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ABSTRACT The recent advances in deep learning techniques enable 2D Multi-object tracking (MOT) to
achieve remarkable performance over traditional methods. However, most 2D MOT algorithms primarily
utilize only single-camera view. Therefore, they are prone to frequent tracking losses and track-ID switching
under conditions due to limited viewpoints and occluded objects. To alleviate this problem, we propose
a stereo-camera-based collaborated multi-object tracking (CollabMOT) method that performs online and
dynamic association of multiple tracklets from baseline MOT algorithms in overlapping views of stereo
cameras. CollabMOT utilizes appearance similarity to generate global tracking IDs that unify the same
tracklets between viewpoints of stereo cameras. It then leverages the transitive information from these
global tracking IDs to reconnect the disrupted tracklets in each camera view. CollabMOT improves the
overall performance of baseline 2D MOT methods on a single camera view by mitigating the problem of
ID switching. Evaluation of CollabMOT on Argoverse-HD and KITTI dataset shows improved performance
over baseline MOTmethods. As a result, the proposed method improves the performance of the recent state-
of-the-art method on the 2D MOT task of the KITTI dataset from 79.5 to 80% on High Order Tracking
Accuracy (HOTA) score for vehicles.

INDEX TERMS Multi-object tracking, stereo vision, deep learning, data association.

I. INTRODUCTION
Multi-object tracking (MOT) is the process of localizing
objects and connecting them to their unique identities within
a video. MOT is one of the main research areas in computer
vision, with applications in surveillance, autonomous driving,
and other areas. Most of the 2DMOT algorithms [1], [2], [3],
[4], [5], [6], [7], [8], [9], to the best of our knowledge, only
focus on a single camera with a constrained field of view.
They are, therefore, vulnerable to the occlusion problem,
where the algorithm becomes confused and typically gives
a new identity to a tracked object that reappears, resulting in
a high ratio of identity switching.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Asif .

Consider the video sequence showing the left and right
viewpoints of the stereo camera from KITTI dataset [10]
in Figure 1. On the left camera, a vehicle with ID 26 is
occluded by the automatic traffic barrier after two frames
and incorrectly switches to ID 30 in the later frame. On the
other hand, the right camera has an unobstructed view of
the identical vehicle and consistently keeps the same ID 22.
Because of their similar appearance, ID 22 from the right
camera is linked to ID 26 in the previous frame and ID 30 in
the current frame on the left camera. By transitive reasoning,
ID 26 and 30 are an identical tracklet. The same observation
can be applied to ID 25 and 21 from the right camera, which
are interconnected to ID 23 from the left camera. Suppose
the left camera is the primary camera in the system, the right
camera could become the assistant to combat the track ID
switching problem of the left camera and vice versa.
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FIGURE 1. Left and right video frames from the KITTI dataset with
outputs of CenterTrack [1] (number before colon sign). By utilizing the
transitive reasoning between tracklets in overlapped stereo cameras,
CollabMOT unites interrupted tracklets under occlusion with consistent ID
(number after colon sign).

For vehicle tracking in autonomous driving or advanced
driving assistance system (ADAS) applications, which is
one of the main applications of MOT, cameras are mounted
directly on the vehicles [10], [11], [12], [13]. Most ADAS
or autonomous vehicles are equipped with multiple cameras
such as those from [11] and [12]. They provide 360-degree
coverage around the car, and each camera typically has a
very narrow overlapping field with the others. Therefore,
3D multi-camera multi-object tracking [14], [15] spatio-
temporallymonitors the 3D states of tracklets across cameras.
However, a narrow overlapping multi-camera setup may
prove to be less effective in the event of an occluded object in
a single-camera view. (Figure 1).
A common example of highly overlapped multi-cameras

is a stereo camera [10], [13] as illustrated in Figure 1.
Much of the work on stereo vision has been aimed at depth
estimation and 3D object detection, which requires heavy
calibration and complexmatching algorithm [16]. Inspired by
the observation from Figure 1, the 2D Multi-Object Tracking
task could also benefit from the overlapping view of a stereo
camera.

Most recent trackers utilize deep neural networks to learn
all necessary cues to associate tracklets between frames over
time. While avoiding heuristic assumptions commonly found
in handcrafted appearance and motion cues, deep-learning-
based tracking methods still heavily rely on well-curated
and high-quality datasets. To achieve optimal performance,
most methods require pre-training on large datasets before
fine-tuning on the target test datasets instead of solely relying
on the provided training dataset. Though such methods have
the potential to become more generalized trackers, they still
require significant amounts of pre-processing and complex
training schemes to function accurately.

In this work, we introduce CollabMOT, which can be
integrated into the existing state-of-the-art MOT tracker
algorithms. Based on their appearance feature, it per-
forms inter-camera tracklets association between the two

FIGURE 2. AssA (Association Accuracy)-HOTA (Higher Order Tracking
Accuracy) graph comparing our proposed CollabMOT with the latest
state-of-the-art trackers of the KITTI test datasets on HOTA metric [18].
The baseline tracker results are represented in circle ◦, and our proposed
CollabMOT results are embodied in star ⋆ mark sharing the same color
with the baseline method. The performance of baseline methods and
CollabMOT is evaluated on the left camera with DeepSORT [7] is
employed in the right camera. Our proposed method shows improved
HOTA and AssA performance over baseline methods. Best viewed in color.

partially overlapping views from stereo cameras. Fur-
thermore, we utilize the inter-camera connection between
tracklets to reconnect interrupted tracklets in a single-camera
view.

We demonstrate the transitive relation of tracklets asso-
ciation in overlapping multi-cameras improves the per-
formance of 2D multi-object tracking in each camera
without additionalmulti-camera annotations. CollabMOT
is extensively evaluated on KITTI [10] and Argoverse-HD
[17] datasets, demonstrating improved performance over
baseline MOT methods. In particular, CollabMOT improves
the HOTA score from 73.02% to 75.26%, 78.03% to 78.54%,
and from 79.53% to 80.02% for three state-of-the-art MOT
algorithms: CenterTrack [1], PermaTrack [2], RAM [3],
respectively, on the highly competitive KITTI multi-object
tracking dataset as demonstrated in Figure 2. Furthermore,
the proposed CollabMOT algorithm is designed to be
adaptable to various appearance feature encoder profiles.
In addition, it is capable of operating in a semi-online
manner. As such, it represents a viable solution for real-time
applications.

The rest of the paper is organized in the following way.
In section II, we explore related state-of-the-art approaches
and analyze their distinctive features by categorizing them
into distinct classes. Then, we explain the details of our pro-
posed CollabMOT in Section III. Next, we provide detailed
experiments conducted on KITTI [10] and Argoverse-HD
[17] in Section IV. Finally, we discuss the limitation and
future work of CollabMOT in Section V and Section VI.
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II. RELATED WORKS
A. SINGLE CAMERA 2D MULTI OBJECT TRACKING
In recent years, with the development of stronger object
detection [19], [20], [21], [22], [23], tracking by detection
(TBD) is widely studied and considered as one of the most
effective paradigms for 2D multi-object tracking (MOT).
In tracking by detection, the first step is to find objects in each
image and associate them over time with similarity cues such
as motion, location, and appearance. SORT [6] computes the
IOU between detected boxes and predicted boxes generated
by Kalman Filter [24] with a constant velocity model.
DeepSORT [7] improved SORT by employing a separate
appearance encoder to extract discrimination features from
detected boxes as an association metric combined with IOU.
Because of its modular design, TBD is compatible with
various object detectors and appearance feature encoders,
making it very helpful for annotating objects [25]. However,
they are usually computationally expensive. Recently, several
studies [4], [5] ignore appearance information and only
focus on associating the bounding box generated from
high-performance object detection models based on location
similarity or IOU score. For pedestrian tracking, location
similarity is generally satisfactory, but it is typically inferior
to appearance similarity on high-velocity targets or low frame
rate data [5].

Recently, several studies [1], [8], [9], [26] extended the
existing object detectors into trackers and executed both tasks
in a single framework. In CenterTrack [1], the author extends
the anchor-less detector CenterNet [27] framework, aiming
to predict the displacements of tracklets between consecutive
frames. CenterTrack tends to produce short, fragmented
tracklets and generally assigns long-lost, reappearing track-
lets with a new identity. Based on CenterTrack, PermaTrack
[3] added ConvGRU [28] as a sub-network to accumulate
tracklets information in previous frames. PermaTrack learns
to detect objects under occlusion by combining synthetic
datasets with real datasets and heuristic label preprocessing.
RAM [3], built on top of PermaTrack, additionally combines
contrastive random walk [29] process to enhance further the
capability to retrack the object under heavy occlusion.

B. SEMI-ONLINE MULTI-OBJECT TRACKING
According to the processing scheme, MOT algorithms could
be further categorized into online, offline, and semi-online
methods. Online MOT methods [1], [2], [3], [7] generate
tracklets in every frame time, while offline methods [30], [31]
wait for whole images sequence. On the other hand, semi-
online MOT [32], [33] combines the strength of both online
and offline methods as they process images on a frame-by-
frame basis similar to online algorithms but correct the wrong
association in the previous frames like offlinemethods. In this
paper, we apply tracklets association on the output of online
MOT algorithms to modify the wrong tracklets output in
the past frames. Consequently, CollabMOT belongs to the
semi-online MOT approach.

TABLE 1. Notation used throughout the paper.

C. MULTI-TARGET MULTI-CAMERA TRACKING
Most of the algorithms in Multi-target Multi-Camera Track-
ing (MTMCT) are designed for fixed surveillance camera
systems. The performances are evaluated by aggregated
global tracklets information from each local annotation in
each camera view. NVIDIA has hosted the AI City challenges
[34], [35], [36], [37], [38], [39] providing non-overlapping
traffic camera datasets for multiple traffic analysis task such
as city scale multi-target multi-camera tracking, cross camera
vehicle reidentification, and more. On the other hand, highly
overlapping pedestrian surveillance datasets [40], [41], [42]
utilize calibration process of static cameras to map the target
from image coordinates to the real-world coordinates among
all cameras and evaluates the performance in projected
coordinates on ground rather than the image space.

The standard workflow in MTMCT task is divided into
two steps [43]: 1) Single camera Multi-Object Tracking
and 2) Inter-Camera tracklets association. The first step
involves generating local tracklets for each camera using a
multi-object tracking algorithm. As the local tracklets are
ingredients in the second step, local tracklets include target
coordinates and a corresponding feature vector extracted by
an independent feature encoder. In the next step, local track-
lets and topology of each camera in the network are gathered
and associated by their feature vector and spatiotemporal
relation in the camera network into global tracklets.

Our proposed method adheres to the fundamental princi-
ples of MTMCT while introducing a distinctive processing
pipeline, setting it apart from the conventional approaches.
Most of the previous MTMCT methods perform offline
association, which means that the Inter-Camera tracklets
association conducts association after gathering all local
tracklets. Our method targets real-time stereo camera applica-
tions where future frames are unavailable. We perform inter-
camera tracklet association immediately after generating
local tracklets in each camera. Additionally, we use positive
feedback from multi-camera tracklet associations to resolve
identity inconsistencies in each camera’s field of view.

III. PROPOSED COLLABMOT
Table 1 summarizes the notation used in this paper. Since we
work with global tracklet associations on multiple cameras
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FIGURE 3. The proposed CollabMOT method consists of four major modules: 1) Single camera object tracking (SCT), 2) Appearance feature
extraction, 3) Affinity cost calculation, and finally, 4) Inter-camera multi-tracklets association and intra-camera tracklets reconnection. Finally,
we generate the uninterrupted tracklets combining their bounding box location in the ego camera with the global identity from the
inter-camera association step. Best view in color and zoom in.

and local tracklets on each camera, we use superscripts to
denote global scope and subscripts to denote local scope. For
example, T ci is a tracklet with track id i of camera c.
Figure 3 illustrates the overall structure of the proposed

method. At each time t , the Single-Camera Multi Object
Tracking (SCT) module takes the synchronized input image
I ct from camera c and generates tracklets T c with each
tracklet Ta ∈ T c consisting of bounding box locations
B = bi, i ∈ [1, t].

In the next step, we use an appearance feature encoder
trained on vehicle reidentification dataset to generate appear-
ance feature vector f from each bounding box b ∈ B. The
feature vector f forms appearance feature bank F = fi, i ∈
[1, t], which is added to the tracklet Ta = {(bi, fi) , i ∈ [1, t]}
along with B.

Our method labels a camera that requests feedback from
the multi-camera association system as an ‘‘ego camera’’.
This terminology refers to the camera’s role and relationship
with the system, aiding in the comprehension of its func-
tionality. At each ego camera, we calculate the affinity cost
distance between its own tracklets and other tracklets from
remote cameras by using their appearance feature bank F in

Section III-C. Next, we determine bipartite matching between
tracklets from two cameras until frame t based on the affinity
cost distance in Section III-D.

The global identity of tracklets, denoted by G, represents
the unique identity of a target object across all cameras in the
system. It is determined by considering both the intra-camera
and inter-camera tracklet relations [43]. Intra-camera tracklet
relations refer to the temporal continuity of tracklets within
a single camera, while inter-camera tracklet relations refer to
the spatial and temporal associations between tracklets across
different cameras. By considering both types of relations, G
provides a comprehensive representation of the identity of
tracklets in a multi-camera system. Here, tracklet T ca from
camera c is identical to tracklet T c

′

a′ from camera c′ if Ga > 0
and Ga = Ga′ with a, a′ is defined in Equation 1.

a, a′ =

 a ∈ T c, a′ ∈ T c
′

if c = c′ and a ̸= a′

a ∈ T c, a′ ∈ T c
′

if c ̸= c′
(1)

The global ID connects the ongoing tracklets between two
cameras and joins the stale tracklet with the new one to form
a longer tracklet in each camera by utilizing the transitive
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relation between tracklets. Furthermore, we interpolate miss-
ing bounding boxes of interrupted tracklet and only select
unobstructed bounding boxes to complete the trajectory.
Finally, we generate the final tracklets on the ego camera
using the combined information from both inter-camera and
intra-camera tracklet association.

A. SINGLE CAMERA TRACKING
Our proposed method provides the tracklet association over
multiple cameras so it can integrate various single-camera
trackers (SCTs) to produce global association over tracklets
from the SCTs of the multiple cameras. Furthermore, each
camera could use a different SCT algorithm to perform the
task of single camera tracking if the tracking targets are
similar among cameras.

B. APPEARANCE FEATURE EXTRACTOR
Data association in MOT decides the allocation of new
detection boxes to tracklets based on their similarity.
However, each method adopts different cues to compute the
similarity in terms of the location of tracklets [1], [4], [6],
and appearance information [7], [8], [9]. Due to the diversity
of similarity computation techniques of MOT methods,
we employ separate appearance feature encoders for all SCTs
integrated into CollabMOT. Although CollabMOT does not
impose any restrictions on the use of the SCT algorithm on
each camera, it uses the same appearance feature encoder to
ensure that the extracted feature information is comparable
among tracklets. For track-by-detection SCT, which adopts
a separate appearance encoder to extract feature information
from detection boxes [7], we use the same appearance feature
encoder for both SCT and CollabMOT. We provide more
details of the appearance feature encoder in Section IV-C2.

C. DISTANCE MATRIX CALCULATION
We use 4e and 4r to denote, respectively, the list of tracklets
from T e and T r whose bounding box emerge at frame t as the
candidates for distance calculation at each association time t .
As a small bounding box does not capture beneficial image
feature data, we exclude tracklets whose bounding box height
is smaller than λh.
Let Si,j denote, respectively, the affinity cost of tracklet

T ei ∈ 4e and tracklet T rj ∈ 4r . The total affinity cost is
calculated by Equation 2:

Si,j = Sa× ωa + Sp× ωp (2)

Here, Sa and Sp represent the appearance and position
similarity cost, respectively, while ωa, ωp are weight values
to balance Sa and Sp.

We follow the exponential moving average (EMA) update
of a new appearance feature ft from [9] in Equation 3:

f̃ = αf̃t−1 + (1− α)ft (3)

Here, α is the decay rate of the momentum update. We set
α = 0.9 in the experiment presented in this work. The EMA

FIGURE 4. To compute the occlusion ratio of the bounding box, we divide
the area of the union of overlapping regions (gray color) over the area of
the target bounding box.

updates the appearance cost incrementally and reduces the
computation burden for tracklets with a long history.

Bounding boxes with lower confidence scores tend to show
lower accuracy in their localization information, leading
to inaccurate appearance features. Due to the limited field
of view of a single-mounted camera, bounding boxes of
adjacent tracklets usually overlap with each other. To take
such bounding boxes into account, we only update ft into f̃ if
the confidence score conf ≥ 0.3 and occlusion ≤ λocclusion.
Here, we define occlusion ratio in Equation 4.

occlusion =
area of union of overlapping

area of bounding box
(4)

Figure 4 represent the calculation process of occlusion in
Equation 4.

For tracklets whose none of its bounding boxes satisfied
these conditions until association time t , we have f̃ = ∅.
Finally, the appearance affinity cost is computed as follows
Equation 5:

Sa =


∞ if f̃ e = ∅ or f̃ r = ∅
∞ if DCD(f̃ e, f̃ r ) > λappearance

DCD(f̃ e, f̃ r ), otherwise

(5)

where DCD is the cosine distance of f̃ e, f̃ r .
In a stereo camera setup, when camera e is on the left side

of camera r , all tracklets on the left side in the viewpoint
of e almost certainly do not emerge on the right side of r .
The same observation can be applied to the tracklets on
the right side of e if e is on the right side of r . Therefore,
we set Sp = ∞ for any pair of T ei and T rj that fall into such
cases to limit unnecessary distance calculation in Equation 2.
Otherwise Sp = 0. More detailed calculation for Sp is
provided in Appendix.

D. MUTI CAMERA TRACKLET ASSOCIATION
At each time t , an online SCT algorithm decides whether

to start new tracklets, extend the existing tracklets with new
detection boxes, or stop the tracklets which has not been
associated with any detection box for a specified number
of frames. Furthermore, it could revive the lost tracklets
Tlost with current bounding boxes via cascaded matching [7].
In case the Tlost has been intra-connected with one of the
ongoing tracklet Tcurrent , we count the number of cases where
the bounding boxes of Tlost and Tcurrent at each time t has
IOU score greater than λmerged_iou. If the number of cases
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Algorithm 1Multi-Camera Multi Tracklet Association
1: Input : affinity cost matrix S
2: Output : updated G and minS
3: Handle local tracklet resurfacing.
4: repeat
5: A← Hungarian Algorithm [44] (S)
6: Assign tG, tminS = ∅ # temporary empty list
7: for (i, j) ∈ A, Si,j < λappearance do
8: gi, Vi← Algorithm 2 (T ei ,T rj ,T r , Si,j)
9: gj, Vj← Algorithm 2 (T rj ,T ei ,T e, Si,j)
10: if either Vi or Vj is False then
11: Set Si,j = ∞,
12: A← ∅ # Rerun, goto line 5
13: end if
14: tGi, tGj ← Equation 6 (gi, gj)
15: tminSi, tminSj ← Si,j
16: end for
17: Update minS ← tminS
18: Update G← tG
19: # Finish multicamera tracklets association
20: until Reset is not triggered

where co-appearance is smaller than λcoapp, we merge their
co-appearance bounding box at each time step. Otherwise,
we revoke the intra-association between Tlost and Tcurrent
prior to tracklet association step. We also immediately cancel
the intra-connection once the IOU score is greater than
λcoapp or there is more than one Tlost on the same camera
resurfacing. In the work presented in this paper, we set the
threshold λmerged_iou = 0.3 and λcoapp = 5 for every
experiment. CollabMOT performs local tracklet resurfacing
on tracklets from all SCT before the tracklet association step.

Algorithm 2 Association Verification
1: Input: T ei , T

r
j , T

r , affinity cost Si,j
2: Output: valid globalID gi, valid check Vi
3: Assign gi = −1, Vi = True
4: for tracklet Tk ∈ T r ,Gk > 0,Gk = Gi do
5: if T rj = Tk then
6: gi = Gk
7: else
8: if Tk and T rj are temporal overlapped then
9: if minSk < Si,j then
10: Vi = False
11: else
12: tGi, tGk = −1 : # reset previous global IDs
13: end if
14: else
15: gi = Gk # Tk is lost tracklet
16: Recover missing trajectory from Tk to T rj
17: end if
18: end if
19: end for

Let’s denoteA as sets of optimal assignments between 4e

and 4r after performing Hungarian assignment [44] on cost
matrix S (Algorithm 1 line 5). Compared with offline MOT,
online MOT algorithms have the disadvantage that the future
frames of tracklets are unavailable at each association step.
Therefore, each association i, j ∈ A represent the optimal

assignment between tracklets T ei ∈ T
r and T rj ∈ T

r only at
frame t . To rule out the possibility that current association
i, j is not the optimal assignment compared with previous
assignments in previous frames or vice versa, we proposed
the dynamic association scheme that combines the current
affinity cost S and the global affinity cost minS which stores
the minimum assignment cost of each tracklet.

We demonstrate the validation step of T ei and T rj ∈ T r

in Algorithm 2. We iterate all the tracklet Tk ∈ T r which
has been associated with T ei by same global ID, i.e Gk = Gi.
We assign gid = Gk only when either Tk is indeed same as
T rj (Algorithm 2 line 5) or Tk has been lost and there is no
temporal overlap between Tk and T rj (Algorithm 2 line 15).
Otherwise, if they coexist at any time, we then inspect the
assignment of T ei ,Tk by using the global affinity cost minS.
If global affinity cost minSk is greater than Si,j, it suggests
that the previous assignment between Tk and T ei is not the
optimal association. Hence, we revoke their connection by
setting tGi = −1 and tGk = −1 (Algorithm 2 line 12).
Conversely, it implies the current assignment of T ej and T rj
are less favorable association than the previous pair T ei and
Tk , so we need to invalidate the current association of i, j by
setting V = False (Algorithm 2 line 10).

Algorithm 2 only verifies the association of T ei and T rj on
tracklets T r . To ensure the optimal assignment of T ei and T rj
on both ego and remote cameras, we additionally check the
connection between T rj and T ei on tracklets T e by using the
same Algorithm 2. If the above mutual verification process
detects non-optimal association (Algorithm 1 line 11, 12),
in other words, either Vi = False or Vj = False (Algorithm 2,
line 10), we invalidate i, j by setting Si,j = ∞ and restart the
procedure (Algorithm 1 line 5). Otherwise, we determine the
final association identity based on gi and gj as described by
Equation 6.

gi,j =



gi if gi > 0 and gj < 0
gj if gj > 0 and gi < 0
gi if gi = gj
−1 if gi ̸= gj
new if gi < 0 and gj < 0

(6)

To avoid updating suboptimal associations into G and
minS, we designate the temporary tG and tminS to hold the
current association identity and cost of each i, j. We update tG
to G and tminS to minS only if the reset step is not triggered.
The benefit of the above bi-directional association step

is twofold. Firstly, it updates Global ID G with the optimal
inter-camera association from the beginning until association
time t . Second, it also reconnects the previously lost tracklets
with the current ones on the single camera, increasing the
SCT algorithm’s performance.

E. RECOVER THE MISSING TRAJECTORY BY
INTERPOLATION
Let T ei and T ek denote the current and lost tracklet on ego
camera e, which has been reconnected by transitive relation
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FIGURE 5. Illustration of interpolation process between lost tracklet T e
k

and current tracklet T e
i . We interpolate the missing bounding boxes

between two bounding boxes in yellow color. We then check the IOU
score of temporal overlapped interpolated and tracklets bounding box
(shown in dashed rectangles) to ensure that the propagation of missing
bounding boxes between two tracklets is accurate.

with T rj on remote camera r . Then we have Gi = Gj = Gk .
Once we reconnect T ek with the T ei to create longer tracklets,
we can interpolate themissing bounding boxBinterpolated from
the bounding boxes of T ek and T ei .
The linear interpolation process of Binterpolated between

two bounding boxes bt1 and bt2 from frame t1 to frame t2 is
described in Equation 7:

Binterpolated = {bt1 +
bt2 − bt1
t2 − t1

(t − t1)} (7)

where t1 < t < t2, t ∈ I1 and b ∈ R4 containing the top left
and bottom right coordinates of a bounding box.

Normally, missing interpolation boxesBinterpolated between
T ek and T ei are derived from the latest frame tlast of T ek to
the first frame tfirst of T ei [4], [45]. However, when there is
no direct linear interpolation between T ek and T ei , choosing
the bounding box at tlast and tfirst as interpolation points can
introduce the false positive bounding boxes.

Therefore, we introduce ωinterpolated , which indicates the
depth of interpolation in terms of the number of frames.
In Equation 7, we assign t1 = tlast−ωinterpolated and t2 =
tfirst+ωinterpolated . We define Boverlap as temporal overlap-
ping bounding boxes positioned in frames [first,first +
ωinterpolated ) and (last − ωinterpolated , last] from Bek and Bri ,
respectively. We only fill the gap if all of the IOU scores
between Binterpolated and Boverlap are greater than λint_iou.
Through this step, we want to ensure the interpolation
process produces the correct propagation of missing boxes
between two tracklets. Furthermore, we set λint_occlusion as
the threshold to discard heavy occlusion box fromBinterpolated
by its occlusion ratio calculated from Equation 4. The above
process is illustrated in Figure 5.
With ωinterpolated ≥ 1, the interpolation process should

wait for ωinterpolated frame after the intra connection between
T ek and T ei was formed. If the intra-connection between T ek
and T ei is revoked, (Algorithm 2 line 12), the interpolated
boxes are discarded.

F. COMBINING LOCAL TRACKLET WITH GLOBAL IDENTITY
Our proposed method connects identical tracklets with dif-
ferent local identities among multiple cameras by assigning
a singular global identity. For example, tracklet T ei , beside

local identity i on camera e, is also represent by Gi. However,
the bounding box coordinate of T ei localizes the tracklet
position only on the viewpoint of camera e. Therefore, at each
association time t , to generate the tracklet outputs of T ei on
ego camera e, we replace the local tracket identity i with
associated Gi when Gi > 0, and keep the same bounding box
coordinate of original Ti, including with possible interpolated
bounding boxes as described in Section III-E.

IV. EXPERIMENTS
A. DATASET
KITTI 2D multi-object tracking evaluations [10] provide
21 training and 29 test sequences captured at 10Hz with
8008 and 11095 images, respectively. Each sequence consists
of two stereo-matching images from camera 2 and camera 3,
where camera 3 is on the right side of camera 2. However,
only the camera 2 subset has ground truth for the MOT task.
While the KITTI dataset has annotations for 8 classes, it pro-
vides evaluation labels only for the ‘Car’ and ‘Pedestrian’
classes for MOT tasks. In CollabMOT, we only evaluate the
performance of the ‘Car’ class. KITTI also does not offer
validation datasets, so we follow [1], [2], and [3] to divide
training images equally into training and validation sets for
ablation studies.

Argoverse-HD dataset [17] extends Argoverse 3D track-
ing dataset [13], focus on 2D object detection for streaming
perception evaluation. Argoverse-HD provides dense 2D
annotations with track ID for the ring_front_center camera.
This is because 2D annotations are more accurate than
converting 3D cuboids to 2D bounding boxes. The trackid
annotations are done manually to ensure quality, but some
residual noise remains.1 Argoverse-HD does not provide an
official 2D MOT benchmark [17], so we follow the setup
and evaluation metric from KITTI 2D MOT. To achieve a
stereo camera setup similar to the KITTI dataset, we syn-
chronize the images of ring_front_center (camera 2) with the
stereo_front_right (camera 3) subset using conversion scripts
from the official repository.2 The ring_front_center camera
captures images at 30Hz, whereas the stereo_front_right
camera captures images at only 5Hz. After the mapping
process, we end up with 2520 pairs of images. It is worth
noting that the ring camera captures images at a resolution
of 1920 × 1200, while the stereo camera captures images at
2056 × 2464 resolution. The baseline between two cameras
is 0.14m, which is narrower than KITTI stereo camera setup
(0.53m).

In the evaluation section, following the camera setup from
the KITTI dataset,3 we refer to the left and right cameras
in the stereo camera setup as ‘camera 2’ and ‘camera 3’,
respectively. The performance of CollabMOT is evaluated on
one of the two cameras as an ‘ego camera’, and the other
is considered as a ‘remote camera’. However, since there

1https://github.com/mtli/sAP/blob/master/doc/data_setup.md
2https://github.com/argoverse/argoverse-api
3https://cvlibs.net/datasets/kitti/setup.php
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TABLE 2. Appearance feature encoder summary. The latency is measured in milliseconds with batch size of 32.

is no ground truth annotation available for ‘camera 3’ in
the dataset, we consider ‘camera 2’ as the ‘ego camera’ for
evaluation in all experiments.

B. EVALUATION METRICS
We use the official evaluation metrics of the KITTI dataset.
High Order Tracking Accuracy (HOTA) [18] is the balanced
combination of detection (DetA) and association (AssA)
accuracy in terms of IOU score. Given predicted and
ground-truth trajectories, DetA calculated the ratio of spatial
intersection between predicted and ground-truth detections
over their union detections. On the other hand, AssA
measures the temporal intersection of identities over their
union of IDs. In this work, we report HOTA and two partial
AssA and DetA scores.

In addition to HOTA metrics, we also report standard
benchmark metrics in the MOT task. The MOTA metric [51]
has been employed as the primary MOT evaluation metric
since 2006, but it places too much emphasis on detection
performance over association performance [18]. As a result,
we only report the IDSW score from the MOTA metric.
On the other hand, the ID metric [52], designed specifically
for evaluating tracking in a multi-camera setting, is the main
metric for the NVIDIA AI city MTMCT benchmark [36].
Moreover, it is also applicable to standard single-camera
settings [53].

C. IMPLEMENTATION DETAILS
1) HYPERPARAMETERS
Since our algorithm is focused on multi-tracklets association
between stereo cameras, we employ the state-of-the-art 2D
MOT method in the SCT step. As base SCT methods,
we selected CenterTrack [1], PermaTrack [2], and RAM
[3], which are open-source and published in peer-reviewed
journals or conferences. All three methods are joint detection
and tracking MOT algorithms. We also select DeepSORT [7]
as one of the SCT methods for the second camera. We follow
the method of [5], which uses the detection results from the
baseline SCT algorithm as the input for track-by-detection
SCT methods. In DeepSORT [7], we set min_hits = 1 and
max_iou_distance = 0.9. For other SCTs, we use the same
parameters reported in their respective papers.

To demonstrate the robustness and adaptability of our pro-
posed method, we avoid specific fine-tuning of CollabMOT
when applying it to the output of the baseline SCT algorithm.

In particular, for hyperparameters used in the CollabMOT,
we set the following parameters used by Equation 2, 4, and 5:
ωa = 1, ωp = 1, λappearance = 0.1, λocclusion = 0.5. The
decay rate for EMA is configured as α = 0.9 in Equation 3.
ωinterpolated = 2, λint_iou = 0.5, and λint_occlusion = 0.5 is
being used in Section III-E.

2) APPEARANCE FEATURE ENCODER
Recently, with the rapid growth of high-performance neural
network architectures, we have selected only a few notable
architectures as the backbone for the appearance feature
encoder. For a fair comparison, we designed a simple dense
layer to map the output of the backbone to the desired
embedding space without any middle layer. We follow [54]
to train several appearance feature encoders on VeRi dataset
[55] and initialize the training process with pre-trained
weight on ImageNet dataset [56]. All pre-trained weights
are provided by [57]. The same augmentations method is
applied for every appearance encoder training. We resize all
images to 300 × 300 and apply random cropping to the
default input size of each network at the training step. At the
inference step, we use center-cropping instead of random
cropping.

In the image reidentification task, precision at n (Prec@n)
is the proportion of the top-n images that are relevant to the
query images. We employ Prec@1 as a metric to determine
the training time. We train the ReID network until the
Prec@1 is no longer improved. The default final encoder
output is 64. We report the Precision at 1 (Prec@1), the
number of MAC (multiply-added operation) [58], number of
network parameters, latency (or throughput) in milliseconds
with batch size of 32 on ONNX runtime [59], network input
size and network type of all appearance feature encoders in
Table 2.
All experiments are conducted on a personal computer with

a single NVIDIARTX3090GPU, Intel i7-11700K, and 64GB
of system RAM.

D. BENCHMARK RESULTS
Table 3 compares CollabMOT’s performance with previous
works on the KITTI Object Tracking Evaluation benchmark
with 2D bounding boxes. The KITTI leaderboard provides
the setup information.4 We compare CollabMOT against

4https://cvlibs.net/datasets/kitti/eval_tracking.php
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TABLE 3. Comparison with previous work on KITTI testing dataset. Each camera of CollabMOT is configured with an individual Single Camera Tracklet
based on three state-of-the-art methods: CenterTrack [1], PermaTrack [2] and RAM [3]. Here, Laser and Stereo stand for the methods that utilize
lidar-based point cloud and stereo vision information, respectively. The best results are in boldface.

other multi-object tracking algorithms utilizing either 2D
images or stereo setups. All the performance scores are
collected from the KITTI evaluation website. KITTI hides
annotations and limits multiple submissions to the evaluation
server to prevent the authors from tuning their hyperparam-
eters for better results. For each submission to the KITTI
leaderboard, CollabMOT is configured by selecting one of
the three baseline tracker algorithms for both the left camera
(Camera 2) and the right camera (Camera 3). In addition to the
similar baseline trackers setup, the right camera (Camera 3)
also employs DeepSORT [7] in some combinations. We use
the same hyperparameters and appearance feature encoder
based on MixNet-S [48] for each submission.
At Table 3, we have made significant enhancements to

the association accuracy (AssA) of the baseline tracker’s
performance across all combinations of CollabMOT. Our
findings demonstrate that CollabMOT achieves superior
results when combined with different trackers compared to
similar baseline trackers. We attribute this to the concept
of ensemble machine learning [64], where the integration
of results from multiple models generally yields positive
outcomes and leads to better performance. Our method does
sacrifice the accuracy of the detection in order to complete the
trajectory of interrupted tracklets, especially when the MOT
algorithm with lower detection accuracy is adopted. With the
improvement of AssA, CollabMOT substantially improves
the HOTA score of all three baseline methods. In Table 3
and Figure 2, CollabMOT shows significant improvement
in AssA and HOTA scores on the baseline of CenterTrack
as CenterTrack prioritizes the short-term association of
tracklets in consecutive frames rather than a long-term
association of re-emerged tracks. The combination of RAM
and DeepSORT in CollabMOT outperforms other variations
of CollabMOT, as the baseline performance of RAM is better
than PermaTrack and CenterTrack. In particular, RAM [2] is
a state-of-the-art public online MOT on 2D images ranked at
the top of the list in KITTI leaderboard.

In Table 4, we report the performance of CollabMOT
on the Argoverse-HD validation dataset with the baseline

of DeepSORT with StreamYOLO [65] detector trained on
Argoverse-HD [17] train dataset. Compared toKITTI dataset,
we obtain an inferior increase in terms of HOTA and AssA
scores. The baseline for two cameras in the KITTI dataset
is 0.53 m. In contrast, the Argoverse-HD dataset has a
baseline of approximately 0.14 m. The narrow baseline
and different resolutions may contribute marginally to the
improvement compared to the KITTI dataset. In addition,
we also provide results for CollabMOT using Yolov8 [21]
and YoloX [22], both trained on COCO [66] dataset. The
effectiveness of CollabMOT can be seen on both optimized
and non-optimized detectors.

Apart from tracking performance, inference speed is also a
crucial metric. CollabMOT inherits the two-step hierarchical
setup commonly found in MTMCT [43], considering that
each camera performs its own MOT tracking algorithm.
To compute the average latency reported in Table 5, we use
an additional system with a similar specification to run
the baseline MOT and feature encoder on the right camera
and provide the output to the system that executes the left
camera (ego camera). The latency of Baseline SCT and
Feature Extractor is averaged across left and right cameras.
Secondary SCT represents the additional latency in the right
camera if a different MOT (DeepSORT [7]) is used. For
all combinations of SCT of the CollabMOT, the latency of
the distance calculation in Section III-C and multi-camera
tracklets association in Section III-D (D+A), which is only
executed in ego camera, is approximately 2.79∼3.16 ms per
frame. Therefore, CollabMOT is a good solution to improve
tracking performance, as low-cost stereo-camera systems
are increasingly adopted in self-driving vehicles and ADAS
systems.

E. ABLATION STUDY
In this section, we show the ablation study of the proposed
algorithm. We compare the performance of CollabMOT with
the left camera (camera 2) is selected as ego camera against
the baseline results from CenterTrack [1], PermaTrack [2],
and RAM [3], respectively.
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TABLE 4. Evaluation of CollabMOT on Argoverse datasets with the left camera is selected as the ego camera. DeepSORT [7] is employed for the right SCT
of CollabMOT. The best results are marked by boldface.

TABLE 5. Latency analysis of each component of CollabMOT on 11095 images from KITTI testing datasets for each submission. The unit is in milliseconds.
D+A is the combined latency of the distance calculation in Section III-C and multi-camera tracklets association in Section III-D.

1) COMBINATION OF DIFFERENT METHODS OF SCT
CollabMOT aims to provide a stronger association by
combining the results of individual SCT on a stereo camera
system. In Table 6, noticeable improvements can be seen
in the cases of CollabMOT. This result demonstrates that
the tracking performance can benefit from the use of stereo
cameras. For all four notable baseline SCT algorithms,
combining two different SCT gives better performance over
a unified SCT algorithm, similar to the results in Table 3.
For example, HOTA, AssA and IDF1 scores for CenterTrack
[1] increase by 1.12%, 2.15% and 2.12%, respectively, when
CenterTrack is combined with DeepSORT. These results
indicate that CollabMOT can significantly improve SCT’s
results with multiple baseline MOT algorithms.

2) TRACKLETS INTERPOLATION
To evaluate the contribution of the proposed interpolation
method discussed in Section III-E, we compare the per-
formance of CollabMOT in two modes: with and without
interpolation mode in Table 7. Without interpolation, for
all three baseline methods, DetA score of CollabMOT
does not increase because CollabMOT does not generate
any bounding box to complete the interrupted trajectory.
When interpolation is enabled, DetA score slightly increases.
In particular, the DetA score improvement of CenterTrack
[1] is the smallest among the three methods. This is
attributed to the fact that interpolated bounding box accuracy
depends on the accuracy of the detected bounding boxes, and
baseline CenterTrack [1] has the lowest detection accuracy
among three baseline MOTs. Other than DetA, CollabMOT
significantly enhances the performance of various baseline
MOT algorithms by improving IDSW, IDF1, AssA, and

HOTA scores. This improvement is consistent across all
methods, regardless of whether they use interpolation or not.
Other papers such as [4] and [45] consider interpolation
as a post-processing step and thus, the interpolation is
conducted after the tracking is all finished for the last image
in each sequence. On the other hand, our method performs
linear interpolation right after it reconnects the interrupted
tracklets based on inter-camera multi-tracklet transitive
relations.

3) EVALUATION ON VARIOUS APPEARANCE ENCODER
NEURAL NETWORKS
We evaluate CollabMOT on the KITTI half-validation dataset
using various lightweight backbone networks for appearance
feature encoder. The result is shown in Table 8. The detailed
information of each encoder is described in Table 2. The
results of this experiment indicate that CollabMOT can be
used for various appearance encoder profiles.

Furthermore, we evaluate CollabMOT performance with
several embedding sizes on MixNet-S [48]. From Table 9,
CollabMOT enhances the tracking performance over the
base method for all embedding sizes. As reported by [8],
it has been known that lower dimensional re-ID features
usually cause less harm to the tracking accuracy. These results
also help us to choose the optimal embedding size for the
appearance feature encoder.

4) THRESHOLD SENSITIVITY
In Figure 6, we demonstrate our proposed method under
different values of λocclusion, as defined in Equation 4, for
all three baseline methods. The lower the value of λocclusion,
the fewer qualified bounding boxes in tracklets are selected
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TABLE 6. Evaluation of CollabMOT with different combinations of MOT methods on Right (Camera 3) on validation set. Each subtable presents the
baseline MOT performance in the first row. In many combinations of CollabMOT, the performance is improved by more than +0.5 points, which are
highlighted by boldface. For baseline DeepSORT [7], we use the detection results from PermaTrack [2].

TABLE 7. Evaluation of CollabMOT with and without interpolation mode on the KITTI validation datasets. The best results are marked by boldface.
DeepSORT [7] is employed for the right SCT of CollabMOT. The text highlights the best IDSW metric results in bold and shows improvements of CollabMOT
over the baseline method in other metrics in brackets, with additional bold highlights for improvements over +0.5 points.

FIGURE 6. The bar graph illustrates the improved performance of CollabMOT over three baseline MOT algorithms on the left camera in the validation set
of the KITTI dataset, with a different value of λocclusion. DeepSORT [7] is employed as SCT for the right camera.

for EMA update in Equation 3. The results obtained from
the three baseline methods reveal that the benchmark metrics
gradually increase with an increase in the λocclusion. However,
it is important to note that a higher λocclusion can result
in the selection of more occluded bounding boxes, which
may lead to the inclusion of noisy and non-discriminative
appearance features in the EMA process. It is observed that
the improvement in all three baseline methods reaches its

peak when λocclusion is set to 0.5, and tends to decrease
beyond this value. Therefore, choosing an optimal value
for λocclusion is essential to obtain the best performance in
the EMA process. In Figure 6c, the metric drops when the
λocclusion is set to 0.7 but increases at 1.0. This behavior is
explained by Figure 7. At t52, ID 5 and ID 4 overlap in
camera 2, resulting in ID 5 not being able to associate with
ID 8. Consequently, the transitive relationship between ID 5
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FIGURE 7. Qualitative examples demonstrate the CollabMOT performance with two threshold values of λocclusion on similar sequence from KITTI dataset
and similar SCT setup in each camera.

TABLE 8. Evaluation on Kitti half validation dataset with multiple feature encoder. We use the same embedding size of 64. DeepSORT [7] is employed for
the right SCT of CollabMOT. Each subtable presents the baseline MOT performance in the first row. The text highlights the best IDSW metric results in bold
and shows improvements of CollabMOT over the baseline method in other metrics in brackets, with additional bold highlights for improvements
over +0.5 points.

and ID 3 via ID 8 is lost. In a later frame, although ID 8 is
switched to ID 37 and ID 37 is interconnected with ID 5, ID
37 is still unable to intra-connect with ID 8. However, when
λocclusion is set to 1.0, ID 5 and ID 8 are interconnected, and
the transitive relationship is maintained, allowing ID 37 and
ID 8 to reconnect.

F. QUALITATIVE RESULTS
Figure 8 visualizes a difficult tracking example where
conventional baselineMOT algorithms poorly perform, while
CollabMOT can improve the performance of baseline MOT
algorithms. More qualitative examples are provided in the
supplementary video.5

V. DISCUSSION AND LIMITATION
In the proposed CollabMOT, we utilize the highly overlap-
ping view from a stereo camera setup to improve the system’s

5https://youtu.be/zXakz9p97Ss

performance of a single-camera MOT. The CollabMOT
design takes inspiration from our binocular vision system,
where humans use both eyes to perceive the world. This
system significantly improves our ability to perceive the
surroundings around us. By relying on both eyes, we can
see the world with greater clarity and depth, which cannot
be achieved by using only one eye [67]. While the stereo
camera setup is common in autonomous driving [10], [17],
other applications of MOT in surveillance only utilize a
single camera setup [53], [68], [69]. As demonstrated in the
paper, CollabMOT is capable of functioning without multi-
camera annotation. However, the lack of a stereo view poses
a constraint on its deployment on the MOT benchmark,
which provides only a monocular view. We hoped that the
implementation of CollabMOT could attract more attention
and suggest the creation of a comprehensiveMOT benchmark
with stereo data.

Our experiments have revealed additional limitations of
CollabMOT. For instance, in Figure 8d, which illustrates
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TABLE 9. Evaluation of CollabMOT on multiple feature encoder embedding sizes of same architecture [48]. DeepSORT [7] is employed for the right SCT of
CollabMOT. The text highlights the best IDSW metric results in bold and shows improvements of CollabMOT over the baseline method in other metrics in
brackets, with additional bold highlights for improvements over +0.5 points.

FIGURE 8. Visualization of CollabMOT. The border color and the unique number before colon mark inside each box represent the local identity of the
tracklets in each camera view, and the number after colon mark represents the global identity of the tracklets in a multi-camera system. The targets are
fixed by CollabMOT and are highlighted by white boxes. Best view in color and zoom in.

the output of Permatrack on camera 2, the tracklet of the
vehicle with ID 2 was wrongly merged into the tracklet
with ID 1 in a later frame. While DeepSort successfully
separated the two tracklet instances on the right camera, ID 2
was inter-camera associated with ID 1 on the left camera.
Because of its inter-camera connection to ID 1 in the previous
frame, indicated by the global ID after the colon mark,
CollabMOT refuses to allow ID 2 on the right camera to
connect with ID 2 on the left camera. This example highlights
a limitation of our method when the baseline algorithm
propagates tracklets incorrectly to different objects. Col-
labMOT respects and follows the decision of the baseline
algorithm.

VI. CONCLUSION
In this paper, we proposed a novel inter-camera tracklet asso-
ciation algorithm called CollabMOT, which utilizes stereo
cameras to improve the performance of multi-object tracking.
CollabMOT dynamically associates tracklets generated from
separate multi-object tracking algorithms on each camera
based on their appearance feature and feedback the global
association information to help combat the identity-switching
problem on each camera. Our experiments demonstrated
the improvement in terms of HOTA metrics on KITTI
2D tracking and Argoverse-HD dataset when applying
CollabMOT to the output of state-of-the-art published MOT
algorithms. CollabMOT also adapts to multiple setups and a
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FIGURE 9. Illustration of the relative position of tracklet in each camera
perspective. The transparent rectangle indicates the center area in each
camera view.

TABLE 10. Truth table for association cost between two tracklet T e and
T r which is derived by their respective bounding box between stereo
camera e and r .

variety of appearance feature encoders. Through this work,
we have shown that CollabMOT utilizes stereo cameras to
further increase the performance of multi object tracking
in ADAS or autonomous driving systems. Future work will
focus on improving the performance and increasing the
adaptation of CollabMOT on different multi-object tracking
domains.

APPENDIX
POSITION COST CALCULATION
The position affinity cost Sp rules out the infeasible associa-
tion between tracklets by considering the relative position of
two cameras and the bounding box location of each tracklet
in each respective camera perspective. We denote the relative
position of remote camera r as RelPe←r with respect to
ego camera e. The relative position of the bounding box of
tracklets in each camera perspective is denoted by RelB.
RelPe←r is defined in Equation 8.

RelPe←r
=

{
0 : r on the left side of e
1 : r on the right side of e

(8)

For stereo cameras, RelPe←r is a fixed value. For example
in KITTI dataset [10], we have RelP3←2

= 0 and
RelP2←3

= 1 for camera 2 and camera 3, respectively.
This follows from the fact that camera 3 is on the right
side with respect to camera 2, so the vehicle objects from
camera 3 are on the right side with respect to the same
vehicles captured by camera 2. The examples are shown in
Figure 9.

The relative position of tracklets on each camera viewpoint
can be grouped into three areas: left, center, and right.
We denote left by 0, right by 1, and center by 2. The relative
position of the bounding box of a tracklet in frame t is defined
by Equation 9.

RelB =


0 : x + w/2 < centerline− λbbox

1 : x > centerline+ λbbox

2 : otherwise

(9)

Here, x andw are the center location andwidth of bounding
box B, respectively. At the same time, centerline is a vertical
line dividing the camera view to left and right sections based
on intrinsic camera parameters, and λbbox is a margin value.
We set λbbox = 10 on every experiments. For each pair of
Ti and Tj, we have the truth table for RelPr , RelBe, RelBr in
Table 10.
We set Sp = ∞ for any pair of T ei and T rj whose RelPr ,

RelBe, RelBr are described in Table 10. Otherwise Sp = 0.
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