa [27] examined the XOR differential
probability of addition denoted as xdp+ and the additive
differential probability of XOR expressed as adp

⊕
. The

differential probability (DP) concerning modulo 2n addition
shows the likelihood that the input difference affects the
resulting output difference.

DP+(δ) = DP+(α, β 7→ δ)

:= Px,y [(x + y) ⊕ ((x ⊕ α) + (y⊕ β)) = δ] (3)

The inputs denoted by x and y have a size of n. In this study,
we refer to the initial state matrices of ChaCha as ChaCha X
and amodified copy of the initial state matrix with a single-bit
difference as ChaChaX ′. The interconnected states following
R rounds are labeled as XR and X ′R. Furthermore, we also
examine the intermediate rounds of the ChaCha cipher, which
we denote as X r and X ′r where R > r . The differential bias of
the ChaCha stream cipher after a specific round r is calculated
as follows:

Pr
(
1(r)
p [q] = 1 | 1

(0)
i [j] = 1

)
=

1
2
(1 + εd ) (4)

Here, εd represents the bias of OD. When key bits are
randomly generated, we determine ε∗

d as the median value of
εd [5].
Proposition 1 [29]: The probability of a differential (a, b)

is the probability that the first derivative of a function f (x) at
point a takes the value b when x is uniformly random.

As the majority of symmetric ciphers are designed by
iterating cryptographically weak functions. If the attacker can
predict the output difference with a higher probability, the
probabilistic success rate of the attack increases as well. The
basic idea of differential cryptanalysis can be generalized
to higher-order differentials where more than two pairs of
inputs to the cipher function can be used to recover the
secret key. Next, we explain the basic concept of higher-order
differential cryptanalysis.

2) HIGHER-ORDER DIFFERENTIAL CRYPTANALYSIS
Lai [29] introduced the concept of higher-order deriva-
tives for multi-variable functions. Lai explored a potential
extension of first-order differential cryptanalysis by consid-
ering higher-order derivatives. Inspired by boomerang and
differential-linear cryptanalysis, Biham et al. [11] investi-
gated various combined attack techniques. These methods
encompass differential-bilinear, higher-order differential-
linear (HDL), and boomerang attacks. Now, let us revisit the
fundamental definitions.
Definition 1 [29]: Consider two Abelian groups, denoted

as (S, +) and (T , +). For function f : S 7→ T , the derivatives
of f at a specific point a ∈ S are defined as follows:

1af (x) = f (x + a) − f (x)

The ith derivative of the function f at the point (a1, a2, . . . , ai)
is defined as:

1(i)
a1,...,ai f (x) = 1ai (1

(i−1)
a1,...,ai−1

f (x))

where 1
(i−1)
a1,...,ai−1 f (x) is the (i − 1)th derivative of f at

(a1, . . . , ai−1). The 0th derivative of f (x) was defined as f (x)
itself.

For i = 2, we have

f (x + a1 + a2) = 1(2)
a1,a2 f (x) + 1a1 f (x) + 1a2 f (x) + f (x).

Proposition 2 [29]:

f (x + a1 + a2 + . . . + an) = 6n
i=01

(i)
aj1 ,...,aji

f (x)

Proposition 3 [29]: For any function f : Fn2 7→ Fm2 .
The n − th derivative of f is a constant. if f : Fn2 7→

Fm2 is invertible, then (n − 1) − th derivative of f is a
constant.
Proposition 4 [29]: Let deg(f ) represent the nonlinear

degree of a multi-variable polynomial function f (x). Thus,
it holds that deg(1af (x)) ≤ deg(f (x)) − 1.
Proposition 5 [29]: The derivatives of a Boolean function

remain consistent, regardless of the order in which differenti-
ation is performed. That is, for any permutation p(j) of index
j, the derivatives remain the same.

1(i)
a1,...,ai f (x) = 1(i)

ap(1),...,ap(i) f (x)

Knudsen [30] proposed higher-order differential cryptanal-
ysis based on higher derivatives. The higher-order differential
adversary model attacks the cipher based on the gener-
alization of differential cryptanalysis. Knudsen proposed
applications of truncated and higher-order differentials and
showed that some ciphers that are secure against differential
cryptanalysis are vulnerable to higher-order differential
cryptanalysis. Many researchers have applied higher-order
differential cryptanalysis to evaluate the security of various
ciphers. In 2011, Duan and Lai [31] introduced a framework
for higher-order differentials and demonstrated that higher-
order differential cryptanalysis is based on higher-order
derivatives of Boolean functions. Zhu et al. [32] worked
on a cryptanalysis tool to examine the security of Boolean
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algebra-based block ciphers. Zhu proposed an algorithm
to expedite cryptanalysis. Shi [6] applied second-order
differential cryptanalysis to Salsa20 and ChaCha stream
ciphers. Shi defined a second-order differential as follows:
Let X be the initial state matrix, and X1,X2, and X3 be
associated state matrices with a single bit input difference
[1(0)

ij ] = 1 in X1, a single bit input difference [1(0)
mn] =

1 in X2 and double bit input difference [1(0)
ij ] = 1,

[1(0)
mn] = 1 respectively. According to Shi [6] (i − m)2 +

(j−m)2 = 0 should not hold. The single-bit output difference
[1(r)

pq ] = 1 after r internal rounds can be computed as follows:

[1(r)
p ]q = [X (r)

p ]q ⊕ [X (r)
1,p]q ⊕ [X (r)

2,p]q ⊕ [X (r)
p+1]q (5)

while the second-order input difference is dented by:

([X (r)
p ]q|X

(0)
i ]j, [X (0)

m ]n)

The forward bias εd is calculated as

Pr
(
[1(r)

p ]q = 1|[1(0)
i ]j, [1(0)

m ]n
)

=
1
2
(1 + εd ) (6)

3) LINEAR CRYPTANALYSIS
Linear Cryptanalysis introduced by Matsui [28], initially
served as an adversarial model to assess the security of
the DES cipher. Like its differential counterpart, linear
cryptanalysis is a chosen plaintext attack that assumes that the
attacker can select a set of plaintexts, whether predetermined
or random and their corresponding outputs. In this adversary
model, the focus is on utilizing the statistical characteristics of
linear approximations between the plaintext and ciphertext.
By identifying these linear connections, attackers can obtain
crucial key information. The fundamental concept revolves
around approximating a portion of the cipher’s operation
through bitwise manipulation with mod-2 (specifically, the
exclusive OR operation denoted as ⊕). This expression has
the following structure:

Xt1 ⊕ Xt2 · · · ⊕ Xtu ⊕ Yv1 ⊕ Yv2 · · · ⊕ Yvz = 0 (7)

where the Xt is the tth bit of input vector X = [X1,X2, . . .]
and Yv is the vth bit of input vector Y = [Y1,Y2, . . .]. The
equation 7 represents the exclusive-OR of t input bits and
v output bits. In linear cryptanalysis, the method identifies
expressions similar to those mentioned in equation 7 that give
either a high or low probability. If a cipher shows a pattern
in which the equation holds or does not hold with a high
probability, the cipher lacks effective randomness. If we can
obtain the linear approximation of a cipher with [Pr = 1],
then the cipher has disastrous weaknesses. Surprisingly, some
specific bit positions in the ChaCha stream cipher could be
approximated with a probability of 1. This is discussed in
Lemma 2. To combine the linear bias of different rounds of
a cipher we use Lemma 3 of [28] called (Piling-up Lemma)
and define it in Lemma 1.
Lemma 1 [28]: Let Xi (1 ≤ i ≤ n) be an independent

random variable whose values are zero with probability pi

or 1 with probability 1 − pi. Then the probability that
X1 ⊕ X2 · · · · ⊕ Xn = 0 is

1
2

+ 2n−1
n∏
i=1

(pi −
1
2
).

With Lemma 1 in mind, it can be stated that the increased
number of rounds in a cipher enhances its security compared
to when reduced rounds are used.

4) DIFFERENTIAL-LINEAR CRYPTANALYSIS
The differential-linear attack [33] shares similarities with tra-
ditional differential or linear attacks. Any difference between
these attack methodologies primarily stems from the imple-
mentation approach to identify weaknesses within the cipher.
The main idea behind the differential-linear adversary model
is to combine the differential bias and the linear correlations.

The initial strategy of avoiding lengthy differentials and
linear approximations seemed promising for safeguarding
the cipher against certain attacks. However, it became
apparent that exploiting shorter characteristics and approxi-
mations could still compromise its security. Langford’s [33]
introduction of the differential-linear cryptanalysis (DL
technique) in 1994 highlighted a breakthrough: when a
cipher E can be deconstructed as a cascade E = E2 · E1,
combining a differential probability of E1 with a biased
linear approximation of E2 effectively distinguishes the entire
cipherE . This technique proved successful in various ciphers.
The procedure for the DL attack is as follows: Let E be a
cipher. We write E as the composition of two sub-ciphers,
E1 and E2, where E1 coversm rounds of the main cipher and
E2 covers l rounds of the main cipher. We can write it E =

E2·E1 see Fig 1. To attack cipherE with the differential-linear
cryptanalysis method, we apply the differential cryptanalysis
on E1 and linear cryptanalysis on E2 to cover the m and l
rounds of the cipher. For E1 we insert an input different ID
1X (0) in the initial states of sub-cipher E1 and obtain the
output difference OD 1X (m) after m rounds. Subsequently,
we apply linear cryptanalysis to E2 using masks 0m and
0out . We aim to find linear approximations for the remaining
l rounds of cipher E . Using this method, we can create a
differential-linear distinguisher that covers allm+l rounds of
cipher E . In some cases, we divide the cipher into three parts
E = E3 · E2 · E1 [14] where E1 and E2 cover the differential
part and E3 covers the linear part. For the differential-linear
analysis of ChaCha, consider matrices X (r) and X ′(r) with
their differentials denoted as 1X (r)

= X (r)
⊕ X ′(r). Let

1(r)i[j] represent the difference between individual words at
the jth bit of the ith word after r internal rounds computed
as x(r)i[j] ⊕ x ′(r)

i [j]. Let L be the set of bits and let σ

and σ ′ be linear combinations of bits within J defined as
σ =

(⊕
(i,[j])∈J x(r)i,[j]

)
and σ ′

=

(⊕
(i,[j])∈J x ′(r)i, [j]

)
.

The linear combination 1X is then expressed as 1X =(⊕
(i, [j]) ∈ J1x(r)i,[j]

)
combining σ and σ ′. The differential

bias εd is calculated using Pr
[
1σ = 0|1X (0)

]
=

1
2 (1 +

εd ). Through linear cryptanalysis, we can establish new
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relationships between the initial state and the state after the
target round R > r . Specifically, let ρ and ρ′ represent
the linear combinations of bits in J after R rounds defined
as ρ =

(⊕
(i,[j])∈J x(R)i,[j]

)
and ρ′

=
(
⊕(i,[j])∈J x ′(R)i, [j]

)
.

The linear combination 1ρ is then formed as 1ρ =(
⊕(i, [j]) ∈ J1x(R)i,[j]

)
. The probability that σ equals ρ is

given by Pr [σ = ρ] =
1
2 (1 + εL) where εL denotes linear

correlation. Given that, our objective is to determine the bias,
denoted by γ such that

Pr[1ρ = 0] = Pr[ρ ⊕ ρ′
= 0] =

1
2
(+γ ).

Pr[1σ = 1ρ] = Pr[σ = ρ] · Pr[σ ′
= ρ′]

+ Pr[σ = ρ̄] · Pr[σ ′
= ρ̄′]

=
1
2
(1 + εL) ·

1
2
(1 + εL)

+
1
2
(1 − εL) ·

1
2
(1 − εL) =

1
2
(1 + ε2L)

Afterwards,

Pr[1ρ = 0] = Pr[1σ = 0] · Pr[1σ = 1ρ]

+ Pr[1σ = 1] · Pr[1σ = 1ρ]

=
1
2
(1 + εd )·

1
2
(1+ ε2L)+

1
2
(1− εd )·

1
2
(1− ε2L)

=
1
2
(1 + εd · ε2L) [12]

FIGURE 1. Differential-linear cryptanalysis.

The differential-linear correlation is calculated as
Pr

[
1ρ = 0|1X (0)

]
=

1
2 (1 + εd · ε2L), with εd · ε2L

representing the differential-linear bias. The complexity of

the distinguisher is determined as O
(

1
ε2d ·ε

4
L

)
. Typically,

a minimum of O
(

1
pq2

)
samples are required to differentiate

between two events, where one event has a probability of p
and the other event has a significantly smaller probability of
q. In the context of the Differential-Linear adversary model,
the assumption of randomness pertains to the independence
between the sub-ciphers E1 and E2.

5) PROBABILISTIC NEUTRAL BITS
As discussed in Section II, the concept of Probabilistic
Neutral Bits (PNB) enables us to partition the set of key bits
into two distinct subsets, which we refer to as the significant
key bits subset denoted as m, and the non-significant key bits
subset denoted as n, where the relationship is expressed as
m = 256 − n. To discern between these two sets, the PNB
concept emphasizes assessing the impact of each key bit on
the output of the ChaCha function, whichwe refer to asOD in
this context. This influence of key bits on the output is termed
the neutral measure. In this study, we incorporate the PNB
concept into our approach to select the output differential
positions denoted asOD. Our objective was to identify those
OD positions where the influence of key bits on the cipher’s
output is reduced after specific rounds.

The neutral measure associated with the key bit position
γi concerning OD is defined as γκ . Specifically, it quantifies
the probability that altering the key bit κ at position γi will
not affect OD. This probability is expressed as 1

2 (1 + γκ ).
According to [5], the following singular cases of the neutral

measure exist:
• When γk = 1: it signifies that OD is unaffected by the
ith key bit, which implies that it is non-significant.

• When γk = 0: it implies that OD is statistically
independent of the ith key bit, making it significant.

• γk = −1: This indicates a linear dependence of OD on
the ith key bit.

To accomplish this goal for the higher order differential
attack, we developed the Algorithm 1.

G. LINEAR CRYPTANALYSIS OF CHACHA
In this section, we present the existing linear approximation
of the ChaCha stream cipher proposed in previous studies.
The author in [12] studied the ChaCha quarter-round function
at the bit level. In 2021, Coutinho [22] changed the notation
and defined a new linear approximation. For a better
understanding, we follow Coutinho’s notation. We review the
bitwise representation of the ChaCha quarter-round function
as follows.

x ′(m−1)
a,i = x(m−1)

a,i ⊕ x(m−1)
b,i ⊕ 2i(x(m−1)

a , x(m−1)
b ) (8)

x ′(m−1)
d,i+16 = x(m−1)

d,i ⊕ x ′(m−1)
a,i (9)

x ′(m−1)
c,i = x(m−1)

c,i ⊕ x ′(m−1)
d,i ⊕ 2i(x(m−1)

c , x ′(m−1)
d ) (10)

x ′(m−1)
b,i+12 = x(m−1)

b,i ⊕ x ′(m−1)
c,i (11)

x(m−1)
a,i = x ′(m−1)

a,i ⊕ x ′(m−1)
b,i ⊕ 2i(x ′(m−1)

a , x(m−1)
b ) (12)

x(m)d,i+8 = x ′(m−1)
d,i ⊕ x(m)a,i (13)

x(m)c,i = x ′(m−1)
c,i ⊕ x(m−1)

d,i ⊕ 2i(x ′(m−1)
c , x(m)d ) (14)

x(m)b,i+7 = x ′(m−1)
b,i ⊕ x(m)c,i (15)
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Upon reversing these equations, we obtain:

x ′(m−1)
b,i = x(m)b+7 ⊕ x(m)c,i (16)

x ′(m−1)
c,i = x(m)c,i ⊕ x(m)d,i ⊕ 2i(x ′(m−1)

c , x(m)d ) (17)

x ′(m−1)
d,i = x(m)a,i ⊕ x(m)d,i+8 (18)

x ′(m−1)
a,i = x(m)a,i ⊕ x(m)b,i+7 ⊕ x(m)c ⊕ 2i(x ′(m−1)

a , x ′(m−1)
b ) (19)

x(m−1)
b,i = L(m)

b,i ⊕ 2i(x ′(m−1)
c , x(m)d ) (20)

x(m−1)
c,i = L(m)

c,i ⊕ 2i(x ′(m−1)
c , x(m)d ) ⊕ 2i(x(m−1)

c , x ′(m−1)
d )

(21)

x(m−1)
d,i = L(m)

d,i ⊕ 2i(x ′(m−1)
a , x ′(m−1)

b ) (22)

x(m−1)
a,i = L(m)

a,i ⊕ 2i(x ′(m−1)
a , x ′(m−1)

b ) ⊕ 2i(x ′(m−1)
c , x(m)d )

⊕ 2i(x(m−1)
a , x(m−1)

b ) (23)

where

Lma,i = xma,i ⊕ xmb,i+7 ⊕ xmb,i+19 ⊕ xmc,i+12 ⊕ xmd,i (24)

Lmb,i = xmb,i+19 ⊕ xmc,i ⊕ xmc,i+12 ⊕ xmd,i (25)

Lmc,i = xma,i ⊕ xmc,i ⊕ xmd,i ⊕ xmd,i+8 (26)

Lmd,i = xma,i ⊕ xma,i+16 ⊕ xmb,i+7 ⊕ xmc,i ⊕ xmd,i+24 (27)

Lemma 2 [12]: In the least significant bit (LSB) positions,
the quarter-round function enables us to set i = 0 and
accurately approximate the linear correlation from m− 1 and
m round with a probability of 1. Let

1A(m) = 1x(m)α,0 ⊕ 1x(m)β,7 ⊕ 1x(m)β,19 ⊕ 1x(m)γ,12 ⊕ 1x(m)δ,0 ,

(28)

1B(m) = 1x(m)β,19 ⊕ 1x(m)γ,0 ⊕ 1x(m)γ,12 ⊕ 1x(m)δ,0 , (29)

1C (m)
= 1x(m)δ,0 ⊕ 1x(m)γ,0 ⊕ 1x(m)δ,8 ⊕ 1x(m)α,0 , (30)

1D(m)
= 1x(m)δ,24 ⊕ 1x(m)α,16 ⊕ 1x(m)α,0 ⊕ 1x(m)γ,0 ⊕ 1x(m)β,7.

(31)

Then, the following equations for four biases hold:∣∣∣ε(A(m))∣∣∣ =

∣∣∣ε(x(m−1)
α [0])

∣∣∣ ,∣∣∣ε(B(m))∣∣∣ =

∣∣∣ε(x(m−1)
β [0])

∣∣∣ ,∣∣∣ε(C (m))
∣∣∣ =

∣∣∣ε(x(m−1)
γ [0])

∣∣∣ , and∣∣∣ε(D(m))
∣∣∣ =

∣∣∣ε(x(m−1)
δ [0])

∣∣∣ .
where these relations are divided into two cases depending
on m,
1) If m is an odd number:

(α, β, γ, δ) ∈ {(0, 4, 8, 12), (1, 5, 9, 13),

(2, 6, 10, 14), (3, 7, 11, 15)},

2) If m is an even number:

(α, β, γ, δ) ∈ {(0, 5, 10, 15), (1, 6, 11, 12),

(2, 7, 8, 13), (3, 4, 9, 14)}.

For the proof, please refer to [12]
Lemma 3 [12]: To obtain the linear approximation of a

half round of ChaCha, [12] defined the following lemma:

x(m)a,i = x(m+0.5)
a,i ⊕ x(m+0.5)

b,i+12 ⊕ x(m+0.5)
c,i ⊕ C1

carry,i (32)

x(m)b,i = x(m+0.5)
b,i+12 ⊕ x(m+0.5)

c,i (33)

x(m)c,i = x(m+0.5)
c,i ⊕ x(m+0.5)

d,i ⊕ C2
carry,i (34)

x(m)d,i = x(m+0.5)
d,i+16 ⊕ x(m+0.5)

a,i (35)

Remarkably, we observe that the bias of variables such as
x(m)b[i] and x

(m)
d[i] can be derived from round m+ 0.5 without any

reduction in their value for all i. While the word positions x(m)b[i]

and x(m)d[i] can be extended to a half round with probability 1 for

all bit positions. However, the case is not the same as x(m)a[i] and

x(m)c[i] which occur with probability< 1. Hence, we explain the

following Lemma for the half-round extension of x(m)a[i] and

x(m)c[i] .
Lemma 4 [18]: When i = 0 the following linear

approximations are valid with a probability of 1, considering
a single active input bit in half roundm−1 andmultiple output
bits in half round m+ 0.5.

x(m)c,i = x(m+0.5)
c,i ⊕ x(m+0.5)

d,i (36)

x(m)a,i = x(m+0.5)
a,i ⊕ x(m+0.5)

b,i+7 ⊕ x(m+0.5)
c,i (37)

When i > 0 the following linear approximations are valid
with a probability of 1/2(1+1/2) considering a single active
input bit in half round m− 1 and multiple output bits in half
round m.

x(m)c,i = x(m+0.5)
c,i ⊕ x(m+0.5)

d,i ⊕ x(m+0.5)
d,i−1 (38)

x(m)a,i = x(m+0.5)
a,i ⊕ x(m+0.5)

b,i+7 ⊕ x(m+0.5)
c,i ⊕ x(m+0.5)

b,i+6 ⊕ x(m+0.5)
c,i−1

(39)

Lemma 5 [12]: When there is a single active input bit in
round m − 1 and multiple active output bits in round m the
following statement holds for i > 0:

x(m−1)
b,i = x(m)b,i+19 ⊕ x(m)c,i+12 ⊕ x(m)d,i ⊕ x(m)c,i

⊕ x(m)d,i−1, W.P.
1
2

(
1 +

1
2

)
, (40)

x(m−1)
a,i = x(m)a,i ⊕ x(m)b,i+7 ⊕ x(m)b,i+19 ⊕ x(m)c,i+12 ⊕ x(m)d,i

⊕ x(m)b,i+18 ⊕ x(m)c,i+11 ⊕ x(m)d,i−2 ⊕ x(m)d,i+6,

W.P.
1
2

(
1 +

1
24

)
, (41)

x(m−1)
c,i = x(m)d,i ⊕ x(m)c,i ⊕ x(m)d,i+8 ⊕ x(m)a,i ⊕ x(m)a,i−1

⊕ x(m)d,i+7 ⊕ x(m)d,i−1, W.P.
1
2

(
1 +

1
22

)
, (42)

x(m−1)
d,i = x(m)d,i+24 ⊕ x(m)a,i+16 ⊕ x(m)a,i ⊕ x(m)c,i ⊕ x(m)b,i+7

⊕ x(m)c,i−1 ⊕ x(m)b,i+6, W.P.
1
2

(
1 +

1
2

)
, (43)
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Using Lemma 2, we can obtain a linear approximation
for one round of ChaCha with (probability 1). In contrast,
Lemma 5 provides a linear approximation with less than per-
fect certainty (probability< 1). Notably, equations 41 and 42
corresponding to words ‘A’ and ‘C,’ have lower probabilities
of occurrence. The choice of words can significantly affect
the overall complexity of an attack. Hence, it is advisable to
avoid using these words.

H. HIGHER-ORDER DIFFERENTIAL-LINEAR ATTACK ON
CHACHA
To provide a clearer understanding of higher-order differen-
tial cryptanalysis, we begin by introducing Kai’s work on
higher-order differential-linear cryptanalysis [37]. Kai stud-
ied higher-order differential-linear attacks from an algebraic
perspective. Kai introduced a higher-order differential-linear
distinguisher for several internal rounds of ChaCha. Kai first
experimented to find high-biased second-order DL with a
single bitOD and then appended the 1.5-round deterministic
linear approximation. The 3.5-round 2nd order higher-order
differential-linear holds with bias close to 1

2 . Kai used the
1X (0)

12[0] ⊕ 1X (0)
14[0] as ID position and the OD was selected

as 1X (2)
8,[0]

X (2)
8,[0] = X3.5

0,[0] ⊕ X3.5
0,[8] ⊕ X3.5

3,[0] ⊕ X3.5
4,[12] ⊕ X3.5

9,[0] ⊕ X3.5
11,[0]

⊕ X3.5
12,[0] ⊕ X3.5

15,[16] ⊕ X3.5
15,[24] (44)

Kai found a 4-round 2nd order HDL with a bias of
approximately 2−1.19. The 1X (0)

13[16] ⊕ 1X (0)
14[0] was used as

ID position, and the OD was selected as 1X (2.5)
8,[0] .

X (2.5)
8,[0] = X4

1,[0] ⊕ X4
1,[16] ⊕ X4

2,[0] ⊕ X4
6,[7] ⊕ X4

8,[0] ⊕ X4
11,[0]

⊕ X4
12,[24] ⊕ X4

13,[0] ⊕ X4
13,[8] (45)

For ChaCha 4.5 rounds, Kai reported a 2nd-order differential-
linear bias of approximately 2−4.81. The 1X (0)

14[12] ⊕1X (0)
15[15]

was used as ID positions, and the OD was selected as
1X (3)

8,[0]. The 1.5-round linear approximation occurred with
probability 1/2

X (3)
8,[0] = X4.5

0,[0] ⊕ X4.5
0,[8] ⊕ X4.5

1,[0] ⊕ X4.5
5,[12] ⊕ X4.5

9,[0] ⊕ X4.5
11,[0]

⊕ X4.5
12,[16] ⊕ X4.5

12,[24] ⊕ X4.5
15,[0] (46)

Kai combined the initial 3-round 2nd-order HDL approx-
imation with a subsequent 1.5-round linear approximation,
resulting in a 4-round 2nd-order HDL distinguisher with
an approximately equal bias 2−4.81. The biases observed in
the second-order DL distinguishers for these three versions
surpassed those of all prior DL distinguishers. Owing to
these notably higher biased approximations, it is possible to
enhance the distinguishing attacks on ChaCha 3.5, ChaCha 4,
and ChaCha 4.5.

III. HIGHER-ORDER DIFFERENTIAL-LINEAR
CRYPTANALYSIS OF CHACHA
In this section, we comprehensively present the result
of our proposed higher-order differential-linear attack on

ChaCha stream cipher. We explore higher-order differential
cryptanalysis on ChaCha and the resultant bias from higher-
order differential attacks. To enhance attacks on ChaCha,
we combine linear attacks with higher-order differentials.

A. PROPOSED CRYPTANALYSIS FEATURES
This section describes the features of our proposed attack,
emphasizing the key strategies that augment its effectiveness.

• The method we used primarily relies on a higher-
order differential basis, differing from previous ChaCha
attacks that heavily depended on a first-order differential
bias. This change in approach allowed us to explore the
4th round of the ChaCha stream cipher using a more
verifiable higher-order differential bias. Subsequently,
enhanced the attack complexity by a margin of 211.93 on
ChaCha 6 and 231.82 on ChaCha 7.

• To increase the success probability of the attack, we used
the median bias ε∗

d . We primarily utilized the 4th
round forward bias which is generated as a result
of higher-order differential cryptanalysis. The ChaCha
stream cipher maintains a consistent median bias across
the 3rd, 3.5th, and 4th rounds under higher-order
differential cryptanalysis. Exploiting this vulnerability
in the ChaCha QR function enabled us to focus on the
4th round which significantly reduced the complexity of
the attack. Please refer to Table 6 and 7.

• We applied specific strategies to select multiple ID
and OD positions. For ID positions, we employ the
Hamming Weight technique to reduce the number of
possible IDs. Unlike approaches outlined in section II,
which either randomly select the ID position or
result from exhaustive searches, our method bypasses
exhaustive search or random selection of ID positions.
This approach resulted in a higher bias due to the
Hamming Weight technique in the selection process,
consequently enhancing the attack. Please refer to
Subsection III-B.

• The selection of the OD position relies on a neutrality
measure computed across 256 key bit positions con-
cerning each OD. To support this selection process,
we developed Algorithm 1. This algorithm facilitates
the identification of an optimal OD position with a
higher bias. The OD positions exhibiting a higher
neutral measure contribute to a more favorable bias,
consequently reducing the complexity of the attack. Our
experimental outputs validated this analysis. Please refer
to Tables 4, 5, 6, 7 as well as Figs 2 and 3.

• While many existing attacks rely on linearity correlation
to decrease attack complexity, often targeting either
the 3rd or 3.5th round of differentials. We focused on
enhancing the attack primarily through the differential
aspect rather than the linear aspect. As a result,
we pursued the verified bias of the 4th round. Although
the attack primarily centers on differential analysis using
4 rounds, we included 2 rounds of linear approximation,
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further enhancing the attack’s efficiency. Please refer to
Subsection III-C.

• We treat the differential and linear components of the
attack as two separate ciphers. This implies that the
linear component, which is constructed on the output
of the differential part, remains unaffected by the
differential analysis.

Algorithm 1 Computing Neutrality Measure of Key Bits
Concerning the OD Position
Require: Random(X ) and associate states (X1,X2,X3) and

counter T = 0
Ensure: The OD position where the key bits generate
the best average neutral measure given higher-order
differentials.
1. Generate random keywords k = (k0, . . . , k7).
2. Decide ID1

(0)
12 [15], 1

(0)
13 [20], 1

(0)
14 [21] and com-

pute new initial states X (0)
1 = X (0)

⊕ 1
(0)
12 [15],

X (0)
2 = X (0)

⊕ 1
(0)
13 [20] and X (0)

3 = X (0)
⊕

1
(0)
12 [15] ⊕ 1

(0)
13 [20] ⊕ 1

(0)
14 [21].

3. From the initial states (X (0),X (0)
1 ,X (0)

2 ,X (0)
3 ),

compute the states after r = 4 rounds
(X (4),X (4)

1 ,X (4)
2 ,X (4)

3 ) and the final states
(X (7),X (7)

1 ,X (7)
2 ,X (7)

3 ).
4. From (X (4),X (4)

1 ,X (4)
2 ,X (4)

3 ) compute output dif-
ferentials OD 1(4)4[0] = X (4)4[0] ⊕ X (4)

1 4[0] ⊕

X (4)
2 4[0] ⊕ X (4)

3 4[0]).
5. From the final states (X (7),X (7)

1 ,X (7)
2 ,X (7)

3 ) obtain
the key-stream Z = X (0)

+X (7), Z1 = X (0)
1 +X (7)

1 ,
Z2 = X (0)

2 + X (7)
2 and Z3 = X (0)

3 + X (R)
3 .

6. Complement a key bit κ (κ ∈ {0, . . . , 255}) and
compute new initial states X

(0)
, X1

(0)
, X2

(0)
, X3

(0)

from initial states (X (0),X (0)
1 , X (0)

2 , X (0)
3 ).

7. Compute the states (Y (4),Y (4)
1 ,Y (4)

2 ,Y (4)
3 ) with

Z − X
(0)

,Z1 − X1
(0)

,Z2 − X2
(0)

,Z3 − X3
(0)

as
inputs to the inverse round function of ChaCha.

8. Derive the output differentials 0(4)4[0] =

Y (4)4[0] ⊕ Y (4)
1 4[0] ⊕ Y (4)

2 4[0] ⊕ Y (4)
3 4[0] for all

possible choices of 4 and 0.
9. If 1

(4)
4 [0] = 0

(4)
4 [0] increment the T .

10. Divide the sum of T by the key trial and ID
samples to obtain the probability of each key bit
concerning 1

(4)
4 [0].

B. ID,OD SELECTION APPROACHES
This subsection introduces novel ID,OD positions associ-
ated with higher-order differentials. Our research approach
selects the OD positions depending on two interconnected
methodologies. First, we aimed to narrow down the possible
OD positions from a pool of 512 possibilities to two
selections (i.e., word B and D). To achieve this, we focused
on identifying OD positions based on the structure of the

FIGURE 2. Distribution of NM for 2nd Order vs. 3rd order at round 7.

FIGURE 3. Distribution of NM for 2nd order vs. 3rd order at round 7.

ChaCha quarter-round function and the linear approximation
lemmas of ChaCha. Our primary focus here was on OD
positions th at produce an increased number of least
significant bits when the bit position is set to zero (i = 0).
Next, we validate the selected position using Algorithm 1
to extensively search the OD positions yielding the highest
count of probabilistic neutral bits concerning the lth-order
differential. For an in-depth discussion on PNBs, please refer
to Section II and [5]. The algorithm was executed for both
the 2nd and 3rd-order differentials, targeting the 7th, 7.25th,
and 7.5th rounds including respective internal and reverse
rounds. The findings and conclusions derived from these
experiments are consolidated in Tables 4 and 5 and visually
represented in Figs 2 and 3. In these visual representations,
the horizontal X-axis illustrates the position ofOD bits where
the vertical y-axis indicates the neutrality measure of the key
bits. As observed, there is a decrease in the neutrality measure
of the key bits when transitioning from lth order differentials
to l + 1 order differentials. This observation suggests that
when using a higher-order differential-linear approach in a
key recovery attack based on the PNB concept the number
of reverse rounds required for a successful attack should be
lower than that required for a first-order differential attack.
Additionally, higher-order differential-linear cryptanalysis
enables the attacker to target a higher number of forward
rounds, thereby addressing the weakness of lower reverse
rounds when using this technique.

Considering the nature of differential-linear attacks on
ChaCha, our focus remains on OD positions at the 0th
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TABLE 4. Best average neutral measure given 2nd -order differentials.

TABLE 5. Best average neutral measure given 3rd -order differentials.

TABLE 6. ChaCha 2nd-order bias.

TABLE 7. ChaCha 3rd-order bias.

bit. Consequently, we disregard all other positions where
i > 0. From Tables 4 and 5, we selected the OD
position 1X (4)

4,[0] to attack ChaCha 7 given its better neutrality
measure compared the other positions. For the higher-
order differentials, identifying ID positions is challenging.
An exhaustive search is not an optimal solution. Considering
the 2nd-order differential we would have 8128 possible ID
positions when selecting two IDs at a time from a set
of 128 possible IDs. Because a brute-force search over
the 8128 possible bit combinations is neither feasible nor
optimal.We used theHammingWeight strategy to select pairs
of two bits in the case of 2nd-order differentials, allowing
us to look at the forward differential εd . We attempted to
find the Hamming weight of the ChaCha matrix with the
ID in the initial state after the first, second, and third
rounds. Interestingly, the ChaCha quarter-round function
(Equation 1) evenly propagates the difference, regardless of
the ID position. This was a different case for the Salsa20
stream cipher. In which the Salsa20 matrix hamming weight
after specific rounds was affected by the ID position. The

average change in theHammingWeight of the ChaChamatrix
after each round was 18.21%.

TABLE 8. ChaCha matrix hamming weight after specific rounds.

As shown in Table 8, the ID position does not significantly
affect the Hamming Weight which in turn may not have
a notable impact on the forward differential. As a result,
we have selected 1X (0)

12,[0] ⊕1X (0)
13,[0] as the input differential

positions to calculate the second-order differential, and
1X (0)

12,[0] ⊕ 1X (0)
13,[0] ⊕ 1X (0)

13,[31] as the input differential
positions to search the third-order differential bias of
ChaCha. We ran an experiment 3 with a complexity of
240 to search for the 2nd and third-order differentials. Our
findings are summarized as follows. To distinguish between
two events generated by a random number generator and
ChaCha, we require O( 1

pq2
) random numbers. Consequently,

amaximumof 232 random values were required to distinguish
the biases reported in Tables 6 and 7. The results in Tables 6
and 7 show that the highest bias represented by εd varies for
each position. However, the absolute median bias denoted as
|ε∗
d | remains the same for both second and third-order biases.

We also examine the biases at 1X (3.5)6[0], 1X (3.5)8[0], and
1X (3.5)11[0] for the second-order differential. For third-order
differentials, we evaluated the biases at the 1X (3.5)15[0],
1X (3.5)6[0], 1X (3.5)11[0] and 1X (3.5)9[0] positions. The
results match those reported in Tables 6 and 7. The

3We used the Maximum Length (M-Sequence) random number generator
for our experiment. The Intel(R) Xeon(R) CPU E7-4830 v4@ 2.00GHz was
used to execute the experiment.
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complexity of the attack given the second-order and third-
order differential cryptanalysis will be 231.07 for a 3.5 round
of ChaCha. Hence, we need to utilize linear cryptanalysis to
enhance the attack on the higher rounds of ChaCha.

C. LEVERAGING LINEAR CRYPTANALYSIS
The enhancement of higher-order differential cryptanalysis
with linear cryptanalysis relies on the complementary
strengths inherent in these two techniques. Here’s how:

• Linear cryptanalysis can be used to identify linear
structures within the cipher. These structures can then
be exploited to simplify the differential analysis of the
cipher [28], [33].

• Higher-order differential cryptanalysis often involves
complex computations due to the large number of text
differences that need to be considered (i.e., based on the
differential order L). Attacking the higher number of
rounds with higher-order differential cryptanalysis will
be computationally infeasible. By using linear approxi-
mations, the attack rounds can be further improved and
overall the complexity of these computations can be
significantly reduced. Refer to Algorithm 1 for practical
understanding.

• The success of higher-order differential cryptanalysis
depends on the probability of certain differential patterns
occurring. Linear cryptanalysis can improve overall
probabilities by identifying and exploiting linear rela-
tions between the plaintext, ciphertext, and key bits [33].

• While higher-order differential cryptanalysis is less
effective against ciphers with high algebraic degrees
[39], linear cryptanalysis can be used to analyze the
linear components of these ciphers. This allows for a
more thorough analysis of the cipher potentially leading
to a more efficient attack.

• Some ciphers including the ChaCha stream cipher are
resistant to attacks using just differential cryptanalysis
and its variations. However, these ciphers are vulner-
able when multiple techniques are employed together.
By combining linear cryptanalysis and higher-order
differentials, cryptanalysts can explore a wider range of
possibilities to find weaknesses in the cipher

Given the outlined facts, our approach involved conducting a
higher-order differential-linear attack on the ChaCha cipher.
Subsection III-D offers a comprehensive explanation of
integrating the linear segment within our proposed attack
strategy.

D. NEW LINEAR APPROXIMATIONS
We based our attack on the following analysis: Given the
existing studies and the absence of higher-order differential
cryptanalysis on ChaCha, we sought to exploit the advantages
of higher-order differentials and integrate them with linear
cryptanalysis to target the reduced rounds of the ChaCha
stream cipher. As demonstrated in Tables 6 and 7, the
higher-order differential bias of the ChaCha stream cipher

consistently yielded the same bias across different internal
rounds (i.e., r = 3, 3.5, and 4). The ChaCha design
leads to this specific vulnerability in its structure. To the
best of our knowledge, previous studies have focused on a
differential analysis of 3.5 internal rounds of ChaCha and
have reported linear approximations for only 2.5 rounds.
No study has reported a differential-linear bias of 4 rounds.
Considering the structure of differential attacks, increasing
the number of internal rounds will help us to attack a higher
number of rounds and consequently reduce the complexity of
the final attack. Additionally, in alignment with Lemma 1,
increasing the number of linear approximations decreases
linear correlation. With this understanding, we used the
4th round of differential bias in ChaCha in conjunction
with 2 rounds of linear approximation. For this purpose,
we selected theOD position1x(4)4,0 corresponds to the word B
in ChaCha matrix and verified it with Algorithm 1. To extend
the 1x(4)4,0 to the 5th round and get the linear approximation
with probability 1, we used the Lemma 2.
Lemma 6: The following linear approximation from 4th to

6th rounds of ChaCha holds with probability 1
2 (1 +

1
22
)

1x(4)4[0] = 1x(6)1[0]⊕1x(6)2[0,11,12]⊕1x(6)4[6] ⊕ 1x(6)6[7]⊕1x(6)8[0,12]

⊕ 1x(6)9[19,31] ⊕ 1x(6)11[0] ⊕ 1x(6)12[8]⊕

1x(6)13[0,8,11,12,19,20] ⊕ 1x(6)14[18,19]

W.P.
1
2

(
1 +

1
22

)
(47)

Proof: At first, we extend from 4th round to 5th round with
probability 1. For this purpose, we use the Lemma 2 and the
approximation for thewordB given the position ofOD1x(4)4[0]

1x(m−1)
b[i] = 1x(m)b[19] ⊕ 1x(m)c[12] ⊕ 1x(m)d[0] ⊕ 1x(m)c[0]

1x(4)4[0] = 1x(5)4[19] ⊕ 1x(5)8[12] ⊕ 1x(5)12[0] ⊕ 1x(5)8[0]

W. P. 1

As the linear extension comes with the probability 1 in this
case, ε∗

d · ε2l = ε∗
d and ε∗

d · ε2l = 2−15.5. Next, we would like
to extend the linear approximation from the 5th round to the
5.5th round. For this purpose, we use the Lemma 3. Given
the 5th round linear extension, all the expressions could be
extended with probability 1 except 1x(5)8[12] as it’s in position
C of the input vector to ChaCha quarter-round function. As a
result, we use the Lemma 4 to extend the 1x(5)8[12] to 1x(5.5)8[12]
with probability 1/2 and Lemma 3 to extend the remaining
expressions to half round with probability 1.

1x(5)4[19] = 1x(5.5)4[31] ⊕ 1x(5.5)9[19] with probability 1 (48)

1x(5)8[12] = 1x(5.5)8[12] ⊕ 1x(5.5)13[12] ⊕ 1x(5.5)13[11]

with probability
1
2

(49)

1x(5)12[0] = 1x(5.5)12[0] ⊕ 1x(5.5)1[0] with probability 1 (50)

1x(5)8[0] = 1x(5.5)8[0] ⊕ 1x(5.5)13[0] with probability 1 (51)
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Consequently,

1x(4)4[0] = 1x(5.5)1[0] ⊕ 1x(5.5)4[31]1x
(5.5)
8[0,12] ⊕ 1x(5.5)9[19] ⊕ 1x(5.5)12[0]

⊕ 1x(5.5)13[11,12,0]W.P.
1
2
. (52)

As a result, we can get the distinguisher and differential-
linear bias for ChaCha 5.5 as ε∗

d · ε2l = 2−18.53. The attack
complexity ChaCha 5.5 is presented in Table 9. The higher-
order differential biases of ChaCha 4 rounds were reported in
Table 6. Next, we will extend the linear approximation from
ChaCha 5.5 to ChaCha 6 rounds. For this purpose, we deploy
the Lemma 3 for word positions in B and D which can be
extended with probability 1. For the word positions in A and
C , we use the Lemma 4 with probability 1/2(1 + 1/2).

1x(5.5)4[31] = 1x(6)4[6] ⊕ 1x(6)9[31] With Probability 1 (53)

1x(5.5)9[19] = 1x(6)9[19] ⊕ 1x(6)14[19] ⊕ 1x(6)14[18]W.P.
1
2

(
1 +

1
2

)
(54)

1x(5.5)8[12] = 1x(6)8[12] ⊕ 1x(6)13[12] ⊕ 1x(6)13[11]W.P.
1
2

(
1 +

1
2

)
1x(5.5)13[12] = 1x(6)2[12] ⊕ 1x(6)13[20] With Probability 1 (55)

1x(5.5)12[0] = 1x(6)1[0] ⊕ 1x(6)12[8]With Probability 1 (56)

1x(5.5)1[0] = 1x(6)1[0] ⊕ 1x(6)6[7] ⊕ 1x(6)11[0] With Probability 1

(57)

1x(5.5)8[0] = 1x(6)8[0] ⊕ 1x(6)13[0]With Probability 1 (58)

1x(5.5)13[0] = 1x(6)2[0] ⊕ 1x(6)13[8]With Probability 1 (59)

1x(5.5)13[11] = 1x(6)2[11] ⊕ 1x(6)13[19]With Probability 1 (60)

As a result, the term 1x(6)1[0] would be removed and we get
the following linear approximation with probability 1/2(1 +

1/22) from ChaCha 4 rounds to ChaCha 6. To the best of
our knowledge, this is the first and best linear approximation
reported for two rounds so far. The attack complexity is
summarized in Table 9.

1x(4)4[0] = 1x(6)2[0,11,12] ⊕ 1x(6)4[6] ⊕ 1x(6)6[7]1x
(6)
8[0,12]

⊕ 1x(6)9[19,31] ⊕ 1x(6)11[0] ⊕ ⊕1x(6)12[8]

⊕1x(6)13[0,8,11,12,19,20]⊕1x(6)14[18,19]W.P.
1
2

(
1+

1
22

)
.

(61)

Given the obtained linear probability and the 2nd-order
differential bias, the complexity of the attack on ChaCha 6 is
reported in Table 9. The complexities in Table 9 are computed
based on absolute median bias |ε∗

d | = 0.000021. Extending
the linear approximation to the 7th round introduces the
issue of significant bits. In the case of ChaCha, when setting
i = 0, we get the linear approximation of the least significant
bits with probability 1. Consequently, the computational
cost is mainly influenced by the significant bits variables.
The computation cost involves counting the occurrences of

significant bits variables and the frequency of their appear-
ances in the form (Variable Type, Number of Significant
Bits Occurrences). Considering the linear approximation
from 4th round to 6th round, the number of significant
variables is 2, 2, 3, 8 for the word A,B,C,D respectively
which are denoted as (xa, 2), (xb, 2), (xc, 3), (xd , 8). Using
the probability of Lemma 5 which defines the probability
of each word extension when i > 1 and Lemma 6, the
linear correlation can be computed as εL =

1
22+2·4+2·1+3·2+8·1 .

This leads to a 7 rounds distinguisher with complexity of
2135.07 and a differential-linear bias |ε∗

d | · ε2L = 2−67.5. The
ChaCha 7th round distinguisher and differential-linear bias
are summarized in Table 9. If we compute the complexity
of the attack with the highest bias εd = 0.000096, the
complexity of the final attack can be reduced. The attacks
presented in Lemma 6 are the best attacks presented on
5.5, 6, and 7 rounds of ChaCha. This is the first-ever
higher-order differential-linear attack on ChaCha 5.5 ChaCha
6 and ChaCha 7 with the complexity of 235.07, 239.07 and
2135.07 time complexity, respectively. We improved the attack
complexity by 211.93 on ChaCha 6 and 231.82 on ChaCha 7.
Table 3 has summarized the results.

TABLE 9. Our proposed attack complexities.

IV. CONCLUSION
In this study, we investigated higher-order differential and
higher-order differential-linear cryptanalysis and its applica-
tion to the ChaCha stream cipher. We report the first-ever
higher-order differential and higher-order differential-linear
biases of different rounds of ChaCha. We also present attacks
on ChaCha 5.5, ChaCha 6, and ChaCha 7. We significantly
improved the attack complexities of ChaCha 6 and ChaCha 7.
Our proposed attack on ChaCha 6 with a complexity of 239.07

and on ChaCha 7 with a complexity of 2135.07 are the best-
known attacks on reduced rounds of ChaCha stream ciphers.
This is the first detailed study of higher-order differential
linear cryptanalysis on ChaCha and we believe that the attack
has the potential to become an important adversary model to
analyze the security of different ciphers.
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