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ABSTRACT Content caching has emerged as an effective approach to combat the increasing strains on our
current network infrastructure. Thismethod is further improvedwhen combining cachingwith source coding.
However, additional complexity is incurred by creating this hybrid method, as the source coding component
comes with associated feasibility constraints and decoding costs. This paper presents an approach to balance
this complexity with the coding gains by selecting the best-performing subset of files to compress, while
the others are left uncoded. This problem is shown to be NP-hard in general and difficult to solve in an
iteration-free manner. To this end, two novel approaches are outlined: an iterative-based solution, which
uses the features of the entropy function to derive the most suitable files to compress jointly, and a meta-
heuristic version, which is based on the Genetic Algorithm. When compared to an exhaustive search, the
proposed solutions are found to be sub-optimal but falling above the 90th percentile of all possible solutions
on average. Significantly, the iterative method produces results within one percentile of the meta-heuristic
approach yet it finds a solution 2.31 times faster. The iterative approach has an additional benefit, in that it is
able to predict the relative gains when adding more files to a compression group. It is thus able to terminate
prematurely if the estimated gains are less than a chosen threshold.

INDEX TERMS Slepian-wolf coding, distributed source coding, coded caching, iterative optimisation.

I. INTRODUCTION
Recently, there has been a relentless increase in the amount
of data traffic as the number of Internet users and Internet-
connected devices grows. This, together with ever-improving
Internet speeds and availability, has put immense strain on
the current network infrastructure. Thus, current research is
focused on intelligent methods to organise and deliver content
without relying on ad hoc network usage. One promising
method is content caching [1], where relevant information
is downloaded to user devices during off-peak hours based
on expected demand. The server is then able to provide the
content to consumers at a reduced rate when the network is
constrained.
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approving it for publication was Huaqing Li .

In practical applications, the files being requested are often
correlated to one another, since many types of content, such
as current news and popular videos, have a high degree
of similarity [2]. Consequently, new techniques have been
proposed to improve the efficacy of content caching by taking
the correlation between files into consideration [3], [4], [5].

One approach to exploiting the correlation is to use source
coding methods to compress the information before caching.
Slepian-Wolf (SW) coding [6] leverages high degrees of cor-
relation between information sources to compress their data
in a distributed manner, without the need for collaborative
communication. Although generally studied in the Wireless
Sensor Network (WSN) setting, this technique has proven to
be a promising solution to reduce the transmission rate in a
caching scenario [7], [8].

A major limitation of this type of SW coding is that
the decoding of the information is performed jointly, which
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becomes computationally expensive when including multiple
files. Thus, it is desirable to reduce the complexity of the
coding without greatly sacrificing the compression gains. In
general, this is referred to as the clustered SW problem [9].
One way to achieve this is to limit the number of files to
compress, but selecting the most optimal subset of files in
terms of compression gains becomes an NP-hard problem
which is not addressed by Literature to date. As a result, this
paper develops twowell-performing but sub-optimalmethods
that find the best performing subset of files to compress.

A. BACKGROUND AND MOTIVATIONS
Maddah-Ali and Niesen [1] were the first to optimise caching
in terms of the global caching gain, which is the total memory
available at the user end. They introduced a novel coding
technique, called Coded Caching (CC), that intelligently
stores parts of all the files on the main server with the end
users during the placement phase. When the users’ requests
are revealed in the delivery phase, the server is able to
compress all the requests into a single multicast file based on
the knowledge of the files stored previously. On receiving the
multicast message, each end user reconstructs their requested
file by XOR’ing the contents of their local cache. Much
work has been done in this field, such as considering the
fundamental coding limits in a case where the caches are
shared between the users [10] and the optimal placement of
files based on popularity [7], [8]. It has also found to be useful
in other current research topics, like Information-Centric
Networking (ICN), which replaces the traditional server/user
model with information being stored in the network
itself [11].

In the specific case where files are correlated with one
another, Hassanzadeh et al. describe how the caching bounds
could be improved [2]. This is achieved by dividing the files
into different subsets. The subsets can be used to compress
one another, since information will be repeated owing to
the correlation. The compressed files are then stored at the
caches and can be recovered after the users reveal their
file requests. The compression has the effect that more of
the information can be stored at the cache, minimising the
size of the multicast message sent by the server during
the delivery phase [3]. By simplifying the model, a more
optimal placement scheme was designed in [4]. This was
made more systematic by incorporating Gray-Wyner coding
into the compression design [5]. However, as the authors
note, the constraints on the bounds required to achieve
optimal compression grow exponentially with the increase
in the number of files. As such, they only present the cases
where two files are transmitted to k users and three files are
transmitted to two users.

Gray-Wyner coding is considered part of the field of
Distributed Source Coding (DSC), where multiple inde-
pendent pieces of information can be compressed at once,
and the goal is to reduce bandwidth usage by limiting
communication between users. SW coding falls under DSC

and is similar to Gray-Wyner coding, with changes in the
general structure [12]. In fact, Merikhi and Soleymani use
the idea of decoding using side information (a feature of
SW coding) in their CC implementation, although it is only
used to compress two information sources [7], [8]. SW
coding, too, suffers from exponential increases in coding
constraints [13]. Furthermore, DSC schemes require jointly
decoding the compressed information received, leading to
increased complexity for the number of files included in
the scheme. Wang et al. first proposed a method of dealing
with this increase in complexity. They clustered the files into
groups, such that the overall compression was maximised
while the computational complexity was bounded [9]. They
extended their work to increase the security [14] and
overall compression [15] of their system. Shu, one of the
authors of the above papers, used the same approach and
added robustness by electing backup nodes [16] and energy
efficiency by correlating the chance of becoming a cluster
head to the distance from the next hop [17]. In a similar vein,
Yang et al. [13], [18] provide a solution based on Lagrangian
multiplier optimisations to organise the sources into a simpler
structure, in an effort to reduce the SW decoding complexity.
To this end, they simplify the correlation structure by only
considering sources that are within a fixed radius of one
another. This same simplification is used by Yuen et al.
in [19], albeit with a different method to find the optimal
results. More recently, Amutha et al. present this problem
and use a sailfish meta-heuristic algorithm as a potential
solution [20].

As a result, by adapting the clustering solution for SW
coding to the CC domain, it is possible to simplify the
system model in [5] and achieve the coding bounds for a
greater number of files and users without increasing the
complexity significantly. However, there are limitations to the
current research around clustered SW as well. Firstly, in all
the papers cited above, the solution involves calculating the
performance of every combination of sources not yet selected.
With the increase in the number of sources, this approach
becomes computationally infeasible. Yang et al. reduce this
complexity somewhat by disregarding correlations below a
certain threshold. They also simplify the entropy calculation
by modelling the correlation as a Gaussian distribution.
Nevertheless, there are two issues with this approach. Firstly
it is possible that, even with this simplification, there will
still be many sources in the sensing radius if the source
distribution is dense. Thus the original problem of complexity
will return, since they do not fundamentally change the
method for searching for the most optimal grouping.
Secondly, using a fixed sensing radius and correlation model
might grossly oversimplify the problem, since it is based on a
simple spatial distancemetric. This does not take into account
correlation-specific metrics and will thus not be helpful in
the CC domain, where the information sources are files to be
compressed as opposed to the WSN consideration, where the
information sources are nodes in a network.
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B. CONTRIBUTIONS
Motivated by the gaps and shortcomings identified above, the
main contributions of this paper are to:

1) Adapt the current work regarding SW coding in a
WSN environment to the CC with correlated sources
scenario. This involves using the optimisations of
clustering for SW to simplify the system model given
in CC for a Gray-Wyner network and thus reduce the
complexity of the coding and decoding.

2) Incorporate a different model of the correlation
between information sources into evaluating the
entropy performance of the system. We choose to use
the summation of Mutual Information Areas (MIAs)
instead of Gaussian random variables, as these areas
are independent and are able to be tailored to a variety
of cases, including files in a CC setting.

3) Create two novel solutions to the clustered SWproblem
with CC considerations. This is donewithout relying on
the simplifications provided in Literature to date.

The comparison of our work to other Literature across the
different fields is presented in Table 1.

TABLE 1. Comparison of current works and our paper.

C. LAYOUT
The rest of this paper is structured as follows: Section II
describes the system model and optimisation problems,
while Sections III and IV outline the two approaches.
Section V analyses the complexity and optimality of the
various solutions and Section VI presents and compares the
simulation results. Section VII presents a brief discussion
and outlines future work directions. Finally, Section VIII
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
The system consists of two primary components: CC and SW
coding. The former ensures that the bandwidth of the server is
minimised during peak hours while the latter seeks to reduce
the total amount of information needed to be sent by the server
to the users by compressing the files beforehand. A general
outline of the system model is shown in Fig. 1. The following
two subsections provide more detailed modelling for each
subsystem.

A. CODED CACHING MODEL
In [7], [8],Merikhi and Soleymani present a CC systemmodel
in which users can receive information from the server or
from shared remote caches. In contrast, this paper focuses
on the single server case with local caches, where Z users

connect to a single base station over an error-free broadcast
link. The base station contains a library of files represented
by the setN. Each element ofN is modelled as an information
sourceXi, i ∈ {1, 2, . . . , |N|}. Without loss of generality, each
file Xi produces F binary symbols which are i.i.d and ergodic.
Accordingly, each file has an entropy H (Xi) = F bits,
∀Xi ∈ N. However, it is assumed that the files are correlated to
one another according to the distribution p(x1, x2, . . . , x|N|).
In addition, each user has at its disposal a local cache of size
M files, or MF bits. We denote Zi as the contents of user i’s
cache.

The CC system operates in two distinct phases. In the
placement phase, the base station intelligently fills the users’
caches with files from its library during off-peak hours. Thus,
the transmission rate is not constrained in this phase, only the
size of memory available at the user end.

In the delivery phase, the users reveal their demands,
modelled here as a vector d := {d1, d2, . . . , dZ }, where each
di is an index corresponding to a request from user i for file
Xdi . The base station attempts to fulfil the file requests of the
users by broadcasting a compressed version of the files, based
on the placement in the caches in the previous phase.

As in [5], the objective of the caching scheme is evaluated
according to the minimum multicast rate necessary to fulfil
the worst demand:

Rm = max
d∈D

E[ℓ(Yd)]
F

, (1)

where ℓ(·) is the length of the broadcast codeword Y for
demand d, and D is the set of all possible demand vectors.
Another evaluation metric is the average multicast rate,
defined as:

R̄m =
E[ℓ(YD)]

F
(2)

It is based on the average broadcast codeword length over
all demands.

B. SW CODING MODEL
The correlation between the sources is modelled as the MIAs
for each unique subset of N. Thus, there are a total of 2|N| −
1 areas. Naturally, the entropy of all the files H (N) ≤ |N|F
bits. Nevertheless, the correlation values are merely statistical
and do not necessarily describe the actual correlation between
the contents of the files.

Since the files are correlated, the base station is able to use
SW coding to compress the files that are stored in the caches,
although the exact contents of the files are unknown. This has
the effect of storing more content from the files in the users’
caches, meaning that ℓ(Yd) is reduced. However, there are two
primary restrictions on this method.

Firstly, in terms of the compression itself, there are bounds
given by Cover [21] for |N| sources. In total, there are 2|N|−1
bounds corresponding to each combination of sources. For
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FIGURE 1. System model overview.

example, for 3 sources {X1,X2,X3}, the 7 coding bounds are:

R1 ≥ H (X1|X2,X3)

R2 ≥ H (X2|X1,X3)

R3 ≥ H (X3|X1,X1)

R1 + R2 ≥ H (X1,X2|X3)

R1 + R3 ≥ H (X1,X3|X2)

R2 + R3 ≥ H (X2,X3|X1)

R1 + R2 + R3 ≥ H (X1,X2,X3)

Significantly, the bound on the total coding rate, and
therefore the maximum compression of the system as a
whole, is given as the joint entropy, which in general can be
expanded to:

|N|∑
i=1

Ri ≥ H (N) = H (X1,X2, . . . ,X|N|) (3)

= H (X1)+
|N|∑
i=2

H (Xi|Xi−1,Xi−2, . . . ,X1)

(4)

Equation (4) is obtained by repeatedly using the chain rule
for entropy.
Secondly, this bound is only achievable if all sources are

decoded jointly (although the coding is disjoint). This joint
decode is computationally expensive and is governed by the
number of sources involved in the coding scheme.
Thus, the general optimisation problem is to decrease the

complexity by removing sources from the scheme while
minimising the impact on the achievable compression for the
other files. As a result, this paper considers a system shown
in Fig. 1, which is adapted from [5]. In that paper, all the files
are compressed before they are transmitted to the caches. The
goal of our system is to partition the library into two groups,
one of which will be compressed according to a DSC method

such as SW with Matrix Partitioning [22], denoted as Nc.
The other group will remain uncoded and is represented by
Nu. The sets are disjoint, meaning that Nc ∪ Nu = N and

Nc ∩Nu = ∅. This new hybrid library can then be distributed
amongst the Z users using a cache encoder optimised for files
of unequal lengths (such as [23]). Unlike [4], which considers
that files are divided into a finite number of blocks, this paper
allows for compressed files of any size.
We now turn to more formally defining the objectives of

the system.

C. OBJECTIVES
The main goal of the hybrid system is to reduce the
complexity of the encoding and decoding of the compression
scheme without sacrificing too much of the compression rate
for the system as a whole. However, there are two approaches
to achieve this. In the first, the complexity is fixed by setting
the maximum number of nodes to compress. Hence, let
γ = |Nu| be the minimum number of nodes that should not
be compressed, at which the number of compressed nodes
|Nc| = |N| − γ achieves a reasonable decoding complexity.
Then, the objective is to choose a subset Nu from N that
maximises the reduction in information for the coded sources
N \ Nu = Nc. This is formulated as follows:

N∗u = argmax
Nu

H (N)− H (Nu) (5)

s.t. Nu ⊂ N, |Nu| = γ (6)

Another approach is to bound the entropy of the com-
pressed group of sources, effectively setting the compression
performance in this group. Then, the objective is to find the
maximum number of sources to put in Nc without exceeding
the entropy bound. As a result, let ζ be an entropy value in the
range 0 < ζ < H (N). The goal is to minimise the number of
sources in Nu while keeping the entropy of the compressed
group to H (Nc) ≤ ζ . In this instance, the objective function
is defined as:

N∗u = argmin
Nu
|Nu| (7)

s.t. H (Nc) ≤ ζ (8)

These optimisation problems are similar to the Minimum
Weight Set Covering (MWSC) problem, where each subset
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has a weight attached to it and the goal is to choose the fewest
subsets that covers all members of the set while minimising
the total weight. This problem is known to be NP-hard [24].
Another similar optimisation problem is the 0-1 Knapsack

(0-1K) problem, in which a set of members each contain
a weight and value. The objective is to choose the best
performing subset of members that maximises the total value
of the members while not exceeding a certain total weight.
This problem too is NP-hard [25].
The optimisation problems in this paper are similar to

the MWSC and 0-1K problems, but in those problems the
number of combinations in the search space for a set of size
|N| is 2|N|, where in our scenario it is

(
|N|
γ

)
. Nevertheless,

in our case, the weights (entropies) of each subset are not
known beforehand and must be calculated, unlike the MWSC
and 0-1K problems. Furthermore, in our scenario, the weight
calculation must be summed over 2γ

− 1 areas. As a result,
when γ is in the region |N|/2, or if γ is large, our optimisation
problems become NP-hard.

Accordingly, it is difficult to find an optimal solution
in polynomial time. In the next sections, two sub-optimal
approaches are discussed.

III. GREEDY ITERATIVE SELECTION PROCEDURE
The basic approach to solving the optimisation problem
in (5) is to iteratively select the most suitable sources until
a subset of size γ is reached. Further examination of the
expansion of the total entropy in (4) reveals that the entropy
of the set can be expressed in individual terms, where each
term refers to only one source conditioned on other sources.
This means that choosing the source Xi for each term, such
that H (Xi|Xi−1,Xi−2, . . . ,X1) ≥ H (Xj|Xi−1,Xi−2, . . . ,X1),
∀j ∈ {i+ 1, . . . , |N|} should guarantee a maximisation of the
entropy expression at that point. The only exception is the first
term, since, as mentioned in Section II-A, the entropies of all
sources are set to be the same. In this case, it is necessary to
choose the source based on a different criterion. Notice that
the final term in (4) isH (X|N||X|N|−1,X|N|−2, . . . ,X1), which
is equivalent to the MIA I (X|N||X|N|−1;X|N|−2; · · · ;X1).
Thus, choosing the source that maximises the entropy term
is equivalent to selecting the node that is least correlated with
the other sources.

These observations imply that, by continually selecting the
largest term from the available set of files to add to Nu,
the entropy of the set Nc = N \ Nu is minimised. As a
result, the following selection procedure is proposed:

Lemma 1 (source selection procedure). Let the sources in
N be drawn according to the following conventions: Choose
X1 such that H (X1|N \ X1) ≥ H (Xi|N \ Xi) ∀Xi ∈ N \ X1.
Then, for k ∈ {2, . . . , |N|}, choose source Xk such that

H (Xk |Xk−1,Xk−2, . . . ,X1) ≥H (Xi|Xk−1,Xk−2, . . . ,X1)

(9)

∀Xi ∈ N \ {X1,X2, . . . ,Xk} (10)

It is possible for there to be multiple options for Xk ,
in which case Xk should be chosen arbitrarily.

Lemma 2. If the sources are organised as outlined in
Lemma 1, then it is guaranteed that

H (Xk |Xk−1,Xk−2, . . . ,X1) ≥ H (Xk+1|Xk ,Xk−1, . . . ,X1)

(11)

Proof: From (9) it is known that

H (Xk |Xk−1,Xk−2, . . . ,X1) ≥ H (Xk+1|Xk−1,Xk−2, . . . ,X1)

(12)

≥ H (Xk+1|Xk ,Xk−1, . . . ,X1)

(13)

Since conditioning reduces entropy. □
Using this selection procedure thus ensures that the terms

in the expansion are in descending order.

Theorem 1. Let the sources be indexed according to
Lemma 1. If, at any point in the selection process, H (Xk |
Xk−1,Xk−2, . . . ,X1) ≥ ζ ≥ H (Xk+1|Xk ,Xk−1, . . . ,X1) for
some threshold ζ , then

H (N)− H (X1,X2, . . . ,Xk ) ≤ (|N| − k)ζ (14)

Proof: Since ζ ≥ H (Xk+1|Xk ,Xk−1, . . . ,X1) then from
Lemma 2

ζ ≥ H (Xk+1|Xk ,Xk−1, . . . ,X1) (15)

≥ H (Xk+2|Xk+1,Xk , . . . ,X1) (16)
... (17)

≥ H (X|N||X|N|−1,X|N|−2, . . . ,X1) (18)

Together with this, we have

H (N)− H (X1,X2, . . . ,Xk ) =
|N|−k∑
i=1

H (Xk+i|Xk+i−1,Xk+i−2, . . . ,X1) (19)

Finally,

(|N| − k)ζ ≥
|N|−k∑
i=1

H (Xk+i|Xk+i−1,Xk+i−2, . . . ,X1) (20)

□
Theorem 1 can thus be used as a stopping condition

to satisfy (7). If, while choosing the sources, the entropy
of the selected source is less than ζ , then the rest of
the sources’ entropy contribution can be bounded and the
selection process will terminate with k sources.
The above derivations are combined to produce the Greedy

Iterative Single Group Entropy Minimisation (GISGEM)
selection procedure, outlined in Algorithm 1. It is able to
generate a potential solution to the optimisation problems
in (5) and (7) by maximising the entropy of the source
removed at each step.
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Algorithm 1 GISGEM Selection Procedure
Nc← N
Nu← ∅

i← 1
sort Nc s.t. H (Xi|N \ Xi) ≥ H (Xi+1|N \ Xi+1) ≥ · · · ≥
H (X|Nc||N \ X|Nc|)
Nu← Nu ∪ Xi
Nc← Nc \ Xi
while |Nu| ≤ γ do

i← i+ 1
sort Nc s.t. H (Xi|Nu) ≥ H (Xi+1|Nu) ≥ · · · ≥

H (X|Nc||Nu)
if H (Xi|Nu) < ζ then

Break
end if
Nu← Nu ∪ Xi
Nc← Nc \ Xi

end while
return Nc, Nu

IV. META-HEURISTIC APPROACH
The Genetic Algorithm (GA) is a meta-heuristic algorithm
whose efficacy in combinatorial problems is well known
[26]. Every valid combination is represented by a genome
sequence, which sets the variables in the optimisation
problem. For the single group entropy minimisation problem,
the genome structure is updated as follows: the position
in the genome represents the source in the set N and can
take on the Boolean values 0 and 1 depending on whether the
source is in the set Nu or not. This means that the genomes
are of length |N|with the constraint that the Hamming weight
must be equal to γ .
A population of random genomes is created, with rules

defined for populating the next generation based on genome
crossover and mutation. The crossover function selects
features from both parents, based on a random crossover
point. In our approach, the crossover functions need to
produce child genomes that conform to the weight constraint
mentioned above. As a result, the crossover function is
changed to the following: given two genome sets G1 and G2
(defined as the sources inNu shown by genome sequences g1
and g2), the child genome set G3 is constructed by randomly
choosing γ sources from G1 ∪G2.

The mutation function randomly flips a bit in the genome,
ensuring that the genome pool does not become too small.
Here, the mutation is updated to swap a random number of
value pairs in the genome, since simply flipping a single
bit could violate the Hamming weight constraint. The rest
of the algorithm, such as parent selection, does not require
any changes. A summary of this approach can be found in
Algorithm 2.

V. ANALYSIS
The methods outlined above are now analysed in terms of the
algorithm complexity and whether they produce objectively
optimal solutions as compared to a Brute Force (BF) search.

Algorithm 2 Genetic Algorithm Approach
P← random population of genomes
Calculate and rank the performance of each genome in P
while not converged do

Choose αc|P| random pairs of parent genomes for
crossover

for each parent genome pair {g1, g2} do
Gchild← γ random sources from G1 ∪G2 ▷

Crossover
end for
Choose αm|P| random genomes for mutation
for each genome gi do

gchild← gi
swap random number of pairs in gchild ▷Mutation

end for
Pnew← |P|(1− αc − αm) best genomes from P
Pnew∪ crossover children
Pnew∪ mutation children
P← Pnew
Calculate and rank each genome in P

end while

A. COMPLEXITY
The BF approach to solving the entropy minimisation
optimisation requires that every combination of Nu is
determined and evaluated and the grouping that provides the
least impact to the compression gains is chosen. This means
that the complexity is in the order of O

((
|N|
γ

))
. In contrast

to this, the GISGEM selection procedure has a much lower
complexity. In the ith step, there are |N|−i− 1 terms that are
calculated. Thus, the total number of calculations required for
γ steps is

γ |N| −
γ−1∑
i=1

i = γ (|N| − 1/2(γ − 1)) (21)

There is the additional complexity of ranking the terms
in each step, however this complexity is negligible when
compared to calculating the entropy. As a result, the
complexity of this selection procedure is O(γ |N|). The
complexity of the GA varies, and is dependent on the size of
the population, as well as the number of generations required
until the algorithm converges.

In Literature, the authors in [9] propose a greedy algorithm
that requires ranking the power set of N. However, their
algorithm finds the minimum entropy disjoint grouping
for all sources. Nevertheless, when determining the best
grouping of size γ , this method will have a complexity in the
same order as the BF method. Thus, the GISGEM selection
procedure dramatically reduces the complexity as compared
to the brute-force and Literature methods when γ is in the
region of |N|/2.

B. OPTIMALITY
Although less complex than the BF approach, the following
Lemmas show that using GISGEM does not provide an
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optimal result with regards to the optimisations in (5) and (7)
respectively.

Lemma 3. The GISGEM selection procedure is not optimal
in terms of the optimisation in (5).

Proof: Since the GISGEM selection procedure is iterative,
it begins with Nu = ∅ and adds a single source at a time.
Without any stopping conditions, this will result in Nu = N.
However, every possible order of choosing sources to put
into Nu must follow these same start and end states. Thus,
it is impossible that a single selection order will produce an
optimal result for any arbitrary 0 ≤ γ ≤ |N|, since it cannot
guarantee to be optimal at every point. □

Lemma 4. GISGEM is not optimal in terms of the optimisa-
tion in (7).

Proof: Theorem 1 provides a stopping condition to the
GISGEM algorithm. Nevertheless, as shown in Lemma 3,
this result is not necessarily optimal. Thus, it is possible that
another selection of sources has a more optimal Nu and, even
after removing one or more of the worst-performing sources,
would still perform better than GISGEM. □
Thus, theoretically, the GISGEM algorithm should pro-

duce sub-optimal results but with less time complexity than
the BF and GA methods. The following section details the
numerical results obtained for the different approaches.

VI. RESULTS
In the following subsection, an illustrative example is
presented, comparing the performance of the different coding
schemes, namely the Coded Caching (CC) [1] and CC with
SW (SW/CC) [5] approaches from Literature, and the hybrid
method with Reduced Complexity (SW/CC-RC) proposed in
this paper (depicted in Fig. 1). The methods used to reduce
the complexity in the SW/CC-RC system are compared in the
next subsection.

FIGURE 2. Example of a correlation diagram for three sources.

A. NUMERICAL EXAMPLE
Consider three files with a correlation model shown in Fig. 2,
with each file having an entropy of 60 bits. Furthermore, let
the number of users Z = 2, each with cache size MF =
90 bits. For the sake of clarity, we denote X i:jA as representing

a sub-file of XA, consisting of bits i to j inclusive, where i < j
and files begin with bit 1. As a result, the length of this file
ℓ(X i:jA ) = j−i + 1 bits. Furthermore, let {X i:jA ;X

k:l
B } (with a

semi-colon) be the concatenation of sub-files fromXA andXB.
In the classic CC method, where correlation is ignored,

the ideal placement of files is to divide each file in half and
place each half at a different user. When the users’ demands
are revealed, the server XOR’s the files not currently stored
by that user together and transmits the joint codeword. For
instance, let the demand d = {A,B}. Since user Z1 already
stored X1:30

A in its cache Z1 and user Z2 has X31:60
B in Z2, the

codeword transmitted by the server is Yd = X31:60
A ⊕ X1:30

B .
At the receiving end, the users XOR Yd with the cached half
of the file not requested to decode the rest of its requested
file (e.g. Z1 calculates Yd ⊕ X1:30

B = X31:60
A ). Under these

conditions, it is readily verifiable that the peak demand rate
Rm = R̄m = 30 bits.

The second approach, SW/CC, uses SW coding before
doing the CC. To begin, it is necessary to calculate the
bounds on the coding rate when compressing the files. In this
example, there are 7 conditions to be met:

RA ≥ 4 (22)

RB ≥ 20 (23)

RC ≥ 8 (24)

RA + RB ≥ 42 (25)

RA + RC ≥ 42 (26)

RB + RC ≥ 42 (27)

RA + RB + RC ≥ 102 (28)

The most restrictive of these is (28). Thus, to satisfy all
conditions, it is sufficient to set all coding rates to 102/3 =
34 bits. Let the files compressed using these compression
rates be X̂A, X̂B and X̂C (this can be achieved using the
Matrix Partitioning method for SW coding [22]). Using the
same cache size as above, we are now able to store 30 bits
from each of these files, corresponding to 88% of the file as
opposed to 50% in the CC method. In this case, both caches
receive X̂1:30

A , X̂1:30
B , X̂1:30

C . The remaining 12 bits (4 from
each file) are transmitted regardless of the demand vector.1

On the receiver’s end, the new information is used to perform
a joint decode to losslessly obtain XA, XB and XC . As a result,
the performance is Rm = R̄m = 12 bits. However, this
comes at an increased complexity cost, owing to the number
of constraints that need to be met, as well as the joint decode
complexity.

Finally, the SW/CC-RC method is demonstrated. Before
performing the SW coding, the GISGEM algorithm is applied
to the files to determine which ones to remove. Table 2 lists
all the iterations used to index the files. In the first step, the
excess entropies for each file (i.e. the entropy of each file
conditioned on all other files) is calculated and the maximum

1In this specific example, there is no need for the CC method, since the
cache sizes are large enough to contain sufficient information to negate the
extra coding.
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is chosen to be X1. The next iterations exclude all previously
chosen sources and the conditional entropies are calculated,
with the maximum chosen in each successive stage. In this
example, the selection procedure is always optimal, since the
first and last steps are guaranteed to be optimal and there are
only 3 iterations.

TABLE 2. Indexing of sources using GISGEM.

If we set γ = 1 for example, the algorithm will suggest
that XB is removed. Thus, the library is partitioned into two
subsets, Nc = {XA,XC } and Nu = {XB}. Consequently,
the SW coding method from the previous SW/CC example
will only be applied to the two files in Nc. These files have
3 conditions for lossless SW coding:

RA ≥ 4 (29)

RC ≥ 8 (30)

RA + RC ≥ H (XA,XC |XB) = H (XA,XC ) = 82 (31)

Notice that the bound (31) is different to (26), since XB
is treated as independent of XA and XC in this case. Setting
RA = RC = 41 bits satisfies all requirements and the files
are compressed accordingly. Thus, the library now consists
of {X̂A,XB, X̂C }. In the next phase, the cache encoder stores
28 bits from the two compressed files and 34 bits from
the uncompressed file. The caches are filled this way to
balance out the peak multicast rate. The results of this phase
are shown in Fig. 3, with Z1 = {X̂1:28

A ,X1:34
B , X̂1:28

C } and
Z2 = {X̂14:41

A ,X27:60
B , X̂14:41

C }. Using this placement, all files
can be decoded at the user end regardless of d, as shown in
Table 3. In terms of performance, Table 3 also shows that
Rm = R̄m = 26.

FIGURE 3. Cache storage contents for |N| = 3 files, Z = 2 users and
MF = 90 bits using the SW/CC-RC method.

In summary, Table 4 shows what is stored at each cache
for the different approaches. Although the SW-CC method
has the lowest average and peak rates, it comes at the cost of
higher complexity in designing the coding scheme as well as
the decoding algorithm. On the other hand, the SW/CC-RC
method sacrifices some of the compression gains to achieve
reduced complexity in terms of the number of equations, the
decoding algorithm and the number of demand permutations
in which SW decoding is needed at each cache (6 out of
12 permutations, compared to 12 for the SW/CC method).
Nevertheless, the average rate is still reduced as compared to
the regular CC approach.

B. SIMULATION RESULTS
Three methods have been outlined in this paper to deter-
mine the sources to remove in the SW/CC-RC approach.
These are the BF, GA and GISGEM methods. Literature
does not deal directly with the optimisation problem pre-
sented in this paper, and the current approaches (when
ignoring their simplifications) are equivalent to the BF
method.

To perform the comparison, 18 sources were used, where
the optimal grouping was found for an increasing number
of sources in Nu. Fig. 4 shows the entropy obtained for
each method when increasing the size of the selected group.
Each of the methods are compared to the worst performing
configuration (found using the BF method). The results
confirm the sub-optimal performance predicted in Lemma 3,
as it is found that, in the range of best to worst performing
results, the GISGEM’s results fall in the 91st percentile
on average, with a minimum value falling in the 82nd
percentile. The GA’s results are in the 92nd percentile on
average with the lowest value in the 76th percentile. As
compared to the BF method, both the GISGEM and GA
are able to find results close to the optimal one. However,
since the GA is not constrained to choosing the same
grouping as the previous iteration, it is sometimes able to
find a better result than GISGEM. Fig. 4 also shows the
correctness of Theorem 1, since the distance between the
most and least optimal group selections decreases as more
sources are selected. This highlights another advantage of
GISGEM, as it is able to terminate earlier if it detects that
the current number of sources is sufficient to achieve the
objective in (5).
The time taken to find the optimal result for each method

is given in Fig. 5. The GA is, on average, 4.42 times faster
than the BF exhaustive search, while GISGEM is 10.20 times
faster and increases linearly with respect to γ . These practical
results conformwell to the theoretical complexity predictions
in Section V-A.
In another simulation, the GISGEM and GA methods

were tested, this time in a system with |N| = 22. At
this number of nodes, the BF method’s complexity becomes
prohibitively large. In Fig. 6, the difference between the total
entropies of the uncoded groupsNu for the GISGEM and GA
algorithms are plotted. It shows that, in this run, the GISGEM
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TABLE 3. Encoding and decoding procedure for the SW/CC-RC system.

TABLE 4. Cache contents for different coding methods.

FIGURE 4. The performance of each selection method as compared to the
least optimal combination for |N| = 18.

FIGURE 5. The time complexity of each selection method for |N| = 18.

method outperforms the GA approach for small γ . For larger
values of γ the two approaches are closer, with the GA

approach sometimes besting the GISGEM one. Nevertheless,
as depicted in Fig. 7, the time complexity of GISGEM is
consistently lower than the moving average of the GA.

FIGURE 6. The difference between total entropies of Nu produced by the
GISGEM and GA algorithms for |N| = 22.

FIGURE 7. The time complexity of the GISGEM and GA selection methods
for |N| = 22.

C. GA PARAMETER TUNING
The GA has different parameters that can be tuned to obtain
better results. As discussed in [27], these variables are
critical to changing the diversification (breadth of search
area) and intensification (refining the current results) of the
algorithm. They also found that there is not necessarily a
single parameter that controls each type of behaviour of the
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TABLE 5. Different parameter settings for GA testing and their impact on the quality of results and complexity.

algorithm. In order to examine the effect of each parameter in
our scenario, the GA was run with parameters in the ranges
shown in Table 5. To explain the parameters: SG refers to
the number of iterations in which the the elite value obtained
remains the same, after which the algorithm converges. The
Population Size is the number of configurations tested in each
generation. The value αe is the number of members of P that
survives to the next generation, expressed in terms of the
percentage of |P|. The Crossover Percentage is the number
of children produced using the gene crossover method. It
is expressed as the percentage of |P| − αe. The number of
mutation children is not shown here, as it is automatically set
as the inverse of αc.

FIGURE 8. The effect of different GA configurations on performance.

The GA was run for |N| = 18 and γ ∈ {7, 8, . . . , 11}
for every combination of parameter. Figures 8-10 show the
resulting effects, on average, of each parameter on the best
result obtained, the time taken to converge as well as the
number of iterations. These results are also summarised in
Table 5. It is clear from the results that the SG has the biggest
impact on both quality of results and time complexity. The
trade-off between the two is found to be directly proportional.
Consequently, an SG of 15 is chosen to slightly favour
the quality of results over time complexity. Population size
has a medium impact on quality but small impact on time
complexity, while the number of iterations is barely affected.
This is because increasing the population size increases the
number of configurations tested per generation. For these
reasons, the maximum population size of |P| = 20 is chosen.
The Elite Percentage has a minimal impact on quality of
results but a small impact on time complexity. However, the

results are found to not be linear, with αe = 20% producing
the best time relative to the quality of results. Thus, this value
is chosen for the final testing. Finally, the balance between αc
and αm corresponds to a small impact in quality but minimal
impact on time. It is found that αc = 60%maximises the best
results obtained, so this is the value selected.

FIGURE 9. The effect of different GA configurations on convergence: time.

FIGURE 10. The effect of different GA configurations on convergence:
iterations.

One interesting result is that a change in γ had a small
effect on the time and minimal effect on the number
of iterations taken to converge. This correlates with the
head-to-head testing conducted in Section VI-B, where the
moving average of the GA did not change much with a
change in γ .

VII. DISCUSSION AND FUTURE WORK
Although the GA is suited to combinatorial problems in
general, it is possible for a different meta-heuristic algorithm
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(such as the Particle Swarm Optimisation or Binary Bat
Algorithm) to perform better when considering the SW/CC-
RC scenario. So too, although the parameters were tuned for
this problem, tuning the functions of crossover and mutation
might produce better results. Although this is a potential
possibility for future work, it is noted that this paper uses
the GA mainly as a benchmark with which to evaluate the
performance of the GISGEMmethod and not as a stand-alone
solution.

With regards to the GISGEM approach, the current design
uses a ‘no regret’ scheme, where sources selected previously
are not able to be removed in a future iteration. However,
a more optimal result could be achieved by using a ‘look
ahead’ approach and is a potential avenue for future work.

In addition, further work is necessary to generalise the
method to solve the optimal clustering for all sources. In
contrast to the single compressed group presented in this
paper, the general grouping case allows for many groups
of nodes, all of which will be compressed. In the single

group scenario, the size of the search space is given by
(
|N|
γ

)
.

However, for the multiple grouping scenario, an expression
that gives the size of the search space needs to be derived.
Furthermore, the objective functions need to be changed
to reflect the new considerations, where the entire library
is able to be grouped, and the sum of the entropies of
the groups needs to be minimised. It is also unknown
how the approaches proposed in this paper will perform
with the new considerations. Finally, it is surmised that the
generalised scenario will result in an increase of compression
with commensurate increase in complexity. However, it is
necessary to compare this trade-off with the current results
related to the system design in this paper.

VIII. CONCLUSION
A greedy iterative selection procedure and meta-heuristic
approach are proposed as potential solutions to the clustered
SW problem in the context of caching correlated information.
Files are grouped together, such that the overall decoding
complexity is reduced with minimal impact on compression
gains. The iterativemethod is based on the inherent properties
of entropy and it is able to find a close-to-optimal result
with less time complexity as compared to the BF and meta-
heuristic approaches. There is the additional benefit that
the algorithm can bound the entropy gains at each iteration
and can compare that to the relative complexity of the
system, allowing it to terminate prematurely if necessary. It
is found that these methods are able to successfully reduce
the complexity of a SW/CC system while not sacrificing too
much of the compression gains.
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