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ABSTRACT Compared to classical communication systems, sixth-generation (6G) communication requires
higher data rates, lower latency, improved energy efficiency, and more diverse users. To satisfy these
many requirements, the extremely large-scale massive multiple-input multiple-output (XL-MIMO) system
is attracting attention as a promising technology in 6G communication. Depending on the distance between a
transmitter and a receiver, the electromagnetic radiation channels in XL-MIMO systems are divided into two
models: near-field and far-field channels. The main difference between far-field and near-field is the phase-
linearity, resulting in a need for a differentiated system design such as beammanagement. As a consequence,
it is essential to classify near-field and far-field. This paper presents a new neural network (NN)-aided
framework for classifying near-field and far-field using the partially captured channel in downlink scenarios
in XL-MIMO systems. It is based on the mathematical reasoning that an effective latent space can be
constructed with a small amount of data by using the singular values of the channel Hankelization. Briefly,
it is to determine the one-hot encoding vector corresponding to each field and learn the singular values of
the Hankelized channel matrix. It is noteworthy that this framework operates using the short length of input
vectors and the small size of the training dataset. Simulation results show that the proposed method shows
the detection rate of about 90% in almost all scenarios. Interestingly, the proposed method shows almost
100% of detection ratio in high SNR environments. It is believed that the proposed method shows superior
performance than naïve approaches in various environments, discovering the suitable domain to classify
near-field and far-field channels.

INDEX TERMS Extremely large-scale massiveMIMO, near-field channel, far-field channel, Hankelization,
neural networks, binary classification.

I. INTRODUCTION
Massive multiple-input-multiple-output (MIMO) is one of
the most critical technologies in fifth-generation (5G)
communication [1], [2]. Massive MIMO with massive
antenna arrays in a base station (BS) can improve the
spectrum efficiency several times through beamforming or
multiplexing [3], [4]. In the future 6G communications,
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extremely large-scale MIMO (XL-MIMO), which is the
evolved version of massive MIMO in terms of the number
of antennas, can be a key enabling technology to provide
high spectral efficiency, high energy efficiency, and reliable
massive access [5], [6].

This enormous increase in the number of antennas
requires a change in the analysis of the radiation field of
electromagnetic waves. Generally, the radio radiation fields
are divided into two areas: near-field and far-field, depending
on the Rayleigh distance [7], [8], [13]. The channel in the

41934

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0001-3042-3093
https://orcid.org/0009-0004-4326-1427
https://orcid.org/0000-0001-8517-7996
https://orcid.org/0000-0002-1064-5123
https://orcid.org/0000-0002-1711-3007


J.-H. Kim et al.: NN-Aided Near-and-Far-Field Classifier via Channel Hankelization

TABLE 1. Related works on the studies of near-and-far-field channels. (Our proposed scheme can contribute to these objectives as a preprocessor for
classifying near-field and far-field channels.)

near-field area is assumed to be spherical waves, and the
array steering vector of the channel under this assumption
is associated with distance, as well as the angle between
BS and scatterer [14]. On the other hand, the channel in
the far-field area is assumed to be a planar wave, and
under this assumption, the array steering vector of the
channel is associated with only angles between BS and
scatterer.

Since the number of antennas is not very large in
conventional massive MIMO systems, the Rayleigh distance
of up to several meters is negligible [15]. Therefore,
existing conventional communication was mainly developed
with far-field communication theories and techniques, but
near-field communication is essential in the future system
since the number of antennas has increased incredibly, and
the Rayleigh distance in the radius of a typical 5G cell
has increased [15]. As a result, spherical waves should be
exploited to realize near-field beam-focusing in XL-MIMO
systems to focus signals on a specific location, rather than
the conventional far-field beam-steering that steers signals
towards a specific angle [16], [17]. In addition, it has been
revealed that there is potential in the beam-focusing method
in the near-field [9], [10], which is the advanced version
of traditional beamforming based on the linearly functional
phase in the array response. To alleviate the high pilot
overhead in the channel estimation, in current massiveMIMO
systems, by exploiting the channel sparsity in the angular
domain, some compressive sensing-based algorithms have
been studied to estimate the high dimensional channels
with low pilot overhead [18], [19], [20], [21], [22], [23].
However, the change from massive MIMO to XL-MIMO
not only means an increase in antenna number but also
leads to a fundamental change in the electromagnetic field
structure. Hence, this channel sparsity may not be achievable
in XL-MIMO [3].

Overall, Table 1 provides the related works on the studies
of near-and-far-field channels, focusing on three categories
in wireless communications and some technical consid-
erations by dealing with near-field and far-field channels
simultaneously. These research way-forwards in wireless
communication systems motivate that it is crucial to classify

a near-field channel and a far-field channel in an XL-MIMO
system.

In this paper, we present a new simple yet efficient
technique based on the low dimensional property that
classifies near-field and far-field channels, which is the first
trial to the best of our knowledge. Our proposed technique
is a new neural network (NN)-aided framework based on
the partially captured channel in downlink scenarios in
XL-MIMO systems. Considering a single path, the phase
domain of the near-field has nonlinear characteristics unlike
the far-field. Despite the existence of these characteristics,
classifying between the two channels is a difficult task.
Moreover, it is hard to classify them with naïve NN
techniques due to the similarity between the distributions
of near-field and far-field channels. Therefore, we devise
new characteristics by using Hankelization and singular value
extraction, developing a new suitable domain to classify
the near-field and far-field channels. It is based on the
mathematical fact that the rank of a Hankelized far-field
channel is equal to the channel sparsity, whereas near-field
channels do not meet this low rank property due to phase non-
linearity. We set the input and output of our proposed NN
model to singular values of Hankelized matrices and one-hot
encoding vectors, respectively. It demonstrates exceptional
performance in classifying near-field and far-field while
using smaller sizes of training dataset and pilot symbols than
the naïve NN technique.

The remainder of this paper is organized as follows:
Section II presents the system model and problem formu-
lation. In Section III, we introduce our proposed method to
classify near-field and far-field channels using the NNmodel.
In Section IV, we provide numerical results to demonstrate
the superiority of our proposed algorithm in the aspects
of various environments. Finally, Section V presents the
concluding remarks.

The following notations will be used throughout this paper.
• L: the number of multipaths.
• N : the number of antennas.
• P: the number of pilot symbols.
• K : the index-spacing of pilot symbols. (For convenience,
we set N = PK .)
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FIGURE 1. Block diagram of the concept of the proposed neural network.

• h ∈ CN×1: A spatial channel whose length is N .
• hp ∈ CP×1: the partially estimated channel of h via P
pilot symbols, i.e., hp[p] is the estimate of h[pK ] for all
p ∈ {1, · · · ,P}.

• H ∈ CPT×P′T : the Hankelized channel matrix whose
row and column dimensions arePT andP′T , respectively,
made by hp.

• σ̄ ∈ RPT
+ : the vector of singular values of the Hankelized

channel matrix H, which is sorted in descending order.
• e ∈ {[1 0]T , [0 1]T }: the one-hot encoding vector
representing near-field or far-field channel. (We set the
near-field and far-field channels to [1 0]T and [0 1]T ,
respectively.)

• S: the activation function for NNs; at the propagation
between the final hidden layer and the output layer,
S(a) = a, i.e., the identity function; at other propa-
gations between the adjacent layers, S(a) = ea−e−a

ea+e−a ,
i.e., the hyperbolic tangent function. And, S(a) =
(S(a[1]), · · · ,S(a[P]))T where a ∈ RP is an arbitrary
input vector.

• PL : the dimension of the latent space.
• W ∈ RPL×PT ,W′ ∈ R2×PL : the weight matrices for
encoding and decoding, respectively.

• b ∈ RPL ,b′ ∈ R2: the bias vectors for encoding and
decoding, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a downlink scenario of XL-MIMO, where the
BS employs a N -element antenna and communicates with a
single user, which receives the signal:

y = xh+ n, (1)

where y ∈ CN×1 denotes the signal received by the user in
N time slots, h ∈ CN×1 denotes a channel between the BS
and the user, x ∈ CN×N denotes the signal transmitted by
the BS in N time slot, and n ∈ CN×1 denotes the additive
white Gaussian noise with zero mean and σ 2

n representing the
variance. Recalling thatK andP are the index-spacing and the
number of pilot symbols, respectively, and N = KP, we use
the pK -th rows of x for all p ∈ {1, · · · ,P}, i.e., P time slots,
to capture the channel h. For brevity, for all p, we assume that
there is a predetermined pilot symbol at the pK -th index of
the pK -th row of x and the remaining elements of these rows

FIGURE 2. Illustration of the description of near-and-far-field.

are zeros. Thus, we denote the partially estimated channel
via these pilot assignments as hp ∈ CP×1, i.e., hp[p] is the
estimate of h[pK ] for all p ∈ {1, · · · ,P}.
The radiation field of electromagnetic waves can be

divided into near-field and far-field based on the Rayleigh
distance Z = D2

2λ where D is the aperture of the antenna
and λ is the wavelength, and each region has a different
channel model [7]. At this time, it is assumed that there are L
scatterers between the single user and the BS. In the near-
field, the distance between the BS and the user is shorter
than the Rayleigh distance. In the XL-MIMO, assuming that
it is a spherical wave, the steering vector is related to the
angle and distance. In the far-field, the distance between the
BS and the user is longer than the Rayleigh distance. Under
the assumption of a planar wave in XL-MIMO, the steering
vector is only related to the angle. Under the following
assumptions, the definition of the channel model when the
user is in the near-field and far-field is as follows.

• Near-field channel model (h = hnear-field) is written as

hnear-field =

√
N
L

L∑
l=1

αla(θl, rl), (2)

where L is the number of path components, N is the
number of antennas, αl represents the l-th path gain and
θl =

2d
λ
cos(φl). Here, d(= λ

2 ) is the antenna spacing
and φl ∈ (0, π) represents the actual physical angle for
the l-th path, i.e., angle of arrival (AoA) between the
BS and l-th scatterer. Thus, the steering vector for the
l-th path in the near-field, a(θl, rl), can be modeled as
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follows:

a(θl, rl) =

√
1
N
[e−i

2π
λ
(r (1)l −rl ), . . . , e−i

2π
λ
(r (N )
l −rl )]H ,

(3)

where (·)H is the operator of conjugate transpose.
In addition, rl is the distance from the l-th scatterer
to the center of the antenna array. The distance from
the l-th scatterer to the n-th antenna is r (n)l =√
r2l + d

2δ2n − 2rldδnθl for all l, where δn = (2n−N −
1)/2.

• Far-field channel model (h = hfar-field) is written as

hfar-field =

√
N
L

L∑
l=1

βlb(θl), (4)

where βl is the l-th path gain, and b(θl) is the steering
vector in the far-field, and is as follows:

b(θl) =

√
1
N
[1, e−iπθl , . . . , e−i(N−1)πθl ]H . (5)

Here, θl =
2d
λ
cos(φl), and d and φl are the same as

defined in the near-field channel modeling part.

Finally, the objective of this work is to classify whether h
is a near-field or a far-field channel through the partially
estimated channel hp.

III. AN NN-AIDED NEAR-AND-FAR-FIELD CLASSIFIER VIA
CHANNEL HANKELIZATION
A. A MATHEMATICAL BACKGROUND: PROPERTY OF
HANKELIZED MATRICES
In this section, useful properties of the Hankelized matrix
used in the NN model proposed in this paper are examined.
The Hankelized matrix for the partially estimated channel hp,
H ∈ CPT×P′T is as follows:

H[i, j] = hp[i+ j], (6)

where PT and P′T are the row and column dimensions of
H, respectively. To discuss the usefulness of Hankelization,
let H∗ be the H, which is made by noise-free the partially
captured channel in the far-field channel. Assuming PT is
larger than L, we can find a useful property regarding the
low-rank of H∗ as follows:

rank( lim
γSNR→∞

H∗) = L, (7)

where γSNR is signal-to-noise ratio (SNR) in a channel.
To validate this, let us take a closer look into an arbitrary row
of H∗, denoted by H∗[n, :] where n ∈ {0, 1, · · · ,PT − 1}.
This is represented as follows:

H∗[n, :] =

√
N
L

{ L∑
l=1

βle−i(n+p)πθl
}P′T−1
p=0

. (8)

As shown above,H∗[n, :] is a linear combination of L number
of P′T -sized row vectors which are captured from the l-th
multipath component of h. For simplicity, we denote this
l-th multipath component of h in H∗[n, :] as h[n]l . Naturally,
H∗[n, :] =

∑L
l=1 h

[n]
l . Then, we can easily verify (7) while

checking that all rows in H∗[n, :] have different L bases.
Firstly, two row vectors of h[n]l and h[m]l are linearly dependent
where n,m ∈ {0, 1, · · · ,PT − 1} and n ̸= m. This is because
h[n]l can be represented as follow:

h[n]l = e−iπ (n−m)θlh[m]l , (9)

i.e., h[n]l is a constant multiple of h[m]l , and vice versa.
Additionally, two row vectors of h[n]l and h[n]l′ are linearly
independent where l, l ′ ∈ {0, 1, · · · ,L−1} and l ̸= l ′. Thus,
rank( lim

γSNR→∞
H∗) = min(L,PT ). Finally, if L is lower than

PT , then (7) is satisfied.
In the near-field channel, since it is non-linear in the

angular domain, it is not possible to know that each column
of the Hankelized matrix is independent, so the low-rank
property cannot be used. However, the non-ideal H still
has valuable information about the ideal H∗. In this work,
we use singular values of H rather than directly using hp
to classify near-field and far-field channels. This is based
on the inference that they can constitute an efficient latent
space.

B. A NUMERICAL EVIDENCE: PROPERTY SINGULAR
VALUES OF HANKELIZED MATRICES
In order to show that our approach can make an efficient
latent space, we will provide some evidence by numerical
analysis about the rationale of the utilization of singular
values of Hankelized matrices. Fig. 3 shows the histogram
of the original channel, the fast Fourier transform (FFT)
processed channel, and the singular values of the Hankelized
matrices of the the partially captured channel in the near-field
and far-field. The difference between the near-field and far-
field distributions in the absolute and angle values of the
original channel is small, and the difference between the
near-field and far-field distributions in the angle values of
the FFT processed channel is also small. However, since the
difference between the near-field and far-field distributions
when using the absolute value of the FFT processed
channel and the singular values of the Hankelized matrices
of the the partially captured channel seems meaningful,
the NN model for channel classification is aimed in this
paper.

In addition, Fig. 4 shows the singular values of the
Hankelized matrices of the partially captured channel are
meaningful. The t-distributed stochastic neighbor embedding
(t-SNE) is a nonlinear dimensionality reduction system
that converts high-dimensional data into low-dimensional
data [24]. As a result of reducing the near-field and far-field
high-dimensional datasets to two dimensions, we can see that
the shared near-field and far-field datasets as proposed in the
paper have better clustering results than the others.
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FIGURE 3. Histograms of utilizable data from near-field and far-field channels.

FIGURE 4. Data visualization based on t-SNE analysis.

C. DESIGN OF THE PROPOSED NN FRAMEWORK
Now, we propose a harmonized design with Hankelization
and NN utilization to seek the low-dimensional space to
represent the complex channel data.

We define Eθ as the encoding function where the parameter
θ is {W,b}, i.e., Eθ (σ̄ ) = S(Wσ̄ + b). In addition, we define
Dθ ′ as the decoding function where the parameter θ ′ is
{W′,b′}, i.e.,Dθ ′ (Eθ (σ̄ )) = S(W′Eθ (σ̄ )+b′). Finally, we can
define the optimized encoding and decoding NN models,
denoted by Eθ∗ and Dθ ′∗, respectively, as follows:

{Eθ∗,Dθ ′∗} = argmin
Eθ ,Dθ ′

1
M

M∑
i=1

||e(i) −Dθ ′ (Eθ (σ̄ (i)))||22, (10)

whereM and (i) are the number and the index of the training
dataset, respectively. As shown in (10), we set the mean
squared error (MSE) as a loss function. Let 2 be the entire
model parameters, i.e., 2 := θ ∪ θ ′ = {W,W′,b,b′},
we choose the stochastic gradient descent (SGD) as an
optimizer that the update rule for the model parameter 2(t)

at iteration t is as follows:

2(t+1)
= 2(t)

− η
∑
i∈Bt

∇2

( 1
MB

MB∑
i=1

||e(i) −Dθ ′ (Eθ (σ̄ (i)))||22
)
,

(11)

where MB and Bt are the mini-batch size and the set
containing the indices of the input/output pairs in the current

mini-batch, respectively. Also, η and ∇2 denote the learning
rate related to the step size to the update 2 and the
gradient operator with respect to 2, respectively. Through
the procedures of (10) and (11), we can optimize the fully-
connected (FC) NN model.1 Now, we can use the optimized
NN model for the hypothesis testing of binary classification
as follows:

ẽ[0]
far−field

≶
near−field

ẽ[1], where ẽ = Eθ∗(Dθ ′∗(σ̄ )). (12)

Algorithm 1 shows the procedure of the proposed method.

IV. SIMULATION RESULTS
In this section, we will compare the performance of our
proposed NN-based scheme with the deep learning-based
model using absolute values of 1) the original channel
and 2) the FFT-processed channel. Table 2 summarizes the
parameter values of the simulation setting.

Fig. 5 shows the near-field and far-field channel clas-
sification accuracy of the proposed NN model using the
confusion matrix. Here, target-class and output-class mean
the ground-truth and the estimate, respectively. For instance,
the percentages for accuracy of correctly and incorrectly

1For simplicity, the description of the NN model design throughout this
section is based on a single hidden layer, but it is obvious that deeper hidden
layers can be made by multiple encoding/decoding function parameters, i.e.,
{θi}

d
i=1 and {θ ′i }

d
i=1, where d , θi and θ ′i are the depth of the NN model, the

i-th encoding and decoding function parameter.
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Algorithm 1 The Procedure of Proposed Neural Network
1: [Training phase]
2: Collect the training dataset, i.e., the captured channel

h(i)p and the one-hot encoding vector e(i) for all i ∈
{1, · · · ,M}.

3: for i← 1 toM do
4: Transform h(i)p to H(i).
5: Extract the vector consisting of singular values ofH(i)

in the descending order, i.e., σ̄ (i).
6: end for
7: Optimize the encoding/decoding functions based

on (10), i.e., {Eθ∗ ,Dθ
′∗}, by inputting and outputting

{σ̄ (1), . . . , σ̄ (M )
} and {e(1), . . . , e(M )

}}, respectively.
8: [Test phase]
9: Collect the test dataset, i.e., the captured channel h(i)p and

the one-hot encoding vector e(j) for all j ∈ {1, · · · ,N }.
10: for j← 1 to N do
11: Make the input vector σ̄ (j) referring steps 4 and 5.
12: Guess whether h(i)p is near-field or far-field channel

via (12).
13: end for

TABLE 2. Default configuration in the experiments.

TABLE 3. Detection rate versus the number of the training dataset.

detecting near-field channels are 94.9% and 5.1%, respec-
tively. As shown in this figure, it can be confirmed that the
high accuracy of about 94% is obtained in all cases. Based

FIGURE 5. Confusion matrix of proposed neural network.

FIGURE 6. Detection rate versus SNR.

on this, it can be seen that the proposed NN model is suitable
for classifying near-field and far-field channels; thus, we will
examine the detection rate under various conditions.

Table 3 shows the detection rates of near-field and far-field
channels according to the number of training dataset. As seen
in the figure, it can be seen that the performance of the deep
learning-based NN model is obviously inferior when the size
of the training dataset is 100. On the other hand, the proposed
NN model shows a detection rate of almost 90% or more
regardless of the size of the training dataset.

Fig. 6 shows the detection rates of near-field and far-field
channels according to SNR. As seen in the figure, it can
be seen that the performance of the proposed NN model
is superior to those of the deep learning-based NN models.
Interestingly, in the case of the proposed NN model, even
when the size of the training dataset is 100, it shows a
detection rate of about 90% or more from 10 dB, so it shows
excellent performance even with a small amount of training
dataset.

Fig. 7 shows the detection rates of near-field and far-field
channels according to the number of pilot symbols. The figure
shows that the detection rate of the proposed NN model is
more than 90% when the number of pilot symbols is about
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FIGURE 7. Detection rate versus the number of the pilot symbols.

FIGURE 8. Detection rate versus variations of SNR at the test phase.

TABLE 4. Detection rate versus the K -factor.

20 ormore. In addition, in the case of the proposedNNmodel,
even when the size of the training dataset is 100, it can be
seen that the number of training dataset follows a very similar
detection tendency of 10000. Therefore, the proposed NN
model presented in this paper can be used regardless of the
entire dedicated bandwidth or the allocation pattern of the
pilot symbol of the wireless communication system. Unlike
naïve NN techniques, it is less affected by the number of
training dataset.

Fig. 8 shows performance according to the variations of
SNR at the test phase. For instance, if the test of the NN
model is conducted in the range of 7.5 dB to 12.5 dB when
the NN model is trained at 10 dB SNR, the variation of SNR
in the test phase is 5 dB. Fig. 8 shows that the proposed
NN model shows a high detection rate in certain variations
of SNR despite using a smaller amount of data compared

to the naïve deep learning-based model. Also, despite using
a small training dataset size, it shows a higher detection
rate than naïve NN techniques. Overall, Fig. 8 implies that
the proposed NN model shows excellent performance in
an environment with different SNRs in training and test
phases, which can be a crucial factor in an NN-aided wireless
communication system under highly dynamic conditions.

Furthermore, Table 4 shows the detection rates of
near-field and far-field channels according to the K -factor
that can indicate the power of a dominant path among
multipaths. In the situation where the K -factor is 6 dB, the
deep learning-based (FFT processed channel) scheme has a
detection rate of less than 80%, while the proposed NNmodel
shows more than 90%.

V. CONCLUSION
In this paper, we propose a new framework that classifies
near-field and far-field channels by utilizing the singular
values of the Hankelized matrices of the partially captured
channel in the downlink scenario in XL-MIMO systems.
Our proposed framework is based on the mathematical
property that if the channel is far-field channel in noise-free
environment, it has a low-rank property since it is linear in
the angular domain. On the other hand, since the phase of
near-field channel is nonlinear, the low-rank property is no
longer satisfied; consequently, we use the singular values
of Hankelized matrices to distinguish between the near-field
and the far-field channels. Simulation results proved that the
proposed NN model has excellent classification performance
of near-field and far-field channels according to SNR, number
of training datasets, and number of pilot symbols. It has been
proven that it is a suitable model for classifying near-field
and far-field channels. In conclusion, the technique presented
in this paper is expected to have potential as a new method
for classifying near-field and far-field channels because it
shows excellent performance in various conditions despite the
small size of the input and training dataset. It is believed that
the near-and-far-field classification has lots of opportunities
by using it as a preprocessor in representative objectives,
e.g., channel estimation, hybrid beamforming, and precise
localization, and can be further enhanced by applying more
advanced NN models, e.g., transformer.
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