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ABSTRACT Recent advances in synthetic data have enabled the generation of images with such high quality
that human beings cannot distinguish the difference between real-life photographs and Artificial Intelligence
(AI) generated images. Given the critical necessity of data reliability and authentication, this article proposes
to enhance our ability to recogniseAI-generated images through computer vision. Initially, a synthetic dataset
is generated that mirrors the ten classes of the already available CIFAR-10 dataset with latent diffusion,
providing a contrasting set of images for comparison to real photographs. The model is capable of generating
complex visual attributes, such as photorealistic reflections in water. The two sets of data present as a binary
classification problem with regard to whether the photograph is real or generated by AI. This study then
proposes the use of a Convolutional Neural Network (CNN) to classify the images into two categories;
Real or Fake. Following hyperparameter tuning and the training of 36 individual network topologies, the
optimal approach could correctly classify the images with 92.98% accuracy. Finally, this study implements
explainable AI via Gradient Class ActivationMapping to explore which features within the images are useful
for classification. Interpretation reveals interesting concepts within the image, in particular, noting that the
actual entity itself does not hold useful information for classification; instead, the model focuses on small
visual imperfections in the background of the images. The complete dataset engineered for this study, referred
to as the CIFAKE dataset, is made publicly available to the research community for future work.

INDEX TERMS AI-generated images, generative AI, image classification, latent diffusion.

I. INTRODUCTION
The field of synthetic image generation by Artificial Intel-
ligence (AI) has developed rapidly in recent years, and the
ability to detect AI-generated photos has also become a
critical necessity to ensure the authenticity of image data.
Within recent memory, generative technology often produced
images with major visual defects that were noticeable to the
human eye, but now we are faced with the possibility of AI
models generating high-fidelity and photorealistic images in
a matter of seconds. The AI-generated images are now at the
quality level needed to compete with humans and win art
competitions [1].

Latent Diffusion Models (LDMs), a type of generative
model, have emerged as a powerful tool to generate synthetic
imagery [2]. These recent developments have caused a
paradigm shift in our understanding of creativity, authenticity,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

and truth. This has led to a situation where consumer-level
technology is available that could quite easily be used for the
violation of privacy and to commit fraud. These philosophical
and societal implications are at the forefront of the current
state of the art, raising fundamental questions about the
nature of trustworthiness and reality. Recent technological
advances have enabled the generation of images with such
high quality that human beings cannot tell the difference
between a real-life photograph and an image that is no more
than a hallucination of an artificial neural network’s weights
and biases.

Generative imagery that is indistinguishable from pho-
tographic data raises questions both ontological, those
which concern the nature of being, and epistemological,
surrounding the theories of methods, validity, and scope.
Ontologically, given that humans cannot tell the difference
between images from cameras and those generated by AI
models such as an Artificial Neural Network, in terms of
digital information, what is real and what is not? The
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epistemological reality is that there are serious questions
surrounding the reliability of human knowledge and the
ethical implications that surround the misuse of these types of
technology. The implications suggest that we are in growing
need of a system that can aid us in the recognition of real
images versus those generated by AI.

This study explores the potential of using computer vision
to enhance our newfound inability to recognise the difference
between real photographs and those that are AI-generated.
Given that there are many years worth of photographic
datasets available for image classification, these provide
examples for a model of real images. Following the
generation of a synthetic equivalent to such data, we will then
explore the output of the model before finally implementing
methods of differentiation between the two types of image.

There are several scientific contributions with multidis-
ciplinary and social implications that arise from this study.
First, a dataset, called CIFAKE, is generated with latent dif-
fusion and released to the research community. The CIFAKE
dataset provides a contrasting set of real and fake photographs
and contains 120,000 images (60,000 images from the exist-
ing CIFAR-10 dataset (Collection of images that are com-
monly used to train machine learning and computer vision
algorithms available from: https://www.cs.toronto.edu/ kriz/-
cifar.html) and 60,000 images generated for this study), mak-
ing it a valuable resource for researchers in the field. Second,
this study proposes a method to improve our waning human
ability to recognise AI-generated images through computer
vision, using the CIFAKE dataset for classification. Finally,
this study proposes the use of Explainable AI (XAI) to
further our understanding of the complex processes involved
in synthetic image recognition, as well as visualisation of
the important features within those images. These scientific
contributions provide important steps forward in addressing
the modern challenges posed by rapid developments of
modern technology and have important implications for
ensuring the authenticity and trustworthiness of data.

The remainder of this article is as follows; the state-of-the-
art research background is initially explored in Section II with
a discussion of relevant related studies in the field. Following
this, the methodology followed by this study is detailed in
Section III, which provides the technical implementation
and the method followed for the binary classification of
real versus AI-generated imagery. The results of these
experiments are presented with discussion in Section IV
before this work is finally concluded, and future work is
proposed in Section V.

II. BACKGROUND
The ability to distinguish between real imagery and those
generated by machine learning models is important for
a number of reasons. Identification of real data provides
confirmation on the authenticity and originality of the image;
for example, a fine-tuned Stable Diffusion Model (SDM)
could be used to generate a synthetic photograph of an
individual committing a crime or vice versa, providing false

evidence of an alibi for a person who was, in reality,
otherwise elsewhere. Misinformation and fake news is a
significant modern problem, and machine-generated images
could be used tomanipulate public opinion [3], [4]. Situations
where synthetic imagery is used in fake news can promote
its false credibility and have serious consequences [5].
Cybersecurity is another major concern, with research noting
that synthetically generated human faces can be used in false
acceptance attacks and have the potential to gain unauthorised
access to digital systems [6], [7]. In [8], it was observed that
synthetically generated signatures could overcome signature
verification systems with ease.

Latent DiffusionModels are a new approach for generating
images, which use attention mechanisms and a U-Net to
reverse the process of Gaussian noise and, ultimately, use text
conditioning to generate novel images from random noise.
Details on the methodological implementation of LDM can
be found in Section III. The approach is rapidly developing
but is young, and thus literature on the subject is currently
scarce. The models are a new approach in the field of
generative models; thus, the literature is young, and few
applications have been explored. Examples of notable models
include Dall-E by OpenAI [9], Imagen from Google [10],
and the open source equivalent, SDM from StabilityAI [2].
These models have pushed the boundaries of image quality,
both in realism and arguably in artistic ability. This has led to
much debate about the professional, social, ethical, and legal
considerations of technology [1].

The majority of research in the field is cutting-edge
and is presented as preprints and recent theses. In [11],
researchers proposed to train SDM on medical imaging data,
achieving higher-quality images that could potentially lead
to increased model abilities through data augmentations. It is
worth mentioning that in [12] and [13], diffusion models
were found to have the ability to generate audio and images.
In 2021, the results of Yi et al. [14] suggested that diffusion
models were highly capable of generating realistic artworks,
fooling human subjects into believing that the works were
created by human beings. Given this, researchers have noted
that diffusion models have a promising capacity for co-
creating with human artists [15].
DE-FAKE, proposed by Sha et al. [16], shows that images

generated by various latent diffusion approaches may contain
digital fingerprints to suggest they are synthetic. Although
visual glitches are increasingly rare given the advances in
model quality, it may be possible that computer vision
approaches will detect these attributes within images that the
human eye cannot. The Fourier transforms presented in [17]
show visual examples of these digital fingerprints.

When discussing the topic of vision, the results in [18]
suggest that optical flow techniques could detect synthetic
human faces within the FaceForensics dataset with around
81.61% accuracy. Extending to the temporal domain, [19]
proposes recurrence in AI-generated video recognition
achieving 97.1% accuracy over 80 frames due to minor
visual glitches at the pixel scale. In Wang et al. [20],
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EfficientNets and Vision Transformers are proposed within
a system that can detect forged images by adversarial models
at an F1 score of 0.88 and AUC of 0.95, competing with
the state of the art on the DeepFake Detection Challenge
dataset while remaining efficient. In the aforementioned
study, a Convolutional Neural Network was used to extract
features, similarly to the approach proposed in this study,
prior to processing using attention-based approaches.

Similarly, convolutional and temporal techniques were
proposed in [21] to achieve 66.26% to 91.21% accuracy in a
mixed set of synthetic data detection datasets. Chrominance
components CbCr within a digital image were noted in [22]
as a promising route for the detection of minor pixel
disparities that are sometimes present within synthetic
images.

Human recognition of manipulation within images is wan-
ing as a direct result of image generation methods improving.
A study by Nightingale et al. [23] in 2017 suggested that
humans have difficulty recognising photographs that have
been edited using image processing techniques. Since this
study, there has been nearly five years of rapid development
in the field to date.

Reviewing the relevant literature has highlighted rapid
developments within AI-generated imagery and the chal-
lenges today posed with respect to its detection. Generative
models have enabled the generation of high-fidelity, photore-
alistic images within a matter of seconds that humans often
cannot distinguish between when compared to reality. This
conclusion sets the stage for the studies presented by this
work and argues the need to fill the knowledge gap when it
comes to the availability of examples of synthetic data.

III. METHOD
This section describes the methods followed by this study
in terms of their technical implementation and application
for the detection of synthetic images. This section first
describes the collection of data for the real data, and then the
methodology followed to generate the synthetic equivalent
for comparison. Sections III-A and III-B will describe
how 60,000 images are collected and 60,000 images are
synthetically generated, respectively. This forms the overall
dataset of 120,000 images. Section III-C will then describe
the machine learning model engineering approach which
aims to recognise the authenticity of the images, before
Section III-D notes the approach for Explainable AI to
interpret model predictions.

A. REAL DATA COLLECTION
For the class label ‘‘REAL’’, interpreted as a positive class
value ‘‘1’’, data is collected from the CIFAR-10 dataset [24].
It is a dataset of 60, 000, 32 × 32 RGB images of real
subjects divided into ten classes. Classes within the data set
are airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. There are 6, 000 images per class. For each class,
5,000 images are used for training and 1, 000 for testing,
i.e., a testing dataset of 16.6%. In this study, all images

from the training dataset are used for the training of positive
class ‘‘REAL’’. Therefore, 50, 000 are used for training and
10, 000 for testing.
Samples of images within the CIFAR-10 dataset that form

the ‘‘REAL’’ class can be observed in Figure 1.

B. SYNTHETIC DATA GENERATION
The synthetic images generated for this study use CompVis
SD (https://huggingface.co/CompVis/stable-diffusion-v1-4),
an open source LDM. The goal is to model the diffusion of
image data through a latent space given a textual context.
If noise, such as that of a Gaussian distribution, is iteratively
added to an image, the image ultimately becomes noise and
all prior visual information is lost. To generalise, the reverse
of this process is to, therefore, generate a synthetic image
from noise. Themethod of reverse diffusion can be put simply
as, given an image x at timestep t , xt , output the prediction of
xi−1 through the prediction of noise and subsequent removal
by classical means.

A noisy image xt is generated from the original x0 by the
following:

xt =

√
ᾱtx0 +

√
1 − ᾱtε, (1)

where noise is ε, and the adjustment according to the time step
t is ᾱ. The method of this study is to make use of the reverse
process of 50 noising steps, which from x50 will ultimately
form x0, the synthetic image. The neural network εθ thus
minimises the following loss function:

Loss = Et,x0,ε
[
||ε − εθ (xt , t)||2

]
. (2)

Further technical details on the approach can be obtained
from [2].The model chosen for this approach is Stable
Diffusion 1.4, which is trained in the LAION2B-en, LAION-
high-resolution and LAION-aesthetics v2.5 + datasets
(https://laion.ai/blog/laion-5b/). The aforementioned datasets
are a cleaned subset of the original LAION-5B dataset [25],
which contains 5.85 billion text-image pairs.

SDM is used to generate a synthetic equivalent to the
CIFAR-10 dataset which contains 6, 000 images of ten
classes. The classes are airplane, automobile, bird, cat, deer,
dog, frog, horse, ship and truck. Following observations
from the CIFAR-10 dataset, this study implements prompt
modifiers to increase diversity of the synthetic dataset,
which can be observed in Table 1. As in the real data set,
50, 000 images are used for training data and 10, 000 for
testing data, provided with a class label to indicate that the
image is not real.

C. IMAGE CLASSIFICATION
Image classification is an algorithm that predicts a class label
given an input image. The learnt features are extracted from
the image and processed in order to provide an output, in this
case, whether or not the image is real or synthetic. This
subsection describes the selected approach to classification.

In this study, the Convolutional Neural Network (CNN)
[26], [27], [28] is employed to learn from the input
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FIGURE 1. Examples of images from the CIFAR-10 image classification dataset [24].

TABLE 1. Latent diffusion prompt modifiers for generating the 10-class
synthetic dataset. All prompts are preceded by ‘‘a photograph of {a/an}’’
and modifiers are used equally for the 6000 images.

images. It is the concatenation of two main networks with
intermediate operations. These are the convolutional layers
and the fully connected layers. The initial convolutional
network within the overall model is the CNN, which can be
operationally generalised for an image of dimensions x and a
filter matrix w as follows:

(x ∗ w)(i, j) =

M∑
m=1

N∑
n=1

x(i+ m− 1, j+ n− 1)w(m, n), (3)

where (i, j) is the output for the feature map, and (m, n)
represents the location of the filter w. The output is derived
by applying convolutional operations to the input x with each
of the filters (which are learnable) and applying an activation
function f , which, in the context of this study, is the Rectified
Linear Unit (ReLu) f (x) = max(0, x).
For an image of (height,width) dimensions and fil-

ters depending on the filter kernel of (heightkernel) and
(widthkernel) with a stride = 1 and no padding for simplicity,
the output would have dimensions:

(height − heightkernel + 1,width− widthkernel + 1). (4)

Then, a pooling operation is performed to reduce the spatial
dimensions and flatten the output so it can be entered into
densely connected layers. For L = HWD (height, width, and
dimensions), the flattened one-dimensional output vector is
simply x = [x1, x2, . . . , xL]. The output vector y is ultimately
the output from the dense layer(s) as y = f (WL + b), for

the weight matrix W and the bias b. The activation function
f in this study, as in CNN, is the ReLu activation function
f (x) = max(0, x).
The goal of the network in this study is to classify whether

the image is a real photograph or an image generated by
a LDM, and thus is a problem of binary classification.
Therefore, the output of the network is a single neuron with
the S-shaped Sigmoid activation function:

σ (x) =
1

1 + e−x
(5)

The ‘‘FAKE’’ class is 0 and the ‘‘REAL’’ class is 1,
therefore, a value closer to either of the two values represents
the likelihood of that class. Although this aids in learning,
because it is differentiable, the values are rounded to the
closest value for inference.

Although the goal of the network is to use backpropagation
to reduce binary cross-entropy loss, this study also notes
an extended number of classification metrics. These are the
Precision, which is a measure of how many of the predictive
positive cases are positive, a metric which allows for the
analysis of false-positives:

Precision =
True positives

True positives + False positives
. (6)

The Recall which is a measure of howmany positive cases are
correctly predicted, which enables analysis of false-negative
predictions:

Recall =
True positives

True positives + False negatives
, (7)

This measure is particularly important in this case, as it is in
fraud detection, since a false negative would falsely accuse
the author of generating their image with AI. Finally, the F-1
score is considered:

F1 score = 2 ×
Precision × Recall
Precision + Recall

, (8)

which is a unified metric of precision and recall.
The dataset that forms the classification is the collection

of real images and the equivalent synthetic images gen-
erated, detailed in Sections III-A and III-B, respectively.
100, 000 images are used for training (50, 000 real images
and 50, 000 synthetic images), and 20, 000 are used for
testing (10, 000 real and 10, 000 synthetic).

Initially, CNN architectures are benchmarked as a lone
feature extractor. That is, the filters of {16, 32, 64, 128}
are benchmarked in layers of {1, 2, 3}, flattened, and
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FIGURE 2. Examples of AI-generated images within the dataset contributed by this study, selected at random with regards to their real
CIFAR-10 equivalent labels.

connected directly to the output neurone. The topology of
the highest performing feature extractor is then used to
compare the highest performing dense network featuring
{32, 64, 128, 256, . . . , 4096} rectified linear units in layers
of {1, 2, 3}. These 36 artificial neural networks are then
compared with regard to classification metrics to derive the
topology that performs best.

D. EXPLAINABLE AI
While deep learning approaches often lead to impressive
predictive ability, many algorithms are black boxes that
provide no reasoning for their classification. The aim of
Explainable AI (XAI) is to extract meaning from algorithms
and provide readable interpretations of why a prediction or
decision is being made [29]. Regarding the experiments in
this work, the CNN simply predicts that an image is real or
synthetic, and then XAI is used to provide interpretations as
to why the image is real or synthetic.
Given that the literature shows that humans have a major

difficulty in recognising synthetic imagery, it is important
to display and visualise minor defects within the image that
could suggest that it is not real.

The method selected for explainable AI (XAI) and
interpretation is Gradient Class Activation Mapping (Grad-
CAM) [30]. Grad-CAM interprets the gradients of the
predicted class along with the CNN feature maps, which can
therefore be spatially localised with respect to the original
input (the image) and produce a heatmap. This is generated
by the Recitified Linear Unit (ReLU) function as:

LcGrad−CAM = ReLU (
∑
k

αkAk ), (9)

where αk is the global average pooling 1
Z

∑
i
∑

j
∂yc
∂Aki,j

of

spatial locations Z , and ∂yc
∂Aki,j

are the gradients of the model.

The approach is used for interpretation in the final step
of this study, given the random data selected from the two
classes. Due to the nature of heatmapping, the results of the
algorithm are visually interpreted with discussion.

E. EXPERIMENTAL HARDWARE AND SOFTWARE
The neural networks used for the detection of AI-generated
images were engineered with the TensorFlow library [31]. All
TensorFlow seeds were set to 1 for replicability. The Latent
Diffusion model used for the generation of synthetic data
was Stable Diffusion version 1.4 [2]; Random seed vectors
were denoised for a total of 50 steps to form images and
the Euler Ancestral scheduler was used. Synthetic images
were rendered at a resolution of 512px before resizing to
32px by bilinear interpolation to match the resolution of
CIFAR-10.

All algorithms in this study were executed using a single
Nvidia RTX 3080Ti GPU, which has 10,240 CUDA cores,
a clock speed of 1.67 GHz, and 12GB GDDR6X VRAM.

IV. RESULTS AND OBSERVATIONS
This section presents examples of the dataset followed by the
findings of the planned computer vision experiments. The
dataset is also released to the public research community
for use in future studies, given the important implications of
detecting AI-generated imagery.1

1The Dataset can be downloaded from: https://www.kaggle.com/datasets/
birdy654/cifake-real-and-ai-generated-synthetic-images
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FIGURE 3. Examples of visual defects found within the synthetic image
dataset.

TABLE 2. Observed classification accuracy metrics for feature extraction
networks.

A. DATASET EXPLORATION
Random samples of images used in this study and within the
dataset provided can be observed in Figure 2. Five images are
presented for each class label, and all of the images within
this figure are synthetic, which have been generated by the
SDM. Note within this sample that the images are high-
quality and, for the most part, seem to be difficult to discern
as synthetic by the human eye. Synthetic photographs are
representative of their counterparts from reality and feature
complex attributes such as depth of field, reflections, and
motion blur.

It can also be observed that there are visual imperfections
within some of the images. Figure 3 shows a number of
examples of the win of the dataset in which the model has
output images with visual glitches. Given that the LAION
dataset provides physical descriptions of the image content,
little to no information on text is provided, and thus it can
be seen that the model produces shapes similar to alphabetic
characters. Also observed here is a lack of important detail,
such as the case of a jet aircraft that has no cockpit window.
It seems that this image has been produced by combining the
knowledge of jet aircraft (in particular, the engines) along
with the concept of an Unmanned Aerial Vehicle’s chassis.
Finally, there are also some cases of anatomical errors for
living creatures, seen in these examples through the cat’s
limbs and eyes.

Complex visual concepts are present within much of the
dataset, with examples shown in Figure 4. Observe that
the ripples in the water and reflections of the entities are
highly realistic and match what would be expected within
a photograph. In addition to complex lighting, there is also
evidence of depth of field and photographic framing.

B. CLASSIFICATION RESULTS
In this subsection, we present the results for the computer
vision experiments for image classification. The problem

TABLE 3. Observed validation loss for the filters within the convolutional
neural network.

TABLE 4. Observed validation precision for the filters within the
convolutional neural network.

TABLE 5. Observed validation recall for the filters within the
convolutional neural network.

TABLE 6. Observed validation F1-Score for the filters within the
convolutional neural network.

faced by the CNN is that of binary classification, whether or
not the image is a real photograph or the output of an LDM.

The validation accuracy of the results and the loss metrics
for the feature extractors can be found in Tables 2 and 3,
respectively. All feature extractors scored relatively well
without the need for dense layers to process feature maps,
with an average classification accuracy of 91.79%. The
lowest loss feature extractor was found to use two layers of
32 filters, which led to an overall classification accuracy of
92.93% and a binary cross-entropy loss of 0.18. The highest
accuracymodel, two layers of 128 filters, scored 92.98%with
a loss of 0.221.

Extended validation metrics are presented in Tables 4, 5,
and 6, which detail validation precision, recall, and F1 scores,
respectively. The F1 score, which is a unification of precision
and recall, had a mean value of 0.929 with the highest being
0.936. A small standard deviation of 0.003 was observed.

Following these experiments, the lowest-loss feature
extractor is selected for further engineering of the network
topology. This was the model that had two layers of
32 convolutional filters.
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FIGURE 4. A selection of AI-generated images within the dataset. Examples of complex visual attributes
generated by the latent diffusion model that include realistic water and reflections.

TABLE 7. Observed validation accuracy for the dense layers within the
convolutional neural network.

TABLE 8. Observed validation loss for the dense layers within the
convolutional neural network.

The results of the general network engineering are
presented in Tables 7 and 8, which contain the validation
accuracy and loss, respectively. The lowest loss observed was
0.177 binary cross-entropy when the CNN was followed by
three layers of 64 rectified linear units. The highest accuracy,
on the other hand, was 93.55%, which was achieved by
implementing a single layer of 64 neurons.

Additional validation metrics for precision, recall, and F-1
score are also provided in Tables 9, 10, and 11, respectively.
Similarly to the prior experiments, the standard deviation of
F1-scores was relatively low at 0.003. The highest F-1 score
was the network that used a single dense layer of 64 rectified
linear units, with a value of 0.936. The aforementioned
highest F1 score model is graphically detailed in Figure 5 to
provide a visual example of the network topology.

TABLE 9. Observed validation precision for the dense layers within the
convolutional neural network.

TABLE 10. Observed validation recall for the dense layers within the
convolutional neural network.

TABLE 11. Observed validation F1-Score for the dense layers within the
convolutional neural network.

Figure 6 shows examples of the interpretation of predic-
tions via Grad-CAM. Brighter pixels in the image represent
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FIGURE 5. An example of one of the final model architectures following hyperparameter search for the classification of
real or AI-generated images.

FIGURE 6. Gradient class activation maps (Grad-CAM) overlays and raw
heatmaps for prediction interpretation. Top examples show real images
and bottom examples show AI-generated images. Brighter pixels
represent features contributing to the output class label.

areas that contribute more to the decision of the CNN. It can
be observed that there is a significantly different distribution
of features given the binary classification problem. Firstly,
the classification of real images can be interpreted as a more
holistic approach in which the majority of the contents of the
image are useful for recognition. However, the classification
of synthetic images is somewhat more atomistic and sparse.
Note that for the recognition of AI-generated imagery,
activation occurs in select parts of the image that are more
likely to present visual glitches that are difficult to recognise
with the human eye. An example of this can be seen for
the image of the frog, where an out-of-focus bokeh is the
only attribute that suggests the image is not real. For the
truck, only the radiator grill pattern is considered useful for
classification.

The XAI approach also shows an interesting mechanic in
a more general sense. Given the examples of airplane, bird,
frog, horse, and ship, note that the object within the image has
little to no class activation overlay whatsoever. This suggests
that the actual focus of the image itself, the entity, contains
almost no useful features for synthetic image recognition.
This suggests that the model is often available to produce a
near-perfect representation of the entity.

V. CONCLUSION AND FUTURE WORK
This study has proposed a method to improve our waning
ability to recognise AI-generated images through the use
of Computer Vision and to provide insight into predictions
with visual cues. To achieve this, this study proposed the
generation of a synthetic dataset with Latent Diffusion,
recognition with Convolutional Neural Networks, and inter-
pretation through Gradient Class Activation Mapping. The
results showed that the synthetic images were high quality

and featured complex visual attributes, and that binary
classification could be achieved with around 92.98% accu-
racy. Grad-CAM interpretation revealed interesting concepts
within the images that were useful for predictions.

In addition to the method proposed in this study, a signifi-
cant contribution is made through the release of the CIFAKE
dataset. The dataset contains a total of 120, 000 images
(60, 000 real images from CIFAR-10 and 60,000 synthetic
images generated for this study). The CIFAKE dataset
provides the research community with a valuable resource
for future work on the social problems faced by AI-generated
imagery. The dataset provides a significant expansion of
the resource availability for the development and testing of
applied computer vision approaches to this problem.

The reality of AI generating images that are indistinguish-
able from real-life photographic images raises fundamental
questions about the limits of human perception, and thus
this study proposed to enhance that ability by fighting fire
with fire. The proposed approach addresses the challenges of
ensuring the authenticity and trustworthiness of visual data.

Future work could involve exploring other techniques to
classify the provided dataset. For example, the implemen-
tation of attention-based approaches is a promising new
field that could provide increased ability and an alternative
method of explainable AI. Furthermore, with even further
improvements to synthetic imagery in the future, it is
important to consider updating the dataset with images
generated by these approaches. Furthermore, considering
generating images from other domains, such as human faces
and clinical scans, would provide additional datasets for this
type of study and expand the applicability of our proposed
approach to other fields of research.

Finally, in conclusion, this study provides contributions to
the ongoing implications of AI-generated images. The pro-
posed approach supports important implications of ensuring
data authenticity and trustworthiness, providing not only a
system that can recognise synthetic images, but also data
and interpretation. The public release of the CIFAKE dataset
generated within this study provides a valuable resource for
interdisciplinary research.

VI. AVAILABILITY OF DATA AND MATERIALS
The datasets generated and analysed during the cur-
rent study are available in the CIFAKE repository,
https://www.kaggle.com/datasets/birdy654/cifake-real-and-
ai-generated-synthetic-images.
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