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ABSTRACT Time series prediction poses a formidable challenge, marked by the inherent difficulty in
capturing long-term dependencies and adapting to intricate data patterns. Existing methods, spanning
statistical models and neural networks, often grapple with issues such as underfitting and overfitting. This
study addresses these challenges by introducing Autocyclic Learning Rate (AutoCyclic), an innovative
approach that seamlessly integrates cosine cyclic learning rates with considerations for autocorrelation and
variance. AutoCyclic dynamically adjusts learning rates based on the characteristics of time series data,
effectively mitigating challenges related to local minima and demonstrating robust adaptability to outliers.
In evaluation across diverse datasets, including ETTm2, M4, and WindTurbine, AutoCyclic consistently
outperforms traditional optimizers such as Adams Optimizer and Cosine Cyclic Learning Rate. The results
underscore AutoCyclic’s superior performance, showcasing its potential as a pivotal tool for enhancing
predictive modeling in various time series forecasting scenarios. The groundbreaking nature of AutoCyclic
lies in its ability to address the complexities of time series prediction, providing a valuable solution to
the limitations faced by existing models. The study serves as a key contribution to the ongoing research
in timeseries data prediction, with implications for improving the accuracy and efficiency of predictive
models in diverse applications. For those interested in implementing AutoCyclic, the code is available at
https://github.com/wtfish/AutoCyclic.

INDEX TERMS Autocorrelation, cosine cyclic learning rate, deep transformer, optimizer, time series,
variance.

I. INTRODUCTION
The problem of time series prediction is not a new challenge.
Various approaches with statistical methods have been car-
ried out using Seasonal AutoRegressive Integrated Moving
Average (SARIMA) and Autoregressive Integrated Moving
Average ARIMA to predict stocks [1], [2]. ARIMA models
are used specifically for short-range predictions and have the
disadvantage of being difficult to confirm the performance
of long-term series. Especially for highly volatile data such
as financial data and influenced by several factors such
as government policies, global economic conditions, and
other disasters. Research by [3] who studied forecasting with
ARIMA managed to get MAPE accuracy of up to 38%.
Another statistical model used for comparison is the Bayesian
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model, which is often pitted against the latest developments
in Artificial Neural Networks (ANN). In [4], a Bayesian
model was employed for prediction with an accuracy of up
to 78%. However, these statistical approaches often produce
inaccurate predictions due to issues such as under-fitting
and over-fitting, making them unreliable for fluctuating data
scenarios.

Given the limitations of statistical models, ANN has
become a popular choice for forecasting [5]. The study by [6]
utilized Elliot Wave Indicators and stand-alone technical
analysis to predict the stock prices of five companies.
The results obtained with ANN showed significantly higher
accuracy compared to statistical models, reaching 93.83%.
This suggests that with input and model tuning, performance
is likely to be further improved. Various architectures and
tuning techniques have been developed, such as Convolu-
tional Neural Networks (CNN), Long Short-Term Memory
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(LSTM), and Gated Recurrent Units (GRU), as discussed
by [7], [8], and [9]. In [9],a novel model combining
CNN + SVM was proposed for predicting global stock
indices. Although the researchers claimed to maximize the
capabilities of the model through historical down-sampling
of input data, specific prediction results were not disclosed.

The LSTM and GRU models presented by [7] for
forecasting the stock price of CNPC showed that LSTM
outperformed GRU in terms of MSE, RMSE, and MAE.
Despite the superiority of LSTM, the researchers revealed
that GRU had a faster prediction time due to fewer internal
‘‘gating’’ mechanisms and parameters. Another development
of LSTM is the Bidirectional LSTM (Bi-LSTM), a sequence
processing model consisting of two LSTMs designed to
process input in both forward and backward directions. The
strength of Bi-LSTM lies in its ability to better understand the
context from the past and the future, making its predictions
more relevant [10], [11]. Bi-LSTM has been successfully
applied to the forecasting of stock prices, as evidenced
by [12], and achieved the best performance with an R-squared
value of 95.93%.

In the evolution of predictive models such as LSTM,
CNN, and GRU, a new approach has emerged that combines
Transformer technology with attention mechanisms. Initially
introduced by Vaswani et al [13]. in 2017 as a revolutionary
model for natural language processing, Transformer has
been widely applied in various fields, including time series
analysis and prediction. The main advantage of Transformer
is its ability, especially in NLP, to understand long-range
relationships between words in a text. In the context of
time series data, this can be interpreted as an understanding
of long-term dependencies, with claimed faster training
times due to parallel execution. The core innovation of the
Transformer architecture lies in its attention mechanism,
enabling selective weighting of information across the entire
input sequence. Recent empirical research, as documented
in publications [14], [15], [16], demonstrates the superior
performance of Deep Transformer (DT) models with atten-
tion mechanisms in time series prediction tasks compared to
traditional RNN architectures like LSTMs, CNNs, andGRUs.

Determining a learning rate is certainly an important part
of tuning a deep learning model. With the wrong learning rate
setting, amodel will not get its localminimum.A high lr value
will cause the model to ‘‘jump over’’ from global minima,
while an lr value that is too small will make the model stuck
in local minima [17]. Research by [18] revealed that the
use of a decay learning rate can improve the performance
and convergence speed of various models such as VGG and
RESNET for CIFAR-10 photo classification.

Therefore, a precise combination is needed to prevent
time series prediction models from getting trapped in local
minima. For this reason, the significance of Deep Neural
Networks (DNN) with Cyclic Learning Rate (CLR) is
widely recognized [19]. Additionally, there is an advance-
ment beyond the standard CLR, namely, the innovative
maximum-minimum cosine approach, which is designed

to determine an acceptable range for the maximum and
minimum learning rates used during the training process.
By implementing CLR, the learning rate during model
training can be dynamically increased throughout the training
cycle. This results in a significant acceleration of convergence
as the model rapidly explores relevant parameter regions.
While this approach appears quite powerful, it is important
to note that variance also influences the performance of the
optimizer.

In their study, Ruder [20] revealed that in Stochastic
Gradient Descent (SGD), high data variance leads to a
highly fluctuating objective function. In ‘‘batch gradient
descent’’ optimization methods, the convergence process to
the minimum value of parameters occurs within a basin.
Conversely, in SGD, the fluctuations allow jumpings to
new potential local minima, which may be better. On the
other hand, this makes the convergence process to the
exact minimum value more complex because SGD tends to
overshoot the actual minimum value. In other words, while
SGD fluctuations can aid in finding better local minima, they
can also make it challenging to reach the exact minimum
value.

A. CONTRIBUTION
This research focuses on developing the previously static
CLR based on statistical calculations by relating it to the
nature of the data to find the global minimum. Autocor-
relation cyclic learning rate (AutoCyclic) is a solution to
solve this problem, the learning rate will be dynamically
adjusted by taking into account the autocorrelation value and
variance of a batch of data in the training phase. AutoCyclic
adapts to various data patterns which will increase and
decrease according to the variance value, thus overcoming the
limitations of the usual CLR method.

In the performance evaluation testing of the AutoCyclic
method, there are 3 data with different characteristics that will
be tested to determine whether autocCyclic can work with
complex data patterns. The first data is ETTm2 data which
has a seasonal data pattern, WindTurbine which has a high
overall variance value, and M4 competition data which has
a complex data pattern with a lot of noise. These differences
will be tested to measure the capabilities of AutoCyclic using
MAE and MAPE metrics. The tests conducted are shown
to demonstrate AutoCyclic’s ability to deal with various
forecasting objectives in the real world.

II. RELATED WORK
A. CYCLIC LEARNING RATE
Research by Smith became a pioneer in the initial concept
of CLR [18]. In his method, there are several bounds
hyperparameters for creating waves that must be set, namely
base_lr , max_lr , and step_size. base_lr will be obtained
from the learning rate range test, then the determination
of max_lr and step_size will be determined according to
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the experimental results. Initially, CLR was used to classify
images with CIFAR-10 and CIFAR-100 datasets

Expanding upon CLR, Loshchilov et al. proposed a modi-
fied approach incorporating cosine-based warm restarts [21].
This method emphasizes partial warm restarts and enhances
the anytime performance of stochastic gradient descent,
particularly in deep learning tasks. Empirical evidence on
datasets like CIFAR-10 and CIFAR-100 underscores the
effectiveness of warm restarts in mitigating poor function
landscapes and highlights the evolutionary nature of learning
rate optimization.

Building upon CLR, Wen et al. proposed the max-min
cosine cyclic learning rate scheduler (MMCCLR) for auto-
matic learning rate range identification in new datasets [22].
On datasets related to defect diagnosis, the suggested
snapshot ensemble convolutional neural network (SECNN)
employingMMCCLRperforms better. This development val-
idates the possibility of autonomous learning rate adaptation
in group education.

Obaidat investigated cyclic learning rate optimization and
suggested the trapezoidal cycle pattern as the optimal con-
figuration [19]. With fewer iterations and faster convergence,
this method replaces a fixed learning rate with a triangularly
changing rate during each training cycle. Superior stability
and accuracy were found in experiments conducted on VGG
and RESNET networks for the CIFAR-10 and CIFAR-100
datasets as compared to standard CLR. This adaptability in
deep neural network training is improved by this flexibility
within reasonable bounds.

The dropCyclic learning rate schedule was a further
development in 2022 [23]. This approach includes a learning
rate decrease at every epoch with the goal of navigating to
a new local minimum in the next cycle. Evaluations across
diverse datasets and comparisons with the proposed method
demonstrated the improvement classification accuracy of
dropCyclic.

B. ADAM OPTIMIZER
Bianchi et al. found that the Adam optimizer was the most
effective method for training parameters on RNN, LSTM,
and GRU [24]. This paper emphasizes the importance of the
L2 norm of weights as an optimal regularization approach,
shedding insight on the efficacy of optimization strategies.

Further study has explored how optimization techniques
impact the accuracy of models in image classification
tasks [25], [26], with an emphasis on the application of
various optimizers such as SGD and Adam. Test results
employing the Adam optimizer showed improved accuracy
at the training, test, and validation stages on the COVIDx CT,
CIFAR-10, CIFAR-100, and skin cancer datasets.

This study continues the previous investigation of the
influence of optimization methods on model accuracy in
image classification, with a focus on optimizers such as
SGD and Adam. Notably, research like the one given in [27]
demonstrates the adaptability of the Adam optimizer. In this

paper, the writer presents a unique hybrid model, WT-Adam-
LSTM, for accurate power price forecasting, exhibiting
Adam’s versatility beyond picture classification applications.
Adam’s success in forecasting is further demonstrated in
studies such as [28], where it outperformed various baseline
models, and in the research on ‘‘The Forecast of Coal Price
Based on LSTM with Improved Adam Optimizer’’ [29],
which highlights the practical uses of Adam optimizer in
refining models. These examples demonstrate the Adam
optimizer’s adaptability and efficiency in improving accuracy
across a variety of forecasting applications and datasets,
extending its usefulness beyond picture categorization sce-
narios. Given its versatility, it is necessary to evaluate and
compare its performance in terms of cycle learning rates. This
comparison analysis will help us gain a better knowledge of
the Adam optimizer’s performance in diverse optimization
settings, particularly in the dynamic context of cyclic learning
rates, hence expanding our grasp of its capabilities and
optimal utilization.

C. VARIANCE IN OPTIMIZER
The significance of variance in optimization techniques was
emphasized by Ruder [20], which prompted the creation of
new optimizers including RMSprop, Adamax, and Adams.
This work highlights how variation in stochastic gradient
descent facilitates a more thorough search of local minimum
points, offering a more nuanced perspective of the advantages
and disadvantages of variance in optimization techniques.

Exploring the impact of variance in optimization tech-
niques, highlighted by Ruder [20], is crucial to enhancing
the performance of optimizers. Ruder emphasized the
importance of variance in the creation of advanced optimizers
like RMSprop, Adamax, and Adams [30]. This emphasizes
the relevance of variance in stochastic gradient descent by
providing a deeper knowledge of its benefits and trade-
offs, ultimately leading to more effective discovery of local
minima.

The direct application of Stochastic Variance Reduction
(SVR) techniques to deep learning optimization has encoun-
tered difficulties due to the recent challenges detailed in the
study by [31]. While this study did not reject the possibility
of variance in the optimization process, it did emphasize
the need for additional research. This involves looking into
adaptive SVR applications, meta-level tweaks to learning
rates, scaling matrices, and possible hybridizations with other
optimization approaches like Adagrad and ADAM.

In addition, a study on double descent in deep neural
network (DNN) test error revealed a significant correlation
between variance and test error. This understanding inspired
the creation of a new metric, Optimization Variance (OV),
which measures the diversity of model updates induced by
stochastic gradients. Surprisingly, OV acquired only from the
training set has a significant relationship with the test error,
implying that variance is important in predicting a DNN’s
generalization ability. This finding provides new possibilities
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for early halting without the need for a specific validation
set and emphasizes the role of variance in optimizing the
training process [32]. In summary, recent research stresses
the importance of variance in increasing the functionality
and efficiency of optimization algorithms, particularly in the
dynamic terrain of deep learning.

D. AUTOCORRELATION
The relevance of autocorrelation in refining forecasting mod-
els provides an opportunity to integrate these insights with
cutting-edge DL optimization techniques, particularly cyclic
learning rates. The synergies between autocorrelation-guided
model construction and advanced DL optimizers suggest a
promising avenue for future research, offering the potential
for more efficient and accurate deep learning-based forecast-
ing systems.

In a study by [33], the crucial role of Autocorrelation
Functions (ACF) and Partial Autocorrelation Functions
(PACF) in optimizing Artificial Neural Network (ANN)
models is highlighted. The research proposes enhancements
to DL optimization paradigms, specifically cyclic learning
rate (CLR), by incorporating insights derived from autocor-
relation functions. The utilization of more compact ANN
structures, guided by autocorrelation functions, is recom-
mended as a method to improve DL optimization without
compromising accuracy.

Similarly, in agriculture [34], the application of autocor-
relation functions aligns with the goal of refining DL opti-
mization for crop yield forecasting. Autocorrelation assists in
selecting optimal macro parameters for ANN models, illus-
trating a correlation between autocorrelation-informedmodel
construction and advanced DL optimization techniques, such
as cyclic learning rates. This approach aims to leverage
autocorrelation-derived insights to fine-tune DL optimizers,
thereby enhancing the overall performance of agricultural
production forecasting models.

In the field of natural gas load forecasting [35], where
autocorrelation functions play a crucial role, the superior
performance of prediction models opens avenues for com-
bining these insights with cutting-edge DL optimization
strategies. Autocorrelation’s effectiveness in improving fore-
casting accuracy aligns with the objectives of DL optimizers,
like CLR, which aim to determine optimal learning rates
for neural network training. The outcomes of this study
could inspire further exploration of seamlessly integrat-
ing autocorrelation-informed insights into DL optimization
frameworks, fostering the development of more robust and
accurate deep learning-based forecasting systems.

Additionally, recent innovations in long-term series
forecasting, such as the Autoformer model proposed by
Wu et al. [36], introduce a novel decomposition archi-
tecture incorporating an Auto-Correlation mechanism. This
addresses challenges in handling complex temporal pat-
terns and information utilization bottlenecks faced by
traditional Transformer models. Autoformer outperforms

previous Transformer-based models in efficiency and accu-
racy, showcasing remarkable performance across diverse
practical applications. These advancements underscore the
potential of autocorrelation in shaping the future landscape
of deep learning-based forecasting methodologies.

III. PROPOSED AUTOCYCLIC OPTIMIZER FOR TIME
SERIES DATA PREDICTION
In the development of learning rate optimization for neural
networks in this study, the proposed model was the Auto-
Cyclic Optimizer For Time Series Data Prediction. Unlike
previous approaches, this model automatically determines the
learning rate using the variance obtained from autocorrela-
tion. Smith [18] introduced the concept of CLR and inspired
numerous subsequent studies. However, this study took
an innovative step by leveraging autocorrelation-informed
insights to create a more sophisticated adaptive approach.

Previous studies, including Wen et al. [22] and
Loshchilov et al. [21], examined the use of cyclic learning rate
approaches to improve model performance. However, in this
latest advancement, the Autocyclic Optimizer For Time
Series Data Prediction uses autocorrelation and variance to
automatically adjust the variance settings and increase the
learning rate.

A. LEARNING RATE RANGE TEST
The LR range test, an important deep learning approach,
involves a systematic investigation of learning rate values
over a brief training session to determine appropriate lower
and upper limits. Beginning with a low learning rate,
the procedure entails gradual changes until a point of
performance plateau is achieved, with the upper bound
carefully determined right before deterioration starts. In our
study, we improved this process by repeatedly refining the
learning rate within the specified range, aiming for an ideal
value that is perfectly aligned with the complexities of our
neural network design and dataset features. This thorough
fine-tuning guarantees a highly efficient and personalized
optimization process, which improves our model’s resilience
to the unique difficulties provided by training dynamics.

Figure 1 shows an illustrative example of the LR range
test (LRRT) based on Smith’s methodology [18]. Examining
Figure 1, it becomes apparent that the model initiates
convergence promptly. Consequently, it is justified to set the
base learning rate ( ninit) at 0.001. Additionally, observations
have shown that beyond a learning rate of 0.006, the accuracy
improvement becomes erratic and eventually experiences a
decline. Therefore, it is rational to set the maximum learning
rate (nmax) as 0.006. These insights derived from LRRT
play a crucial role in setting appropriate boundary values for
effective training of the neural network.

Unlike conventional LR range tests, Figure 2 shows our
approach involves a meticulous examination of the learning
rate over a comprehensive spectrum, ranging from 10−6 to
10−1. This nuanced evaluation entails running the model for
100 epochs, allowing the learning rate to increment linearly
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FIGURE 1. Learning range test with CIFAR-10 dataset.

FIGURE 2. Learning range test scheaduler.

within the specified range. This tailored LR range test proves
to be exceptionally beneficial, particularly when confronted
with the challenges posed by different datasets.

B. COSINE CYCLIC LEARNING RATE SCHEDULE
Cyclic cosine annealing (CCA) is the primary learning
strategy in the snapshot ensemble method used during model
training. CCA enables a faster reduction in the learning rate
process involves a 100-epoch curve with five cycles denoted
as M1, M2, . . .M5, representing distinct models for each local
minimum, as illustrated in Figure 1. The computation of the
CCA follows Equation 1.

n =
ninit
2

(cos
π mod

(
t − 1, T

M

)
[T/M ]

)+ 1) (1)

In this context, n represents the learning rate at the current
iteration, ninit denotes the initial learning rate, t signifies the
current iteration count, T is the total number of iterations,
and M is the total number of cycles. In the framework of
Cyclic Cosine Annealing (CCA), only the initial learning rate
(ninit) needs to be adjusted, while the other hyperparameters
remain constant. Consequently, inappropriate adjustments of

the learning rate can lead to non-convergence of the training
process, resulting in varying local minima after each cycle.

C. VARIANCE
Variance is a statistical concept that has an important role in
analyzing and describing the distribution or variation of data
in a set of observations. This concept provides a quantitative
way to measure how far or how close the data points in a
data set are to their mean value [36]. Here is the formula for
variance in Equation 2.

var(X ) =

∑n
i=1(Xi − X̄ )

2

n
(2)

Variance, represented by var(X ), measures the spread of
values in the input vector X from itsmean (X̄ ). In this formula,
X̄ is the average of the input vector, and X i is the value
at index position i in the vector X. The variance provides
information about the variation of values in the vector. The
higher the variance, the greater the spread; conversely, the
lower the variance, the closer the values are to the mean. The
variance is an important statistical metric in the analysis of
data distribution characteristics [37].

D. SIGMOID ACTIVATION FUNCTION
The sigmoid activation function is used not only as a key
element in artificial neural networks, but also as a tool to
reduce the range of data values and perform normalization.
Normalization is an important process in data processing
to ensure that each feature or variable has a uniform range
of values, which facilitates model training and improves its
performance [5]. The following Equation 3 below is a formula
for the sigmoid activation function.

sigmoid(x) =
1

1+ e−x
(3)

The sigmoid function, denoted by sigmoid(x), is a
mathematical function that converts the input variable x to a
range of values between 0 and 1. In this formula, e represents
Euler’s Number (≈ 2.71828). The sigmoid function is widely
used in mathematical modeling, especially in the context of
neural networks and statistics. This function produces an
output with an S-shaped curve that maps input values to the
corresponding probability intervals or activation scores. The
sigmoid function is valuable for normalization or activation
in machine learning models.

E. AUTOCORRELATION
Autocorrelation is a crucial statistical technique employed
in time series analysis to elucidate the degree of correlation
existing between values within a time series at specific time
intervals [38]. Thismethod delves into the intricate patterns of
interrelationships among observations at various time points,
thereby facilitating the uncovering of latent structures and
trends concealed within the temporal data. Autocorrelation,
defined by Equation 4, quantifies the similarity between
values at different periods in time, significantly contributing
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to the analysis and interpretation of temporal patterns within a
dataset. This statistical method is notably useful for revealing
hidden dependencies and cyclic patterns that would otherwise
go unnoticed, giving analysts and researchers with a full
understanding of the dynamics inherent in time series data.

autocorr(k) =

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )∑n

t=1(Yt − Ȳ )2
(4)

A measure of the degree of correlation between a series
value at a particular time, Yt , and its value at a prior time,
Y (t-k), is autocorrelation, denoted by autocorr(k) at lag k . n
is the total number of data in the series, and Ȳ is the average
of the whole time series in this formula. To assess how
much the values are connected, the number of lags, denoted
by k , establishes the separation between two observed time
observations. In addition to offering a summary of the
patterns of interactions between observations in a time series,
this autocorrelation formula can shed light on the internal
organization and temporal dependencies of time series data.

F. PROPOSED AUTOCYCLIC COSINE CYCLIC LEARNING
RATE SCHEDULE
This paper presents theAutoCyclic Optimizer for Time Series
Data Prediction, a novel approach that uses variance from
autocorrelation to automatically calculate the learning rate in
the quickly developing field of neural network optimization.
Unlike traditional methods, our work incorporates knowledge
from autocorrelation into an advanced adaptive strategy,
motivated by Smith’s introduction of CLR [18]. Although
previous research has looked into ways to improve model
performance using cyclic learning rates, our work stands
out because it integrates autocorrelation considerations in
a unique way. The next part offers a detailed pseudocode
illustration, dubbed Algorithm 1, that clarifies the complex
functions of the AutoCyclic Optimizer.

Algorithm 1 AutoCyclicLR(base_lr, max_lr, step_size,
batch_data)
1: procedure AutoCyclicLR(base_lr, max_lr, step_size,

batch_data)
2: vars← []
3: for items in batch_data do
4: autocorrs← autocorr(items)
5: output ← sigmoid(nan_to_num(autocorrs), nan =

0))
6: step_var .append(variance(output))
7: end for
8: batch_variance← mean(step_var)
9: cycle← floor(1+ last_epoch

2×step_size )

10: x ← abs( last_epochstep_size − 2× cycle+ 1)

11: lr ← base_lr + (max_lr − base_lr)× 1+cos(π×x)
2 ×

1+ batch_variance
12: return lr
13: end procedure

Specifically designed for neural network training, the
AutoCyclicLR algorithm provides a dynamic method for
adjusting the learning rate. It starts by making a blank list
called vars in order to store variance values. Autocorrelation
is calculated, the output is subjected to sigmoid processing,
and the variance is inserted into the vars list after each
iteration over batches of data (batch_data). Next, we compute
batch_variance, which is the mean of these variances. By cal-
culating the location inside the cycle, the method ascertains
the current cycle by using the step_size and last_epoch
hyperparameters. After that, a cosine annealing schedule that
takes into account the batch_variance is used to modify the
learning rate (lr). As the procedure’s output, the ultimate
learning rate is then given back. This innovative approach
intricately employs autocorrelation insights to dynamically
modulate the learning rate throughout the training process,
contributing to more nuanced and effective optimization of
neural networks.

IV. TIMESERIES DATASETS
A. ETTM2 DATASET
The ETTm2 dataset, compiled by Beijing Guowang Fuda
Science & Technology Development Company [39], covers
two years, from July 1, 2016, to June 26, 2018, and
captures the electricity distribution dynamics at 15-minute
intervals.With 69,680 data points, it includes parameters such
as High Useful Load, High Useless Load, Middle Useful
Load, Middle Useless Load, Low Useful Load, Low Useless
Load, and Oil Temperature. Reflecting electricity usage
patterns influenced by weekdays, holidays, seasons, and
temperature, the complexity of the dataset is highlighted by
seasonal patterns and a substantial variance value of 141,288.
This emphasizes the necessity for advanced modeling and
optimization techniques in the electricity distribution domain.
Figure 3 provides a visual representation of the data series.

FIGURE 3. Oil temperature feature series visualization.

B. WIND TURBINE DATASET
The following data from a wind turbine contains various data
about the turbine speed, rotor, and the energy generated as
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FIGURE 4. ActivePower feature series visualization.

Active Power. The data was recorded from January 2018 to
March 2020. The data was recorded at intervals of every
10 minutes, so there are 118,224 data points. It is known
that the date has a fairly high variance of 373,653.637. The
following Figure 4 visualizes the Active Power series.

C. M4 DATASET
The M4 competition is a pivotal challenge in time series
Forecasting and serves as a benchmark for evaluating various
models in real-world scenarios. Understanding its develop-
ment and findings is crucial for navigating contemporary
forecasting techniques. The M4 dataset, known for its noisy
nature and high ambient variance of 48,236,882.24078,
presents a significant challenge. Figure 5 visually captures
the complexity of the M4 data series.

FIGURE 5. V2 feature series visualization.

V. EXPERIMENTAL RESULTS AND DISCUSSION
We have demonstrated the effectiveness of the proposed
autocorrelation-based cyclic learning rate (AutoCyclic) and
compared it with two learning rate methods, namely the
Adams optimizer and cosine cyclic learning rate, on three
time series datasets. For the backbone of the model to be
used for prediction, Deep Transformer, we then compared
two other architectures namely LSTM and RNN.

All experiments were trained and evaluated under Win-
dows using an Intel(R) Core-i7-10750H CPU @ 2.60GHz,
16GB RAM, and a GeForce GTX 1650 GPU with 4GB of
RAM. We implemented all models and AutoCyclic methods
based on the Torch deep learning framework and the Pytorch
Forecasting library.

A. EVALUATION METRICS
In the context of this research, two essential evaluation
metrics, Mean Absolute Percentage Error (MAPE) and
Mean Absolute Error (MAE), were employed to assess the
performance of the forecasting models. MAPE, calculated as
the average percentage difference between the predicted (ȳt )
and observed (yt ) values over a given period T , is expressed
by the Equation 5.

MAPE =
1
T

T∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣× 100 (5)

This metric provides a relative measure of accuracy, offer-
ing insights into the average percentage difference between
predicted and actual values. Meanwhile, MAE, computed
as the average absolute difference between predicted and
observed values, is represented by the Equation 6.

MAE =
1
T

T∑
t=1

|yt − ŷt | (6)

Furthermore, Root Mean Squared Error (RMSE) was
employed as a loss function for model training. RMSE
assesses the square root of the average of the squared
differences between predicted and observed values over a
given period T is represented by Equation 7.

RMSE =

√√√√ 1
T

T∑
t=1

(yt − ŷt )2 (7)

The use of MAPE and MAE is justified by their capacity
to offer a comprehensive analysis of predicting accuracy
that takes absolute and relative mistakes into account. MAE
concentrates on the absolute size of mistakes, whereasMAPE
offers information on the accuracy percentage-wise. As a
loss function, RMSE makes sure that the total squared
error is minimized during training, which promotes model
convergence. The goal of this combination of assessment
measures and loss function is to optimize the model for
precise predictions in real-world settings and to thoroughly
examine the forecasting performance.

B. TRAIN SETTING
1) DATA RATIO AND NUMBER OF EXPERIMENTS
In this research, we divided the dataset into three parts,
namely, training and validation, with a ratio of 80%:20%,
which was normalized within the range [-1,1]. The testing
data comprised 120 data points. To standardize the Cyclic
Learning Rate pattern, each data point underwent 50 steps
during each training iteration, with batch sizes for M4,
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ETTm2, and WindTurbine set to 67, 1114, and 1510, respec-
tively. Additionally, we subsequently trained themodel on the
training and validation sets using the optimal configuration
and then evaluated its performance on the test set. This
two-phase approach ensures a comprehensive assessment
of the model’s generalization capabilities across different
datasets.

2) BACKBONE ARCHITECTURES
In this study, we used three different deep transformer model
architectures, each tailored to optimize its respective dataset,
along with the determination of optimal AutoCyclic hyperpa-
rameters. Since each dataset exhibits unique characteristics,
we utilized three different models to account for these
variations. In the ‘‘TESTING ON A DIFFERENT MODEL’’
sub-section, a comparative analysis of models was performed
using a single-layer LSTM/RNN with 16 neurons. Table 1
provides an overview of the hyperparameters of the Deep
Transformer models utilized in the study.

TABLE 1. Hyperparameters of the deep transformer for each dataset.

C. AUTOCYCLIC HYPERPARAMETERS
1) M4 DATASET
The model specified in Table 1 for the M4 dataset under-
went a thorough evaluation using the AutoCyclic learning
rate approach to determine the optimal hyperparameters.
The initial phase involved the Learning Rate Range Test
shown in Figure 2, which identifies the base_lr or ninit
as 0.00019179102616724887. Attention then shifted to two
critical hyperparameters, max_lr or nmax and step_size, which
are key to influencing model performance. Systematic testing
explored various combinations to identify configurations that
yielded the most favorable results. This rigorous evaluation
ensures the model’s adaptability to the distinctive character-
istics of the M4 dataset, improving overall performance.

Table 2 presents the outcomes of the experiments where
two hyperparameters max_lr or nmax and step_size, were
explored through various combinations. The determination
of the optimal values, guided by the criterion of the lowest
Mean Absolute Percentage Error (MAPE), revealed that 8 is
the optimal value for max_lr or nmax and 15 for step_size.
Similarly, if the lowest Mean Absolute Error (MAE) was
prioritized, the optimal values were 7 for max_lr or nmax and
15 for step_size. The selection of the best hyperparameters
values was a balanced consideration of both the MAPE and

TABLE 2. Test results for max_lr and step_size hyperparameters for the
M4 dataset.

MAE, resulting in the selection of 7 for max_lr or nmax and
15 for step_size.

FIGURE 6. Batch variance of M4 dataset for each step in one epoch.

Figure 6 shows the calculated variance at each step.
Following the successful implementation of autocyclic, the
next step was to train with autocyclic, where the variance
in the image was calculated according to Algorithm 1. This
algorithm entails extracting the autocorrelation values for
each batch, computing their variances, and subsequently
taking the average. In Algorithm 1, the variance values
presented in Figure 6 correspond to the values derived from
line 8, specifically batch_variance.The calculated variances
provide valuable insights into the fluctuation patterns dur-
ing the training process, contributing to a comprehensive
understanding of the autocyclic training dynamics. The
visualization of these variance values aids in interpreting
the impact of autocyclic training on the performance of the
model.

The outcomes of the learning rate pattern, are presented
in Figure 7. Aligned with the predetermined ninit, nmax, and
step_size values, the pattern displays two distinct peaks.
Despite resembling a typical wave, each step had unique
values. For example, the first peak (step 14) had a value of
0.0013872499, while the second peak (step 44) had a value
of 0.0013911905417252786. This alignment corresponds
to Figure 6, where step 14 had a lower batch variance
compared to step 44. This confirms that the learning rate
adjusts according to its batch variance, highlighting the
interplay between learning rate adjustments and variance
dynamics. These insights contribute to a more comprehensive
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FIGURE 7. Learning rate pattern generated by autoCyclic on M4 data.

analysis of the AutoCyclic training process and improve our
understanding of the intricate relationship between learning
rate adjustments and training dynamics.

2) ETTM2 DATASET
The ETTm2model in Table 1 underwent AutoCyclic learning
rate testing, optimizing base_lr at 0.000689261 through the
Learning Rate Range Test in Figure 2. Additionally, max_lr
and step_size were tested to ensure refinedAutoCyclic hyper-
parameters for optimal model performance in subsequent
training phases.

TABLE 3. Test results for max_lr and step_size hyperparameters for the
ETTm2 dataset.

The results of testing 2 hyperparameters, max_lr or nmax
and step_size, with various combinations are presented in
Table 3. Unlike M4, in this test, both max_lr and step_size
exhibited consistently low values for both MAPE and MAE
losses. Therefore, the values of 3 for the max_lr multiplier
and 25 for step_size were chosen.

FIGURE 8. Batch variance of the ETTm2 dataset for each step in one
epoch.

In Figure 8, the visual representation of variance calcu-
lation results at each training step is depicted. Following

the autocyclic process, training involved the extraction of
autocorrelation values, which are crucial for measuring
the correlation between the current batch and preceding
batches. The subsequent computation of batch variances
using learning rate and batch variance highlights how
the learning rate adapts to and influences the temporal
dependencies within each batch. This nuanced approach,
which considers both autocorrelation and batch variance,
adds sophistication to the training dynamics, contributes to
a more comprehensive evaluation of the adaptation of the
learning rate to temporal characteristics, and emphasizes
their dual importance in optimizing the training process for
improved model performance.

FIGURE 9. Learning rate pattern generated by autoCyclic on ETTm2 data.

The results of the AutoCyclic pattern are shown in
Figure 9, forming a wave with a single peak based on
the selected ninit, nmax, and step_size values. The impact
of fluctuating variance due to autocorrelation was evident
in steps 20-30. This was consistent with Figure 8, where
fluctuations were observed during steps 20-30.

3) WIND TURBINE DATASET
Similar to the M4 and ETTm2 datasets, the Wind Turbine
model in Table 4 was tested with AutoCyclic learning rate
to determine the optimal AutoCyclic hyperparameters. First,
the model was subjected to the Learning Rate Range Test
depicted in Figure 2, which resulted in the identification of
the optimal learning rate, also referred to as base_lr or ninit,
which is 0.0002782559402207. Subsequently, two additional
hyperparameters were tested: max_lr or nmax and step_size.

Table 4 displays the results of testing two hyperparameters,
max_lr or nmax and step_size, with various combinations.
Similar to ETTm2, in this testing, both max_lr and step_size
showed equally low values for both loss metrics, MAPE and
MAE. Therefore, the values of 7 were chosen for the max_lr
multiplier and 25 for the step_size.

Figure 10 illustrates the variance generated by row 8 in
Algorithm 1. The resulting variance appeared to fluctuate but
had a very small range. This was due to the non-fluctuating
data, which caused the learning rate values to be less curly
and more smooth.
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TABLE 4. Test results for max_lr and step_size hyperparameters for Wind
Turbine dataset.

FIGURE 10. Batch variance of the wind turbine dataset for each step in
one epoch.

FIGURE 11. Learning rate pattern generated by autocyclic on wind turbine
data.

The pattern of the learning rate, visualized in Figure 11
shows two troughs corresponding to the predetermined ninit,
nmax, and step_size values. Despite the wave-like appearance,
each step had a distinct value. For example, in the first trough,
step 0 had a value of 0.000285145, while in the second
trough, step 49 had a value of 0.00027825. This alignment is
consistent with Figure 10, where step 14 had a batch variance
of 0.04661, which was higher than step 49 with 0.04562.

D. NUMBER OF INPUT FEATURES
Furthermore, the performance of the model was tested
with varying counts of feature: 1 feature (univariate) and
multivariate with 2 and 3 features. This study employs two
datasets with multiple features: ETTm2 and Wind Turbine.

The ETTm2 dataset comprises two variables, MULL and
HULL, with correlations of 0.5 and 0.34, respectively,
with the predicted feature (Oil Temperature). Meanwhile,
in the Wind Turbine dataset, two features, WindSpeed
and GeneratorWinding1Temperature, had strong correlations
with Active Power, with values of 0.94 and 0.93, respectively.

TABLE 5. Testing the number of model features with ETTm2 data.

Table 5 presents the outcomes of testing the Deep
Transformer model with AutoCyclic over different numbers
of input variables. For the multivariate setting with two
features, namely oil temperature and MULL, the results
showed significantly worse performance compared to all the
loss values obtained in the univariate case. Similarly, when
three features were included, the performance of the model,
as evidenced by higher MAPE and MAE values, was inferior
to the two-feature configuration, reinforcing the conclusion
that the univariate approach focusing on the oil temperature
feature yielded more favorable results.

TABLE 6. Testing the number of model features with Wind Turbine data.

The results of testing the Deep Transformer with Auto-
Cyclic on the wind turbine data are presented in Table 6.
Similar to the ETTm2 data, models incorporating multiple
features tended to degrade the overall model performance.
The loss values of MAPE and MAE for multi-feature
configurations proved to be worse than those for univariate
settings, and increasing the number of features further
worsened the model performance.

E. TESTING ON A DIFFERENT MODEL
The comparison results in Table 7 illustrate the performance
of different models, including Deep Transformer (DT),
LSTM, and RNN, each paired with AutoCyclic, Cosine
Cyclic Learning Rate (CLR), and Adam Optimizer. The
results showed that AutoCyclic consistently achieved the
lowest MAPE and MAE values across different scenarios.
Cosine CLR performed well for DT and LSTM models but
gave poorer results for RNN compared to Adam Optimizer.
Adam Optimizer consistently ranked last in performance
across all scenarios.

Figure 12 shows the prediction results of the M4 test data
with 120 data points using three different models, DT, LSTM,
and RNN, each employing the best-performing scheduler.
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TABLE 7. Comparison of M4 data test results with other models.

FIGURE 12. Test data prediction results with different models for M4
dataset.

It is evident that DT outperformed the other two models,
approaching the original values, followed by LSTM and
RNN.

Table 8 compares DT, LSTM, and RNN models with
different schedulers, including AutoCyclic, Cosine Cyclic
Learning Rate, and Adams Optimizer. AutoCyclic consis-
tently achieved the lowest MAPE and MAE values in all
scenarios. Although Cosine CLR worked well for DT and
RNN, LSTM performed worse than Adams Optimizer, which
consistently ranked last.

TABLE 8. Comparison of ETTm2 data test results with other models.

In Figure 13, the prediction results for the ETTm2 dataset
are meticulously presented, showing the outcomes achieved
with the optimal scheduler for each model. Unmistakably,
the Deep Transformer model stood out once again, demon-
strating superior performance compared to the other two

FIGURE 13. Test data prediction results with different models for ETTm2
dataset.

models, which exhibited less effective predictive capabilities.
Notably, the alternative models exhibited mispredictions in
the 60-70 timestamp range, resulting in elevated loss values.
The graphical representation in Figure 13 provides a compre-
hensive visual insight into the comparative performance of
these models on the ETTm2 dataset, with the Deep Trans-
former model notably excelling across various timestamps.
This nuanced analysis affords a deeper understanding of the
model’s strengths and weaknesses, particularly in handling
specific timestamp ranges, and underscores the significance
of choosing an appropriate scheduler to enhance overall
predictive accuracy.

Table 9 provides a detailed and comprehensive comparison
of multiple models, with AutoCyclic consistently demon-
strating superior performance over alternative optimizers
across all models. A notable observation was the contrast
in results compared to the findings in the two preceding
datasets, where Cosine CLR consistently produced more
favorable outcomes than Adam Optimizer across all models,
confirming the relatively less effective performance of the
latter. This nuanced exploration underscores the robustness of
AutoCyclic and highlights the varying impact of optimization
strategies across diverse datasets, providing valuable insights
into the understanding of model behavior in different
contexts.

TABLE 9. Comparison of Wind Turbine data test results with other
models.
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FIGURE 14. Test data prediction results with different models for wind
turbine dataset.

Figure 14 shows the prediction results for the wind
turbine dataset using the best Scheduler for each model.
The three models, namely Deep Transformer (DT), LSTM,
and RNN, showed prediction outcomes with remarkably
close values, indicating a subtle variance in their perfor-
mance. This marginal difference suggests that the models
were closely aligned in their predictive capabilities when
utilizing the identified optimal Scheduler configurations. The
narrow spread in prediction results emphasizes the nuanced
differences between the models and highlights the challenge
of discerning significant variations in their performance on
the wind turbine dataset.

VI. CONCLUSION
In conclusion, this study highlights the exceptional pro-
ficiency of AutoCyclic to leverage autocorrelation to dis-
cern temporal patterns in data. Through a comprehensive
comparison involving models such as Deep Transformer,
LSTM, and RNN, alongside optimization methods such
as AutoCyclic, Cosine Cyclic Learning Rate (CLR), and
Adams Optimizer, AutoCyclic consistently outperforms its
counterparts. The study, which spans diverse scenarios and
datasets like M4, ETTm2, and wind turbine, underscores
AutoCyclic’s adaptability and reliability in addressing chal-
lenges associated with traditional optimization techniques.
The quantitative results in Tables 7, 8, and 9 reveal
autocyclic’s consistently superior performance in achieving
the lowest Mean Absolute Percentage Error (MAPE) and
Mean Absolute Error (MAE) values, surpassing both Cosine
CLR and Adams Optimizer. The visual representations in
Figures 12, 13, and 14 reinforce autocyclic’s predictive
prowess across diverse datasets. This study contributes
significantly to the advancement of time series forecasting
methodologies by emphasizing the effectiveness and prac-
tical applicability of AutoCyclic in addressing real-world

forecasting challenges, with a specific emphasis on leverag-
ing autocorrelation.

Given the prevailing preference for transformer-based
models in time series forecasting, this study strongly rec-
ommends exploring autocyclic within optimized transformer
models such as informer [39], fedformer [40], or autoformer
[36]. Such exploration aims to establish superior benchmarks,
emphasizing the crucial role of autocorrelation in enhancing
the effectiveness of autocyclic. This study paves the way for
nuanced investigations of the interplay between autocorrela-
tion and transformer-based forecasting, promising ongoing
refinements in forecasting methodologies.
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