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ABSTRACT Speaker identification in challenging acoustic environments, influenced by noise, reverbera-
tion, and emotional fluctuations, requires improved feature extraction techniques. Although existingmethods
effectively extract distinct acoustic features, they show limitations in these adverse settings. To overcome
these limitations, we propose the Temporal Context-Enhanced Features (TCEF) approach, which provides
a consistent audio representation for better performance under various acoustic conditions. TCEF leverages
a context window to average features in adjacent frames, effectively reducing short-term variations caused
by noise, reverberation, fluctuations in emotional speech, and those in neutral recordings. This approach
improves the distinctive features of a speaker voice, improving speaker identification in challenging and
neutral acoustic environments. To evaluate the performance of TCEF against conventional features, One-
Dimensional Convolutional Neural Network (1D-CNN) was used for a detailed frame-level analysis and
Long Short-Term Memory (LSTM) for a comprehensive sequence-level analysis.We used four datasets to
assess the effectiveness of the TCEF approach. The GRID and RAVDESS datasets represent neutral and
emotional speech, respectively. To test the robustness of our system under adverse acoustic conditions,
we created two additional datasets: GRID-NR and RAVDESS-NR. These are modified versions of the
original GRID and RAVDESS, incorporating added noise and reverberation. Performance evaluation results
showed that TCEF significantly outperformed existing feature extraction methods in identifying speakers in
diverse acoustic environments.

INDEX TERMS Speaker identification, feature extraction, challenging acoustic environments, temporal
context-enhanced features, convolutional neural networks, long short-term memory.

I. INTRODUCTION
Automatic speaker identification (ASI), which is the process
of extracting a speaker identity based on their vocal
characteristics [12], [15], has become a significant focus
in research and real-world applications. This technology is
essential in various sectors, including user authentication [6],
voice-controlled devices [14], smart home personalization,
and forensic analysis [27], [45]. The growing need for
these applications highlights the importance of creating
accurate speaker identification systems. To achieve this
accuracy, a crucial component is feature extraction, where
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voice recordings are transformed into distinct characteristics
representing individual unique vocal features.

Several feature extraction techniques have been used
to extract these vocal features. Among the techniques
that are used most frequently are Mel-Frequency Cep-
stral Coefficients (MFCC) [28], [33], [43], Gammatone
Frequency Cepstral Coefficients (GTCC) [3], [32], and
Power-Normalized Cepstral Coefficients (PNCC) [17], [30].
MFCC is a widely used technique in speech processing that
captures essential auditory patterns. GTCC is biologically
inspired and designed to mirror the human auditory system
closely. On the other hand, PNCC incorporates additional
noise reduction techniques to enhance their ability to
extract effective features. Although these techniques perform
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FIGURE 1. Comparative spectrograms of a sample speech under varying acoustic conditions (NR: Noise and Reverberation.).

well in various situations, they often struggle to extract
effective features when dealing with recordings affected by
noise, reverberation, and emotions, making it difficult to
identify speakers accurately [16], [45]. Figure 1 illustrates
the visual representation of the spectrograms of a sample
speech audio under different conditions: neutral speech,
neutral speech with added noise and reverberation, emotional
speech, and emotional speech with noise and reverberation.
This illustration highlights the challenges posed by noise,
reverberation, and emotional states in obscuring distinct
vocal characteristics, complicating feature extraction, and,
subsequently, the speaker identification process.

To address these challenges, researchers have investigated
several approaches. Multi-condition training is a strategy that
has been implemented, involving the addition of noise and
reverberation to training data to improve the robustness of
speaker identification [36], [38]. Although this approach is
effective, it often demands extensive labeled datasets. Other
research efforts have focused on the fusion of different feature
extraction methods. In the study by Chowdhury et al. [5],
MFCC were combined with Linear Predictive Coding to
enhance speaker recognition performance under challenging
conditions. Similarly, Salvati et al. [32] integrated frequency-
domain features, specifically GTCC, with time-domain raw
features to improve the accuracy rate under adverse noise
and reverberation conditions. However, while expanding
the set of features can enhance the discriminative ability
of the features extracted from speech, it also increases
the dimensionality of the feature vectors. This expanded
dimensionality adds complexity to the computational tasks
involved in feature extraction and model training, making
them more resource-intensive. Additionally, there have been
efforts to adapt conventional feature extraction methods to
improve their robustness against environmental noise and
reverberation. Modifications have been proposed for MFCC
[13], GTCC [37], and PNCC [22], [47]. These enhanced
feature variants introduce additional complexity to the feature
extraction process by incorporating extra computational
operations, such as adaptive noise compensation or non-linear
transformation techniques, resulting in increased computa-
tional demands compared to the original feature computation.

To address the limitations of speaker identification
in diverse acoustic environments, this study introduces

Temporal Context-Enhanced Features (TCEF). A method
that averages features across adjacent frames within a
context window. This approach effectively reduces short-time
variations caused by noise, reverberation, and fluctuations
in emotional speech, as well as those in neutral recordings.
Consequently, TCEF provides more robust features, enhanc-
ing speaker identification accuracy in challenging and neutral
conditions.

The main contributions of this paper can be summarized as
follows.

• TCEF for robust feature extraction under diverse
recording conditions for speaker identification.

• Integration of TCEF into conventional feature extraction
methods including MFCC, GTCC, and PNCC.

• Application of One-Dimensional Convolutional Neural
Network (1D-CNN) for frame-level analysis and Long
Short-Term Memory (LSTM) for sequence-level analy-
sis to assess performance differences between TCEF and
conventional features.

• Creation of GRID-NR and RAVDESS-NR datasets,
incorporating noise and reverberation, to test the
robustness of the TCEF approach under varied acoustic
conditions.

• Extensive experiments were carried out on GRID,
RAVDESS, GRID-NR, and RAVDESS-NR to evaluate
the performance of TCEF compared to conventional
features for speaker identification.

The remainder of this paper is structured as follows.
Section II presents the TCEF. Section III discusses the
integration of TCEF with conventional feature extraction
methods and the inclusion of dynamic features. Section IV
describes the experimental setup, which includes the neural
networks employed, the descriptions of the datasets, and
a detailed analysis of the experimental results. Section V
discusses our findings. Section VI covers the reproducibility
of the evaluation, and, finally, Section VII concludes the
paper.

II. PROPOSED APPROACH
A. PROBLEM FORMULATION
Speaker identification is the task of determining the iden-
tity of a speaker from a given audio recording. In our
investigation, we focus on a set of n speakers denoted
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S = {s1, s2, . . . , sn}. Each speaker si in the set S is
associated with their own set of audio recordings Ai =

{ai1, ai2, . . . , aio}, where o represents the number of record-
ings for speaker si, and these are captured under diverse
acoustic conditions that introduce different challenges to
the identification process. These conditions include neutral
speech, emotional speech, neutral speech with noise and
reverberation, and emotional speech with noise and reverber-
ation, resulting in four main conditions:

C1 : Neutral speech

C2 : Neutral speech with noise and reverberation

C3 : Emotional speech

C4 : Emotional speech with noise and reverberation

Extracting distinct features representing each speaker is nec-
essary to achieve effective speaker identification. However,
human speech is inherently non-stationary over long periods.
To overcome this challenge, a framing operation is used to
segment each audio recording into shorter frames, where the
speech features are assumed to be stationary. This operation
results in a set of frames F = {f1, f2, . . . , fM } for each audio
recording, where M represents the total number of frames
in the audio recording. When applying the feature extraction
function E to this frame set, we obtain

E(F) = 8 = {81, 82, . . . , 8M } (1)

where each 8i represents the extracted features from the
corresponding frame fi in neutral speech C1. To effectively
handle real-world scenarios, we also consider the effects of
conditions C2, C3, and C4 on these extracted features 8.
These conditions introduce significant variations, posing dif-
ferent acoustic challenges in speaker identification. To model
these variations, we define a series of transformations on
the frame set F . The function N models the influence of
noise, while R models the effects of reverberation, and
EM represents the modulation of features due to emotional
states in speech. For neutral speech impacted by noise
and reverberation, we apply a composite function N (R(·)).
In the case of emotional speech with noise and reverberation,
N (R(EM (·))) is used. The following equations represent these
transformations applied to F :

Fnoise = {N (f1), . . . ,N (fM )} (2)

Freverb = {R(f1), . . . ,R(fM )} (3)

Femotion = {EM (f1), . . . ,EM (fM )} (4)

Fnnr = {N (R(f1)), . . . ,N (R(fM ))} (5)

Fenr = {N (R(EM (f1))), . . . ,N (R(EM (fM )))} (6)

Processing these modified frame sets with the feature
extraction process E , we obtain the corresponding feature
sets:

8noise = E(Fnoise), (7)

8reverb = E(Freverb), (8)

8emotion = E(Femotion), (9)

8nnr = E(Fnnr), (10)

8enr = E(Fenr). (11)

Given an audio recording a from a set A, under a condition
Cj, our objective is to match the audio recording a to
the correct speaker identity from the set S. Conventional
feature extraction methods, denoted by E , struggle to extract
speaker-specific features in diverse acoustic environments,
leading to challenges in accurate speaker identification.
To overcome this limitation, we introduce an advanced
feature extraction approach, denoted TCEF. This approach
is designed to mitigate the impacts of noise, reverberation,
and emotional states on the feature extraction process.
By improving the extraction process to be more robust in
diverse environments, TCEF aims to significantly improve
speaker identification performance.

B. TEMPORAL CONTEXT-ENHANCED FEATURES
Feature extraction based on individual frames can produce
features susceptible to short-time variations in acoustic
features caused by factors such as noise, reverberation, emo-
tional fluctuations, speaking styles, and microphone quality.
These variations may result in inconsistent representations
of the distinctive vocal features of a speaker, especially in
challenging recording conditions. To address this challenge,
we introduce TCEF. This approach integrates the current
framewith its neighboring ones, employing a sliding-window
technique to smooth out short-term variations from noise,
reverberation, emotional fluctuations, and those inherent in
neutral speech, thereby emphasizing the distinct features of
a speaker voice. Consider a frame fi with its corresponding
feature set 8i = {φi1, φi2, . . . , φip}, where each φij is a
feature at index j, and p represents the total number of
features extracted from each frame. The feature set can
reflect speaker-specific features under various conditions
such as neutral 8, neutral with noise and reverberation 8nnr,
emotional8emotion, or emotional with noise and reverberation
8enr, The TCEF for frame fi is calculated by averaging the
features of the current frame fi and its next N − 1 frames.
Here, N represents the size of the context window, a key
hyper-parameter that includes the total number of frames to
consider for the averaging process. As the context window
slides over the sequence of audio frames, it coversM−N + 1
frames, where M is the total number of frames. To ensure
that all frames are included in the feature extraction process,
the context window size Ni for the ith frame is adaptively
computed as follows:

Ni = min(N ,M−i+ 1) (12)

For any particular feature indexed by j within 8i, the
temporal context-enhanced feature TCEFij is subsequently
calculated using the context window size Ni as follows:

TCEFij =
1
Ni

Ni−1∑
k=0

φi+k,j for j = 1, . . . , p (13)
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The TCEF algorithm is comprehensively detailed in
the following pseudocode, which outlines the sequence of
operations performed to derive the enhanced features.

Algorithm 1 Temporal Context-Enhanced Features (TCEF)
Require: Set of speakers S, set of audio recordings per

speaker Ai, context window size N
Ensure: Enhanced features TCEF for each recording
1: for each speaker si in S do
2: for each recording aij in Ai do
3: TCEFaij = []
4: Divide aij into frames F = {f1, f2, . . . , fM }

5: for c = 1 to M do
6: TCEFc = []
7: Nc = min(N ,M−c+ 1)
8: Extract 8c = {φc1, φc2, . . . , φcp} from fc
9: for d = 1 to p do

10: TCEFcd =
1
Nc

∑Nc−1
k=0 φc+k,d

11: TCEFc.Add(TCEFcd )
12: end for
13: TCEFaij .Add(TCEFc)
14: end for
15: end for
16: end for

III. ENHANCED FEATURE EXTRACTION TECHNIQUES
Feature extraction is one of the most critical aspects of ASI.
It converts raw audio signals into features representing the
distinct characteristics of speakers’ voices. These features
are then used as the primary input for modeling processes,
improving speaker identification accuracy. This section offers
an overview of widely used methods in this field. Subse-
quently, we describe how our Temporal Context-Enhanced
Features technique enhances these conventional methods.

A. CONVENTIONAL FEATURE EXTRACTION TECHNIQUES
1) MFCC
MFCC [24], is a technique frequently used in speech and
audio research for its efficacy in capturing significant char-
acteristics of speech signals [2], [11], [46]. This technique,
inspired by the human ear frequency response, is beneficial in
tasks such as speaker identification. The process of obtaining
these coefficients comprises the following steps:
Pre-emphasis: A filter processes the speech signal, ampli-

fying its higher frequencies. This step ensures a balanced
representation of both low- and high-frequency components.
Framing: Given the non-stationary nature of speech sig-

nals, the pre-emphasised audio is segmented into overlapping
intervals, usually of 10-50 ms [41]. In these frames, the signal
can be assumed to be stationary for such a short interval,
facilitating the subsequent feature extraction process.
Windowing: A window function is applied to each frame

tominimize edge discontinuities. This ensures that the frames
are more suitable for subsequent frequency analysis, ensuring

an accurate representation of the frequency components in the
signal.
Fast Fourier Transform (FFT): The windowed frame is

processed using the FFT, converting from time to frequency
domain. This provides a spectrum that indicates the frequency
components of the frame.
Mel Filter Bank: The spectrum is processed using triangu-

lar filters to map it to theMel scale, consistent with the human
ear frequency response. This produces a Mel spectrum that
closely matches human auditory perception.
Log Compression: To align with human perception of

sound intensity, the energy-representing values in the Mel
spectrum are subjected to logarithmic compression, produc-
ing a log Mel spectrum.
Discrete Cosine Transform (DCT): The log Mel spectrum

is then transformed using DCT. This transformation results
in MFCC, which are represented as a series of decorrelated
coefficients, ensuring that each coefficient offers unique
information for subsequent modeling.Mathematically, the jth
MFCC coefficient of the ith frame is computed as [1]:

MFCCij =

K∑
k=1

log(Smi(k)) cos
(

π j(2k − 1)
2K

)
(14)

where K is the total number of Mel filter banks used, Smi(k)
represents the power spectrum of the ith frame as processed
by the kth Mel filter bank, and j ranges from 1 to the desired
number of cepstral coefficients p.

2) GTCC
In response to the challenges of speaker identification under
noisy conditions and extending from the concept of MFCC,
Valero and Alias [41] improved the extraction of audio
features by introducing GTCC. Following this development,
GTCC has been adopted in a variety of studies focusing on
robust speech and speaker recognition systems [19], [39]. The
computation process of GTCC is similar to that of MFCC.
The audio signal is segmented into overlapping frames,
usually 10-50 ms. Then, a windowing function is applied to
each frame. Subsequently, the FFT is used on the windowed
signal to derive the frequency spectrum. In contrast to
MFCC, which uses Mel filter banks, GTCC employs the
Gammatone filter bank, which is inspired by the cochlea
auditory processing comprising a series of overlapping
filters, each focused on a specific frequency. When passed
through these filters, the frequency spectrum from the FFT
produces a cochleagram. After the cochleagram is obtained,
a logarithmic compression is applied, reflecting human sound
intensity perception. Following this, a DCT is performed
to decorrelate the coefficients obtained from the GTCC
processing, providing unique coefficients for subsequent
analysis. Mathematically, the jth GTCC coefficient of the ith
frame is computed as [41]:

GTCCij =

K∑
k=1

log(Gmi(k)) cos
(

π j(2k − 1)
2K

)
(15)
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FIGURE 2. Diagrams of the computation of conventional feature extraction techniques: (a) MFCC, (b) GTCC, and (c) PNCC.

where K is the total number of Gammatone filter banks used,
Gmi(k) represents the output energy of the kth Gammatone
filter bank for the ith frame, and j ranges from 1 to the desired
number of cepstral coefficients p.

3) PNCC
PNCC, developed by Kim and Stern [18], is a tech-
nique designed to improve speech recognition in varying
acoustic environments. The effectiveness of PNCC has
been recognized and further explored in various research
works [21], [31], demonstrating its robustness in diverse
acoustic settings. The computation process for PNCC starts
with the audio signal that undergoes pre-emphasis to amplify
its high-frequency components. Subsequently, the enhanced

signal is segmented into multiple frames, which are then
windowed using a window function to minimize edge
discontinuities. The windowed frame is transformed into a
frequency spectrum using FFT. Subsequent enhancements
are achieved by introducing gammatone filter banks designed
to model human auditory perception. The asymmetric noise
suppression system is used with temporal masking to handle
the varied noise levels within the signal. This approach distin-
guishes the noise spectrum, and adjusted the audio intensity,
ensuring that essential audio elements are differentiated from
background disturbances. After applying gammatone filter
banks and medium-time analysis, spectral weight smoothing
ensures uniform power distribution across all frequencies,
producing a balanced spectral representation. Following this,
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mean power normalization modifies the signal amplitude,
providing uniform intensity levels and reducing significant
fluctuations in the audio. In addition, a power law function
with an exponent of 1/15 is introduced. This function
captures the relationship between perceived sound levels and
the human auditory system response. Finally, DCT is used
to produce the PNCC coefficients. Mathematically, the jth
PNCC coefficient of the ith frame is computed as [18]:

PNCCij =

K∑
k=1

(PowerNormi(k))α cos
(

π j(2k − 1)
2K

)
(16)

where K is the total number of critical-band filters used,
PowerNormi(k) is the normalized energy output of the
kth gammatone filter bank for the ith frame after power
normalization, α is the exponent in the power-law non-
linearity, typically set to 1/15, and j ranges from 1 to the
desired number of cepstral coefficients p.
Fig. 2 provides a visual representation of the conventional

feature extraction processes. (a) represents the block diagram
of the MFCC process, (b) illustrates the GTCC process, and
(c) demonstrates the PNCC process, each highlighting the
distinct steps involved in these techniques.

B. TEMPORAL CONTEXT-ENHANCED FEATURE
EXTRACTION TECHNIQUES
Conventional feature extraction techniques MFCC, GTCC,
and PNCC are crucial for speaker identification but often
encounter challenges in diverse acoustic conditions, includ-
ing background noise, reverberation, and variations in
emotional states. It is critical to refine these techniques
to ensure robust speaker identification. In response to this
challenge, conventional MFCC, GTCC, and PNCC features
have been enhanced using TCEF. As illustrated in Fig. 3,
an input speech signal is analyzed using MFCC, GTCC,
or PNCC techniques to produce conventional features. The
feature windowing then applies a sliding window operation
across these feature sequences with a context size of Ni
frames. For parts of the signal where the number of remaining
frames is less than the set context window size N , the context
window size Ni is adjusted, as specified in (12), to ensure
that all frames are included in the analysis. Following this
adjustment, the Feature Averaging process computes the
average for each coefficient by combining the corresponding
coefficients from all frames within the window, as detailed
in (13). This averaging operation results in TCEF vectors
that provide a richer and more robust representation of the
conventional features. Extending the basic MFCC features as
defined in (14), the TCEF for MFCC denoted M_TCEF is
defined as follows:

M_TCEFij =
1
Ni

Ni−1∑
k=0

MFCCi+k,j for j = 1, . . . , p (17)

where M_TCEFij represents the TCEF of MFCC feature for
the jth coefficient at the ith frame, Ni is context window size,
and MFCCi+k,j is the conventional MFCC feature for the

jth coefficient at the (i + k)th frame. Similarly, the TCEF
representations of GTCC and PNCC features, as delineated
in (15) and (16) respectively, are defined as follows:

G_TCEFij =
1
Ni

Ni−1∑
k=0

GTCCi+k,j for j = 1, . . . , p (18)

P_TCEFij =
1
Ni

Ni−1∑
k=0

PNCCi+k,j for j = 1, . . . , p (19)

where G_TCEFij represents the TCEF of the GTCC feature
for the jth coefficient at the ith frame, GTCCi+k,j is
the conventional GTCC feature for the jth coefficient at
the (i + k)th frame, P_TCEFij denotes the TCEF of the
PNCC feature for the jth coefficient at the ith frame, and
PNCCi+k,j represents the conventional PNCC feature for the
jth coefficient at the (i+ k)th frame.

C. INCORPORATING DYNAMIC FEATURES IN TEMPORAL
CONTEXT-ENHANCED FEATURES
Dynamic features, delta 1 and delta-delta 11, representing
the first- and second-order derivatives of the extracted feature
vectors from speaker speech, were introduced by Furui [8]
and expanded by Lawrence [20] for speaker recognition
tasks. These features are crucial in speech processing, as they
capture the temporal dynamics inherent in speech features
over time. Specifically, 1 reflects the speed of change in
spectral features, while 11 indicates the acceleration of
this rate of change. This method effectively models the
dynamic and non-stationary nature of speech characteristic of
human articulation. The incorporation of delta 1 and delta-
delta 11 derivatives into conventional acoustic features,
namely MFCC , GTCC , and PNCC , denoted 8, signifi-
cantly enhances speaker identification. Various studies have
validated this enhancement [4], [35], [47]. The calculation
of these dynamic features is described by the following
equations for the first-order derivative of the conventional
feature vector 8:

18i =

∑L
τ=1(8i+τ − 8i−τ )

2
∑L

τ=1 τ 2
(20)

where i indexes the current frame for which the derivative
is computed, L denotes the number of frames considered
for computing first- and second-order derivatives, and 8i+τ

and 8i−τ represent the feature vectors of subsequent and
preceding frames relative to frame i. 2

∑L
τ=1 τ 2 normalizes

the values to ensure consistent weighting of features. For the
second-order derivative of the conventional feature vector 8:

118i =

∑L
τ=1(18i+τ − 18i−τ )

2
∑L

τ=1 τ 2
(21)

where i indexes the current frame for which we compute the
second-order derivative, and the terms 18i+τ and 18i−τ

are the first-order derivative values of the feature vectors for
the frames following and preceding frame i. To include first-
and second-order derivatives with the enhanced features,
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FIGURE 3. Process for generating temporal context enhanced features: Context window size (N), Frame count (M), and Conventional features (8).

M_TCEF , G_TCEF , and P_TCEF , referred to as TCEF,
we adopt a similar method as used for conventional features
but adapted for TCEF. This approach produces the delta
1TCEF and delta-delta 11TCEF derivatives, calculated for
frame i using the following equations:

1TCEFi =

∑L
τ=1(TCEFi+τ − TCEFi−τ )

2
∑L

τ=1 τ 2
(22)

11TCEFi =

∑L
τ=1(1TCEFi+τ − 1TCEFi−τ )

2
∑L

τ=1 τ 2
(23)

IV. EXPERIMENTAL SETUP
This section presents a comprehensive analysis of the per-
formance of TCEF compared to conventional features using
neural networkmodels. This comparison includes evaluations
at both the frame level and sequence level. Following this,
we describe the datasets used for speaker identification and
the baseline methods used for comparison. We detail the
experimental results after defining the evaluation metrics
used in our study.

A. PERFORMANCE EVALUATION OF TCEF AND
CONVENTIONAL FEATURES USING NEURAL NETWORKS
To validate the effectiveness of TCEF compared to con-
ventional methods in speaker identification, our study used
two distinct neural network models. 1D-CNN was explicitly
used for detailed analysis at the frame level, while an
LSTM network was used for a comprehensive evaluation of
sequence-level features.

1) FRAME-LEVEL ANALYSIS USING 1D-CNN
1D-CNN are widely recognized in speaker identification
for their ability to process and analyze complex audio
data, extracting distinct features essential to differentiate
individual speakers [5], [25], [42]. In our study, a 1D-CNN,
as shown in Fig. 4 (a), is used specifically for frame-level
feature analysis. Frame-level analysis using 1D-CNN plays
a crucial role in our comparative evaluation of TCEF and
conventional features in speaker identification. It enables us
to assess the effectiveness of both TCEF and conventional
features in distinguishing unique vocal characteristics within

individual frames in different acoustic environments. The
network starts with a convolutional layer that filters and
extracts relevant features from audio frames, using multiple
filters designed to target specific audio patterns crucial for
speaker differentiation. Following this, the ReLU activation
function is applied, introducing non-linearity that is vital
for recognizing complex audio patterns unique to different
speakers. Subsequent layers are organized into two distinct
blocks: Block 1 and Block 2. Each block includes convolu-
tional stages paired with batch normalization, followed by a
ReLU activation and then MaxPooling. Batch normalization
within these blocks accelerates and stabilizes the training by
adjusting and scaling activations, significantly contributing
to more effective model training. The MaxPooling layers in
each block reduce the dimensions of the processed features,
effectively downsampling the features and directing the net-
work analysis toward the most relevant features for speaker
identification. Following these blocks’ convolutional and
batch normalization layers, the network includes a flattening
layer. This layer transforms the multidimensional feature
maps into a single vector, a crucial step for transitioning the
data into the dense layers. These dense layers are integral to
associating the extracted features with specific output classes.
The network concludes with a dense layer using a softmax
activation function, which converts the learned features into
a probabilistic distribution over the identities of the potential
speakers.

2) SEQUENCE-LEVEL ANALYSIS USING LSTM
LSTM networks are widely used in speaker identification
due to their ability to handle temporal dependencies effec-
tively [26], [44]. These networks excel at capturing and
preserving information through sequences of data, which is
essential for recognizing speaker identity by analyzing speech
patterns that change over time. In our study, as shown in
Fig. 4 (b), we used LSTM networks for the sequence-level
analysis. This method is vital to our study, as it analyzes
sequences of audio frame features, rather than individual
frames. This sequence-level analysis is the key to an in-depth
comparison between TCEF and conventional features, allow-
ing us to assess how they capture and differentiate unique
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FIGURE 4. Neural network architectures to assess TCEF compared to conventional features in speaker identification. (a) 1D-CNN architecture for
frame-level analysis. (b) LSTM architecture for sequence-level analysis.

vocal characteristics in a sequence of frames. The LSTM
layer in our neural network consists of 32 units each, chosen
for its effectiveness in processing temporal data. Following
these layers, Layer Normalization is applied to stabilize and
expedite the training process. Subsequently, a second LSTM
layer, comprising 32 units, is used to refine the temporal
analysis further. Another Layer Normalization follows this
step to maintain the consistency and stability of the learning
process, ensuring accurate modeling of temporal dynamics
in speech. The network then incorporates a series of dense
layers, further processing the temporal data extracted by
the LSTM. The final stage of the network is the softmax
activation function in a dense layer. This layer is critical
as it converts the complex temporal features identified by
the LSTM network into a probability distribution across the
potential speaker identities.

B. DATASETS
1) GRID DATASET
The GRID audiovisual corpus [7] is a valuable resource
for text-independent speaker identification. It contains high-
quality audio and video recordings from 34 speakers
(18 male and 16 female), totaling 34,000 sentences. Each
speaker contributed 1,000 sentences recorded under neutral
conditions at a standard speech rate. The speakers were
instructed to deliver each sentence in 1 to 2 seconds. All
utterances were recorded at a 25 kHz sampling rate and are
available in WAV file format. The GRID dataset is used in
our study to evaluate the performance of TCEF compared to
conventional features in neutral speech.

2) RAVDESS DATASET
The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) [23] is widely used in the field

of speaker identification [9], [10], known for its diverse
emotional speech content in a North American accent. This
dataset includes 16-bit audio files sampled at 48 kHz,
available in WAV format, with 1,440 utterances. It contains
recordings from 24 professional actors (12 female and
12 male), each contributing 60 trials. These actors expressed
the two sentences ‘‘Dogs are sitting by the door’’ and ‘‘Kids
are talking by the door’’ across various emotional states.
RAVDESS encompasses various emotional expressions such
as neutral, calm, happy, sad, angry, fearful, disgust, and
surprised. Apart from neutral, each emotional state is
represented at two intensity levels: normal and strong, with
each emotion having 192 utterances and the neutral category
comprising 96 utterances. In our study, the RAVDESS dataset
is crucial for evaluating the effectiveness of TCEF compared
to conventional features in emotional speech conditions.

3) GRID-NR AND RAVDESS-NR SIMULATED DATASETS
To evaluate the robustness of TCEF against conventional
features in challenging acoustic environments, we developed
two simulated datasets: GRID-NR and RAVDESS-NR.
These datasets are derived from the original GRID and
RAVDESS datasets, respectively, specifically engineered to
simulate neutral and emotional speech conditions influenced
by added noise and reverberation. This approach allowed
us to validate the performance of our feature extraction
techniques in more complex acoustic scenarios, reflecting the
challenges often encountered in real-world environments.

a: ADDING NOISE
Gaussian noise was added to the original audio samples to
simulate environmental noise conditions for the GRID-NR
and RAVDESS-NR datasets. This modification was intended
to generate versions of the GRID and RAVDESS datasets
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with incorporated noise characteristics, thus representing
neutral and emotional speech in more challenging acoustic
settings. The process begins with the original input signal,
represented as S(t) from either the neutral GRID or emotional
RAVDESS dataset. The initial step involves calculating the
power of this signal, denoted Psignal, which is determined by
averaging the square of the signal amplitude over time:

Psignal =
1
T

T∑
t=1

S(t)2 (24)

where, T is the total duration of the signal in samples, and
S(t) is the signal amplitude at time t . Next, the noise power
Pnoise is determined based on a desired Signal-to-Noise Ratio
(SNR), set to vary uniformly between 5 and 20 dB:

Pnoise = Psignal × 10−
SNRdB

10 (25)

To create the noisy signal, Gaussian noise is generated with
a mean of zero and a variance equal to Pnoise. This noise is
then added to the original signal, resulting in the noisy signal
Snoisy(t), which is computed as follows:

Snoisy(t) = S(t) + Ns (26)

where Ns ∼ N (0,
√
Pnoise) denotes Gaussian white noise.

b: ADDING REVERBERATION
To simulate reverberation effects in the audio samples of the
GRID and RAVDESS datasets, we used room simulation
techniques based on the Pyroomacoustics package [34].
This process included creating a virtual room with specific
dimensions and sound-absorbing properties, setting a source
and microphone position within this virtual space, and then
computing the Room Impulse Response (RIR). The RIR,
denoted R(t), reflects how the sound propagates and interacts
with the surfaces of the room. The original audio signal
S(t) was then convolved with this RIR to add reverberation,
simulating the effect of a real-life reverberant environment.
This convolution is mathematically represented as follows:

Sreverb(t) = S(t) ∗ R(t) (27)

where, Sreverb(t) is the resulting reverberant signal, and ∗ is
the convolution operator.

c: COMBINING NOISE AND REVERBERATION
We sequentially combined noise and reverberation effects
to simulate complex acoustic environments in our datasets.
After introducing Gaussian noise to the original signal,
resulting in Snoisy(t), we then applied reverberation to this
noisy signal. The final signal, which incorporates both noise
and reverberation and denoted Snoisy_reverb(t) is obtained by
convolving the noisy signal with RIR R(t):

Snoisy_reverb(t) = Snoisy(t) ∗ R(t) (28)

In this equation, Snoisy_reverb(t) is the signal that has been
processed through both acoustic transformations, first adding

noise and then applying reverberation. This approach ensures
that the final simulated signal accurately mimics the audio
characteristics of real-world environments where noise and
reverberation are present. These modified datasets GRID-NR
and RAVDESS-NR with added noise and reverberation pro-
vided a comprehensive platform to compare the effectiveness
of TCEF against conventional features under more realistic
conditions.

C. BASELINES
For the baseline comparison in our study, we used three
conventional feature extraction techniques commonly used in
speaker identification:MFCC, GTCC, and PNCC, along with
their respective first- and second-order derivatives.

1) CONVENTIONAL FEATURE EXTRACTION TECHNIQUES
The parameters selected for conventional feature extrac-
tion techniques are commonly used in speech processing
research [40], [46], ensuring alignment with established
practices in the field.
MFCC: The extraction involved pre-emphasizing the

speech signal, segmenting into 25ms frames with a 10ms
shift, applying a Hamming window, transforming using FFT
of 1024, filtering through 40Mel-scaled triangular filters, and
deriving 12 coefficients with a DCT.
GTCC: The procedure included dividing the signal into

25 ms frames with a 10 ms shift, windowing using
Hamming, applying FFT of 1024, filtering through a 40-filter
Gammatone bank, logarithmic compression, and generating
12 coefficients with a DCT.
PNCC: This method started with pre-emphasizing the

signal, framing into 25 ms with 10 ms overlap, using a
Hamming window, applying FFT of 1024, filtering through
a 40-filter Gammatone bank, applying a power-law function
with an exponent of 1/15, and concluding with a DCT to
obtain 12 coefficients.

2) COMPUTATION OF FIRST AND SECOND-ORDER
DERIVATIVES
In our analysis, first- and second-order derivatives were
calculated for each feature extraction technique: MFCC,
GTCC, and PNCC, using a span of five frames. This
method considers the target frame and two frames before and
after, providing a broader temporal context for each frame.
Such a five-frame span ensures a thorough examination of
the temporal dynamics in the speech signal. Applying this
uniform approach in MFCC, GTCC, and PNCC is crucial
for an accurate evaluation of temporal variations in speech,
which contributes significantly to the robustness of our
feature analysis.

D. OVERVIEW OF FEATURE SETS FOR EVALUATION
We investigated various feature extraction techniques, includ-
ing conventional features, TCEF, and an examination of the
effects of combining these two types of features. In the feature
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FIGURE 5. Combinations of feature sets for enhanced speaker identification analysis. (1) conventional features, (2) conventional features with
derivatives, (3) temporal context enhanced features, (4) temporal context enhanced features with derivatives, (5) combination of TCEF features with
conventional features, (6) combination of TCEF features with conventional features and their derivatives, (7) combination of TCEF features with
conventional features and derivatives of TCEF features, and (8) combination of TCEF features with conventional features including all derivatives. The
vertical stacking of feature sets is denoted by the ‘||’ operator.

sets detailed in this section, the ‘||’ operator signifies the
vertical stacking of feature vectors. This method combines
different feature sets, leading to an integrated feature vector
that encapsulates the characteristics of each set. The various
feature sets used in this investigation are depicted in Fig. 5
and are:
1) Conventional features:

• MFCC
• GTCC
• PNCC

2) Conventional features with derivatives:
• MFCC||11MFCC
• GTCC||11GTCC
• PNCC||11PNCC

3) Temporal context enhanced features:
• M_TCEF
• G_TCEF
• P_TCEF

4) Temporal context enhanced features with derivatives:
• M_TCEF||11M_TCEF
• G_TCEF||11G_TCEF
• P_TCEF||11P_TCEF

5) Combination of TCEF features with conventional
features:
• MFCC∥M_TCEF
• GTCC∥G_TCEF
• PNCC∥P_TCEF

6) Combination of TCEF features with conventional fea-
tures and their derivatives:
• MFCC∥M_TCEF∥11MFCC
• GTCC∥G_TCEF∥11GTCC
• PNCC∥P_TCEF∥11PNCC

7) Combination of TCEF features with conventional fea-
tures and derivatives of TCEF features:
• MFCC∥M_TCEF∥11M_TCEF
• GTCC∥G_TCEF∥11G_TCEF
• PNCC∥P_TCEF∥11P_TCEF

8) Combination of TCEF features with conventional fea-
tures including all derivatives:
• MFCC∥M_TCEF∥11MFCC∥11M_TCEF
• GTCC∥G_TCEF∥11GTCC∥11G_TCEF
• PNCC∥P_TCEF∥11PNCC∥11P_TCEF

E. EXPERIMENTAL SETTINGS
In our study, which employed 1D-CNN for frame-level
analysis and LSTM networks for sequence-level analysis,
we maintained uniform experimental settings to ensure a
fair comparison between conventional features and TCEF.
An essential aspect of our experimental setup was the
alignment of the context window size in TCEF with the
sequence length in the LSTM network. This alignment is
crucial for a fair and accurate comparison between the
performance of TCEF and conventional feature extraction
methods. For TCEF, the size of the context window was
varied from 1 to 10 frames to assess the effectiveness
with smaller and larger window sizes, providing information
on the impact of temporal context on feature extraction.
In particular, at a context window size of 1, TCEF generates
conventional features, serving as a baseline for comparison.
Concurrently, the LSTM network sequence length was
adjusted to match the TCEF context window size, ensuring
that both LSTM and conventional features were evaluated
under equivalent temporal conditions. For example, if the
context window size is 5, the LSTM processes sequences
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of 5 frames, thus maintaining consistency in the analysis.
To further maintain this consistency, the network models
were optimized using the Adam optimizer, with a learning
rate set to 0.001. The categorical cross-entropy loss function
was employed for its suitability in multi-class classification
tasks. To avoid overfitting, a dropout rate of 0.5 was
implemented. Training was conducted over 100 epochs with
a batch size of 32. The dataset was consistently split with
70% allocated for training, 20% for testing, and 10% for
validation, uniformly applied for each considered dataset,
including GRID, RAVDESS, GRID-NR, and RAVDESS-
NR. All experiments were conducted in a high-performance
computing environment equipped with an Intel Xeon(R)
CPU at 2.20 GHz, 83.48 GB of memory, and an NVIDIA
A100-SXM4-40GB GPU with 40 GB of memory.

F. EVALUATION METRICS
To effectively measure the performance of TCEF and
conventional features in our speaker identification models,
we used four widely recognized metrics for classification
problems: Accuracy, Precision, Recall, and F1 Score. Each
metric contributes to a comprehensive understanding of the
models’ performance.

1) ACCURACY

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(29)

Accuracy reflects the model overall rate of correct predictions
in correctly identifying speakers. TP represents the number
of correct positive identifications by the model, and TN
represents the number of correct negative identifications. FP
refers to the number of incorrect positive identifications,
where the model incorrectly identifies a non-speaker as a
speaker, and FN denotes the number of incorrect negative
identifications, where the model fails to identify the actual
speaker.

2) PRECISION

Precision =
TP

TP+ FP
(30)

Precision indicates the proportion of correctly identified
speakers TP out of all instances where the model predicted
the speaker identity.

3) RECALL

Recall =
TP

TP+ FN
(31)

Recall assesses the model ability to correctly identify actual
speakers, measuring how many actual speakers TP were
identified correctly out of all actual speaker instances.

4) F1 SCORE

F1 score = 2 ×
Precision× Recall
Precision+ Recall

(32)

F1 score combines Precision and Recall into a single
metric, balancing the accurate identification of speakers
Precision and the ability to identify as many actual speakers
as possible Recall. The F1 Score is used to validate the
model effectiveness in correctly identifying speakers and
minimizing false identifications, providing a comprehensive
measure of performance accuracy.

5) STATISTICAL ANALYSIS
This study used Approximate Randomization (AR) [29] to
evaluate the statistical significance of performance differ-
ences between speaker identification models using different
feature extraction techniques. AR was selected for its
adaptability to datasets that may not conform to normal
distribution assumptions. This method involves shuffling
data between groups multiple times and recalculating the
performance metrics. The resulting p value indicates the
probability that the observed performance differences could
occur randomly without an actual distinction between the
models. This approach provides a robust means to determine
whether differences in model performance are statistically
significant.

G. EXPERIMENTAL RESULTS
This section presents the experimental results for speaker
identification obtained from the GRID, GRID-NR,
RAVDESS, and RAVDESS-NR datasets. These results were
achieved using both TCEF and conventional features, applied
in frame- and sequence-level analyses.

1) EVALUATION ON GRID DATASET - NEUTRAL SPEECH
CONDITIONS
In the frame-level analysis using 1D-CNN with the GRID
dataset, representative of neutral speech conditions, TCEF
consistently shows superior performance compared to con-
ventional features. Table 1 presents the detailed performance
results with the GRID dataset comparing TCEF to con-
ventional features for both frame-level and sequence-level
with context window size 10. Table 1 reveals that M_TCEF
achieves an accuracy of 77.92%, compared to the 63.66%
accuracy with conventional MFCC features, resulting in a
difference of 14.26%. Similarly, in terms of the F1 score,
M_TCEF records 77.86%, surpassing the 63.41% achieved
by conventional MFCC features by a margin of 14.45%.
Comparable performance enhancements are observed with
GTCC and PNCC, where G_TCEF and P_TCEF show a
difference in accuracy of 11.7% and 15.24%, respectively,
compared to conventional features. Similarly, the F1 score
differences for G_TCEF and P_TCEF are 12.31% and
14.64%, respectively, over their respective conventional
feature extraction methods.

Integrating first- and second-order derivatives into the
feature set significantly improves the performance of both
TCEF and conventional features. This enhancement is clearly
shown in Table 1, where M_TCEF∥11M_TCEF outper-
forms conventional features with derivatives. For instance,
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TABLE 1. Speaker identification performance on the GRID dataset: comparative analysis of frame-level analysis with 1D-CNN and sequence-level
analysis with LSTM using TCEF and conventional features under neutral conditions for context window size 10.

M_TCEF∥11M_TCEF achieves an accuracy of 84.04%,
which reflects a difference of 13.96% when compared
to the 70.08% accuracy of MFCC∥11MFCC. This trend
of improved performance after integrating derivatives is
consistently observable for both G_TCEF∥11G_TCEF
and P_TCEF∥11P_TCEF compared to the conventional
GTCC||11GTCC and PNCC||11PNCC.

In the sequence-level analysis using LSTM with the GRID
dataset, TCEF continues to exhibit superior performance over
conventional features. As mentioned in Table 1, M_TCEF
achieves an accuracy of 91.91% compared to 91.05%
for conventional MFCC features, a difference of 0.86%.
Similar performance enhancements are seen with G_TCEF
and P_TCEF compared to the conventional GTCC and
PNCC.

Incorporating first- and second-order derivatives into
the feature set further enhances the performance for
both TCEF and conventional features. As Table 1
shows, M_TCEF∥11M_TCEF achieves an accuracy of
94.17%, significantly exceeding the 92.14% accuracy
of MFCC∥11MFCC. Comparable results are observed
for G_TCEF∥11G_TCEF and P_TCEF∥11P_TCEF
compared to the conventional GTCC||11GTCC and
PNCC||11PNCC.

When examining the combinations of conventional
features with TCEF in both frame- and sequence-level
analyses on the GRID dataset, it is clear that the
integration of conventional features with TCEF leads to
enhanced performance compared to the use of conventional
features alone and with their derivatives. As indicated
in Table 1 in the frame-level analysis, MFCC∥M_TCEF
achieves an accuracy of 82.07%. Incorporating derivatives

of conventional features MFCC∥M_TCEF∥11MFCC, the
accuracy improves to 84.30%, and with the addition
of M_TCEF derivatives, MFCC∥M_TCEF∥11M_TCEF
reaches 84.54%, while combining both types of deriva-
tives MFCC∥M_TCEF∥11MFCC∥11M_TCEF results
in an accuracy of 84.49%. Similarly, in sequence-
level analysis using LSTM, MFCC||M_TCEF achieves
an accuracy of 93.26%. This accuracy increases to
94.25% for MFCC∥M_TCEF∥11MFCC. It reaches 94.10%
for MFCC∥M_TCEF∥11M_TCEF. For the configuration
MFCC∥M_TCEF∥11MFCC∥11M_TCEF, the accuracy is
94.13%. Despite these enhancements, the AR analysis indi-
cates that the performance differences between combinations
of TCEF with conventional features and derivatives are not
statistically significant. Furthermore, these combinations do
not demonstrate a statistically significant improvement over
the exclusive use of TCEF∥ 11TCEF.
Detailed performance results with the GRID dataset com-

paring TCEF with conventional features for both frame-level
and sequence-level across different context window sizes,
ranging from 1 to 10, are presented in Table 5. The TCEF-
based approaches perform better than conventional feature
extraction approaches for all context window sizes.

2) EVALUATION ON GRID-NR DATASET - NEUTRAL SPEECH
WITH NOISE AND REVERBERATION
In the frame-level analysis using 1D-CNN on the GRID-NR
dataset, which simulates neutral speech conditions with
added noise and reverberation, TCEF consistently outper-
forms conventional feature extraction methods. Table 2
presents the detailed performance results with the GRID-NR
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TABLE 2. Speaker identification performance on the GRID-NR dataset: comparative analysis of frame-level analysis with 1D-CNN and sequence-level
analysis withLSTM using TCEF and conventional features under neutral conditions with noise and reverberation for context window size 10.

dataset comparing TCEF to conventional features for both
frame-level and sequence-level with context window size
10. As shown in Table 2, M_TCEF attains an accuracy
of 52.40%, showing a difference of 15.38% compared
to the 37.02% accuracy achieved by conventional MFCC
features. In the case of GTCC, G_TCEF records an accuracy
of 62.27%, which is 12.23% higher than the 50.04%
accuracy of conventional GTCC features. Similarly, with
PNCC, P_TCEF achieves an accuracy of 53.69%, exceeding
the 39.10% accuracy of conventional features by 14.59%.
Comparable improvements are noted for other performance
evaluation metrics.

Integrating first- and second-order derivatives into the
feature set significantly improves the performance of both
TCEF and conventional features. As indicated in Table 2,
M_TCEF∥11M_TCEF achieves an accuracy of 59.39%,
which is notably higher by +16.29% compared to the 43.10%
accuracy of MFCC∥11MFCC. Similar trends of enhanced
performance are observed with the inclusion of derivatives
for GTCC and PNCC.

In the sequence-level analysis performed with LSTM
and the GRID-NR dataset, TCEF consistently demonstrates
superior performance over conventional features. The results,
as presented in Table 2, showM_TCEF achieving an accuracy
of 73.10%, which is a difference of 1.28% compared to the
71.82% accuracy of conventional MFCC features. Similar
improvements are observed with GTCC and PNCC.

Incorporation of first- and second-order derivatives
into the feature set improves the performance of both
TCEF and conventional features. As indicated in Table 2,
M_TCEF∥11M_TCEF achieves the higher accuracy of

81.19%, reflecting a difference of 6.34% compared to the
74.85% accuracy ofMFCC∥11MFCC. Similar performance
enhancements are observed for GTCC and PNCC.

Investigation of combining conventional features with
TCEF in both frame- and sequence-level analyses on the
GRID-NR dataset indicates that combining conventional
features with TCEF leads to better performance compared
to using conventional features and conventional features
with their derivatives. Specifically, Table 2 shows that
for frame-level analysis using MFCC∥M_TCEF achieves
an accuracy of 56.14%. The addition of derivatives
of conventional features MFCC∥M_TCEF∥11MFCC
increases this accuracy to 59.90%, Furthermore, incorpo-
rating TCEF derivatives, M_TCEF∥11M_TCEF results
in an accuracy of 59.69%, while combining both types
of derivatives MFCC∥M_TCEF∥11MFCC∥11M_TCEF
yields an accuracy of 59.60%. In the sequence-level
analysis with LSTM, the inclusion of TCEF shows
improved performance. MFCC∥M_TCEF achieves an
accuracy of 78.96%, which is further enhanced to
80.88% for MFCC∥M_TCEF∥11MFCC, 81.14% for
MFCC∥M_TCEF∥11M_TCEF, while achieving 80.72%
for MFCC∥M_TCEF∥11MFCC∥11M_TCEF. However,
according to AR, the performance differences between
combinations of TCEF with conventional features and
derivatives do not show statistical significance. Furthermore,
these combinations do not show a statistically significant
improvement over the TCEF∥11TCEF.

Detailed performance results on the GRID-NR dataset
that compare TCEF to conventional features in frame-level
and sequence-level analysis for different context window
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TABLE 3. Speaker identification performance on the RAVDESS dataset: comparative analysis of frame-level analysis with 1D-CNN and sequence-level
analysis withLSTM using TCEF and conventional features in emotional conditions for context window size 10.

sizes, ranging from 1 to 10, are presented in Table 6. The
TCEF-based approaches perform better than conventional
feature extraction approaches for all context window sizes.

3) EVALUATION ON RAVDESS DATASET - EMOTIONAL
SPEECH
In the frame-level analysis on the RAVDESS dataset for
emotional speech using 1D-CNN, TCEF features consistently
demonstrate superior performance compared to conventional
features for all feature extraction techniques. Table 3
presents the detailed performance results with the RAVDESS
dataset comparing TCEF to conventional features for both
frame-level and sequence-level with context window size 10.
As indicated in Table 3, M_TCEF records an accuracy of
75.81%, showing a difference of 20.34% compared to the
53.47% accuracy of conventional MFCC features. Similar
performance enhancements with G_TCEF and P_TCEF are
observed, where TCEF shows an increase of 19% and 22.24%
in accuracy over conventional GTCC and PNCC features,
respectively.

The integration of first- and second-order derivatives into
the TCEF features further increases their effectiveness. For
MFCC with derivatives, M_TCEF∥11M_TCEF achieves
an accuracy of 79.41%, reflecting a difference of 21.72%
compared to the 57.69% accuracy of MFCC∥11MFCC.
This pattern of enhanced performance with the addition of
derivatives is consistent for both GTCC and PNCC.

In the sequence-level analysis with LSTM, TCEF con-
sistently outperforms conventional features. As shown in
Table 3 M_TCEF achieves an accuracy of 89.76%, showing
a difference of 4.96% compared to the 84.80% accuracy of

conventional MFCC features. These performance improve-
ments are also observed with GTCC and PNCC.

Adding first- and second-order derivatives to both
TCEF and conventional features significantly enhances
their performance. As reported in Table 3, for instance,
M_TCEF∥11M_TCEF achieves an accuracy of 92.76%,
reflecting a difference of 5.62% compared to the 87.14%
accuracy ofMFCC∥11MFCC. This consistent improvement
with the addition of derivatives is also observed for both
GTCC and PNCC.

The combination of conventional features with TCEF was
explored at the frame- and sequence-levels. As indicated in
Table 3, integrating conventional features with TCEF leads to
better performance compared to using conventional features
and conventional features with their derivatives. In the frame-
level analysis using 1D-CNN with MFCC, MFCC∥M_TCEF
achieves an accuracy of 76.13%. The inclusion of deriva-
tives of conventional features, MFCC∥M_TCEF∥11MFCC,
increases the accuracy to 78.85%, and with the addition
of TCEF derivatives, MFCC∥M_TCEF∥11M_TCEF, the
accuracy reaches 78.51%. The combination of both types
of derivatives, MFCC∥M_TCEF∥11MFCC∥11M_TCEF,
results in an accuracy of 78.32%. Similar observations
can be made for the sequence-level analysis using LSTM.
However, AR analysis indicates that the performance
differences between these combinations that incorporate
derivatives are not statistically significant. Furthermore,
these combinations do not show a statistically significant
improvement over the exclusive use of TCEFwith derivatives
TCEF||11TCEF.

Detailed performance results with the RAVDESS dataset
that compare TCEF to conventional features in frame-level
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TABLE 4. Speaker identification performance on the RAVDESS-NR dataset: comparative analysis of frame-level analysis with 1D-CNN and sequence-level
analysis withLSTM using TCEF and conventional features in emotional speech with noise and reverberation for context window size 10.

and sequence-level analysis for different context window
sizes, ranging from 1 to 10, are presented in Table 7. The
TCEF-based approaches perform better than conventional
feature extraction approaches for all context window sizes.

4) EVALUATION ON RAVDESS-NR DATASET - EMOTIONAL
SPEECH WITH NOISE AND REVERBERATION
In the frame-level analysis using 1D-CNN with the
RAVDESS-NR dataset for emotional speech with added
noise and reverberation, TCEF consistently demonstrates
superior performance over all conventional feature extraction
techniques. As indicated in Table 4, M_TCEF achieves an
accuracy of 61.36%, a difference of 24.42% compared to the
36.94% accuracy of conventional MFCC features. Similar
levels of enhanced performance are observed with G_TCEF
and P_TCEF, where TCEF shows an increase of 18.59%
and 22.49% in accuracy over conventional GTCC and PNCC
features, respectively.

Including first- and second-order derivatives in both TCEF
and conventional features further improves their effective-
ness. Table 4 demonstrates that M_TCEF∥11M_TCEF
reaches an accuracy of 66.93%, reflecting a differ-
ence of 25.92% compared to the 41.01% accuracy
achieved by conventional MFCC features with derivatives,
MFCC∥11MFCC. This pattern of consistent improvement
with integrating derivatives is also observed for GTCC and
PNCC.

In the sequence-level analysis using LSTM on the
RAVDESS-NR dataset, TCEF consistently outperforms con-
ventional features across all evaluated feature extraction
techniques. As detailed in Table 4, M_TCEF achieves
an accuracy of 80.15%, showing a difference of 5.92%

compared to the 74.23% accuracy of conventional MFCC
features. These improvements in performance are also
observed with GTCC and PNCC.

Integrating first- and second-order derivatives into TCEF
further enhances its performance, as demonstrated in Table 4.
M_TCEF∥11M_TCEF achieves an accuracy of 83.24%,
reflecting a difference of 5.2% compared to the 78.04%
accuracy of MFCC∥11MFCC.

Combining conventional features with TCEF in the
RAVDESS-NR dataset improves performance in both frame-
and sequence-level analyses compared to using conventional
features and conventional features with their first and
second derivatives. However, as shown in Table 4, the
effectiveness of these combinations is more noticeable
when derivatives are included. In the frame-level analysis
using 1D-CNN with MFCC, MFCC∥M_TCEF achieves an
accuracy of 59.62%. With the introduction of derivatives
of conventional features, MFCC∥M_TCEF∥11MFCC, the
accuracy increases to 63.91%, and with the addition of TCEF
derivatives, MFCC∥M_TCEF∥11M_TCEF, the accuracy
reaches 62.56%. Combining both types of derivatives,
MFCC∥M_TCEF∥11MFCC∥11M_TCEF, results in an
accuracy of 62.18%. Similar observations can be made
for the sequence-level analysis using LSTM. Despite these
enhancements, AR analysis indicates that the performance
differences between these combinations with derivatives
are not statistically significant. Furthermore, these com-
binations do not offer a significant advantage over using
TCEF with derivatives TCEF||11TCEF, suggesting that
the inclusion of derivatives in TCEF captures the essential
information for speaker identification in these challenging
conditions.
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FIGURE 6. MFCC and M_TCEF heatmaps for various recording conditions across various context window sizes in four different scenarios: C1 - Neutral
speech, C2 - Neutral speech with noise and reverberation, C3 - Emotional speech, C4 - Emotional speech with noise and reverberation. Red circles
indicate regions of short-time variations present in the speech, while the orange circles represent the same regions after smoothing out short-time
variations with TCEF.

Detailed performance results with the RAVDESS-NR
dataset that compare TCEF to conventional features in
frame-level and sequence-level analysis for different context
window sizes, ranging from 1 to 10, are presented in
Table 8. The TCEF-based approaches perform better than
conventional feature extraction approaches for all context
window sizes.

V. DISCUSSION
Performance evaluations in the various considered datasets,
GRID, GRID-NR, RAVDESS, and RAVDESS-NR, show
that TCEF consistently outperforms conventional features in
speaker identification. Figure 6 presents heatmaps for MFCC
and M_TCEF coefficients in diverse recording conditions.
On the x-axis, frame indices from 1 to 10 are shown,
each representing a 25 ms time slice, with the context
window size varying from 2 to 4 to 6 frames. The y-axis
represents the coefficients. In the MFCC heatmap, sharp
transient features between consecutive frames within a short
period are highlighted with red circles. These transients
pose challenges in speaker identification, as they introduce

short-time variations in speaker features that conventional
methods struggle to handle effectively. However, in the
M_TCEF heatmap, a significant reduction in these short-time
variations in acoustic features is noticed. To emphasize the
comparative difference, the same regions are highlighted with
orange circles in the M_TCEF heatmap. This visualization
demonstrates how M_TCEF mitigates the effects of these
transients on acoustic features, particularly when increasing
the context window size. The impact of this increase leads
to a decrease in transient variations and a more detailed
representation of individual speaker characteristics, resulting
in amore consistent representation of vocal features, essential
for accurate speaker identification. Although this figure
focuses on the impact of TCEF on MFCC, the effectiveness
of TCEF extends to GTCC and PNCC.

Further investigation of the performance of TCEF in
sequence-level analysis using LSTM networks under various
acoustic conditions has revealed substantial insights. The
analysis, as highlighted in Fig. 7, shows that in the GRID
dataset, representative of neutral speech conditions, the
performance difference between TCEF (M_TCEF, G_TCEF,
and P_TCEF) and conventional features (MFCC, GTCC, and
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FIGURE 7. Evaluating speaker identification accuracy of MFCC and M_TCEF using LSTM network: impact of context window size and sequence length
across datasets.

PNCC) is slight with increasing context window sizes and
LSTM sequence lengths. This finding suggests that in simpler
acoustic environments, LSTM networks improve the efficacy
of conventional features, thus reducing the performance gap
with TCEF. The GRID-NR dataset, characterized by noise
and reverberation, shows an advantage of TCEF over con-
ventional features. This advantage becomes more apparent in
the RAVDESS and RAVDESS-NR datasets, which include
emotional speech and emotional speech with noise and
reverberation, respectively. In these complex acoustic sce-
narios, TCEF consistently surpasses conventional features,
effectively extracting speaker-specific characteristics across
all context window sizes and LSTM sequence lengths. While
LSTM networks show a greater ability to capture temporal
and speaker-specific features in neutral acoustic settings,
TCEF consistently exhibits superior performance in more
complex environments. This demonstrates the effectiveness
of TCEF for speaker identification in a wide range of
challenging acoustic conditions.

The insights into the effectiveness of TCEF in diverse
acoustic environments prompt further examination of its
computational efficiency and the impact of its integration
with conventional features. This exploration extends our

analysis to the results of combining conventional fea-
tures with TCEF. Analysis of the datasets indicates that
the combination of TCEF and conventional features with
derivatives does not lead to statistically significant perfor-
mance improvements when evaluated through AR analysis,
particularly when compared to TCEF||11TCEF. In our
comparative analysis of convergence time, as illustrated
in Fig. 8, TCEF||11TCEF achieves faster convergence
than when conventional features are used alongside TCEF.
This observation suggests that TCEF||11TCEF offers
a better balance between performance and efficiency.
This efficiency, combined with its high level of perfor-
mance, makes TCEF||11TCEF a more effective practical
approach for speaker identification in diverse acoustic
environments.

Following the identification of TCEF||11TCEF as a
balanced approach between efficiency and performance, our
study explored the influence of different context window
sizes on its performance. As detailed in Fig. 9, the investi-
gation examines TCEF||11TCEF for frame-level analysis
using 1D-CNN across context window sizes ranging from 1 to
50 frames. The 50-frame limit is chosen, as it is the maximum
number of frames in audio samples across all datasets,
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FIGURE 8. Average convergence time for the best performing techniques in all feature extraction techniques and datasets.

FIGURE 9. Performance evaluation of TCEF||11TCEF in diverse acoustic conditions: Speaker identification accuracy across context window sizes
from 1 to 50 in frame-level analysis using 1D-CNN.

thereby setting the upper bound for the context window size
in our analysis. Fig. 9 shows a consistent increase in accuracy
for TCEF||11TCEF as the context window size expands.

However, the performance accuracy begins to stabilize at a
context window size of 35 frames, and this pattern remains
consistent up to the 50-frame limit. This finding is significant,
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TABLE 5. Speaker identification performance on the GRID dataset for context window sizes 1 to 10: comparative analysis of frame-level analysis with 1D
CNN and sequence-level analysis with LSTM using TCEF and conventional features under neutral conditions - Accuracy (%).

as it indicates that extending the context window size beyond
a specific threshold does not lead to additional significant
performance improvements.

This study further investigated the performance of dif-
ferent feature extraction techniques under various acoustic
conditions. In the GRID dataset, G_TCEF consistently
outperforms M_TCEF and P_TCEF. This can be attributed
to G_TCEF comprehensive spectral representation, which
accurately captures the fine details of a speaker voice.
In the GRID-NR dataset, representing scenarios with
added noise and reverberation, G_TCEF significantly out-
performs M_TCEF and P_TCEF due to its advanced
auditory-simulating design. P_TCEF shows a slight improve-
ment over M_TCEF, primarily because of its focus on noise
reduction and speech enhancement. When we focused on
the RAVDESS dataset, both M_TCEF and G_TCEF demon-
strated enhanced effectiveness compared to P_TCEF. This
improved performance is because M_TCEF and G_TCEF
can capture the varied frequency components and intensity
levels of emotional speech. Extending our analysis to
the RAVDESS-NR dataset, simulating emotional speech
with added noise and reverberation, G_TCEF outperforms
M_TCEF and P_TCEF. M_TCEF still surpasses P_TCEF in
the RAVDESS-NR dataset.

This study indicates that G_TCEF outperforms other
feature extraction techniques across diverse recording con-
ditions, making it the most appropriate choice for speaker
identification in various acoustic environments.

VI. EVALUATION REPRODUCIBILITY
The Python code for the reproducibility of the evaluations
presented in this paper is available on GitHub at https://
github.com/YassinTERRAF/TCEF. This repository includes
the necessary code to implement our TCEF approach and
to conduct its evaluations. The datasets GRID-NR and
RAVDESS-NR, which were created for use in this research,
are available on Kaggle at https://www.kaggle.com/datasets/
yassinterraf/grid-nr and https://www.kaggle.com/datasets/
yassinterraf/ravdess-nr respectively. The dependencies for
this project include Python,1 along with essential libraries

1https://python.org/

such as pyroomacoustics,2 librosa,3 scipy,4

gammatone,5 and tensorflow.6

VII. CONCLUSION
In this research, we introduced the TCEF approach, which
uses a context window to average out features over adjacent
frames. This technique is designed to mitigate short-term
variations caused by noise, reverberation, and fluctuations in
emotional speech and neutral speech recording to enhance
speaker identification in diverse acoustic environments. Our
comprehensive evaluations that use the GRID dataset for
neutral speech, GRID-NR for neutral speech with noise
and reverberation, RAVDESS for emotional speech, and
RAVDESS-NR for emotional speech with noise and rever-
beration, have consistently shown that TCEF, particularly
when integrated with derivatives, outperforms conventional
feature extraction methods in frame-level and sequence-level
analyses. These results validate the effectiveness of TCEF in
extracting robust features for speaker identification. Further
analysis of popular feature extraction techniques, including
MFCC, GTCC, and PNCC, shows that TCEFwith derivatives
provides a better practical balance between high performance
and computational efficiency, making it an advantageous
choice for speaker identification under various acoustic
recording conditions. However, the scope of the study is
bounded by the specific nature of the datasets used. While
comprehensive and covering a range of scenarios, these
datasets mainly simulate controlled acoustic environments
and may not cover the full spectrum of challenges present in
real-world settings. In particular, elements such as real-life
noise variations and overlapping speech scenarios are not
represented. Therefore, future research is encouraged to
extend the application of TCEF to environments that include
these real-world acoustic challenges. Investigating how
TCEF performs in situations with overlapping speech and

2https://github.com/LCAV/pyroomacoustics
3https://librosa.org/
4https://scipy.org/
5https://github.com/detly/gammatone
6https://tensorflow.org/
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TABLE 6. Speaker identification performance on the GRID-NR dataset for context window sizes 1 to 10: comparative analysis of frame-level analysis with
1D CNN and sequence-level analysis with LSTM using TCEF and conventional features under neutral conditions with noise and reverberation -
Accuracy (%).

TABLE 7. Speaker identification performance on the RAVDESS dataset for context window sizes 1 to 10: comparative analysis of frame-level analysis with
1D CNN and sequence-level analysis with LSTM using TCEF and conventional features under emotional conditions - Accuracy (%).

TABLE 8. Speaker identification performance on the RAVDESS-NR dataset for context window sizes 1 to 10: comparative analysis of frame-level analysis
with 1D CNN and sequence-level analysis with LSTM using TCEF and conventional features under emotional conditions with noise and reverberation -
Accuracy (%).

more naturalistic noise and reverberation will provide deeper
insight into its practicality for speaker identification tasks in
real-world scenarios.

APPENDIX
The detailed performance results with the considered
datasets comparing TCEF with conventional features for
both frame-level and sequence-level across different context
window sizes, ranging from 1 to 10, are presented in this
appendix.

A. GRID DATASET RESULTS
Table 5 presents the performance results with the GRID
dataset.

B. GRID-NR DATASET RESULTS
Table 6 presents the performance results with the GRID-NR
dataset.

C. RAVDESS DATASET RESULTS
Table 7 presents the performance results with the RAVDESS
dataset.
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D. RAVDESS-NR DATASET RESULTS
Table 8 presents the performance results with the RAVDESS-
NR dataset.
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