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ABSTRACT Few-shot image classification, whose goal is to generalize to unseen tasks with scarce
labeled data, has developed rapidly over the years. However, in traditional few-shot learning methods with
CNNs, non-local features and long-rang dependencies of the image may be lost, and this leads to a poor
generalization of the trained model. With the advantage of the self-attention mechanism of Transformer,
researchers have tried to use vision transformer to improve few-shot learning recently. However, these
methods are more complicated and take up a lot of computing resources, and there is no baseline to
measure their effectiveness. We propose a new method called ViTFSL-baseline. We take advantage of vision
transformer and train our model on all train set without episodic training. Meanwhile, we design a new
nearest-neighbor classifier to used for few-shot image classification. Furthermore, in order to narrow the gap
between difference of same class, we introduce centroid calibration in classifier after the feature extraction of
backbone. We run the experiments on popular benchmarks to show that our method is a simple and effective
for few-shot image classification. Our approach could be taken as the baseline upon vision transformer for
few-shot learning.

INDEX TERMS Deep learning, few-shot learning, feature processing, image classification, vision
transformer.

I. INTRODUCTION few labeled instances. It is challenging and interesting to

Deep learning has achieved significant improvement on
machine vision tasks such as image classification. The
excellent performance, however, is based on training models
with large number of annotated examples. Sometimes we
need lots of labeled images for each novel category to
accomplish recognition tasks even under the circumstances
of pre-training on abundant dataset. The cost of labeled
images is generally expensive and the scarcity of samples,
such as rare animals species. The situations severely restrict
the application of machine vision to recognize novel visual
concepts. Regardless of the limitation, the visual recognition
systems of human can learn novel categories with extremely
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recognize novel categories with a few labeled samples for
each new category. There needs to devise learning strategies
for novel classes with limited labeled data. The common
practice is taken as few-shot learning(FSL), which has
attracted much more attention.

Various methods for the few-shot learning tasks contains
meta-learning and whole-classification. During training on
source domain dataset, some researchers employ meta-
learning methods [1], [2], [3] to construct episodes that
are same to the target domain, and learn a model
that can generate to new target tasks quickly. Others
utilize whole-classification methods [4], [5] argue that
leveraging feature information from numerous images
across all classes within the source domain dataset
enhances performance. Subsequently, they fine-tune the
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well-trained models to the target task using adaptation
techniques.

While few-shot learning(FSL) approaches upon convolu-
tional neural networks are extensively applied in machine
vision field, there are some shortcomings. Firstly, a shallow
network is usually employed for embedding with meta
learning approaches, leading to the loss of semantic and
spatial information in the feature map. Secondly, people
usually fail to capture information of non-local and obtain
long-range dependencies with the local receptive field of
convolutional neural network.

Some researchers utilize long-range relationships of
local image patches and transformer networks with the
self-attention mechanism to achieve better image recognition
performance. Recent works [6], [7], [8] have proposed either
combining or replacing CNNs with transformer networks.
These efforts often entail employing long token sequence
learning within transformers to mitigate catastrophic for-
getting. The transformer networks aim to capture more
enhanced semantic features by learning from dataset in
parallel. Transformer [9] and its variants have recently been
taken as a prospective alternative to convolutional neural
networks for machine vision. However, researchers always
rely on large volume of images to train transformer. It is
challenging for transformer to perform the target task with
few annotated data.

When employing transformer networks directly for
few-shot learning within conventional episodic paradigm
[10], [11], the performance tends to be inferior. The common
practice can only learn few features of images successively
and cannot obtain overall cognition on the distribution of
training set. Consequently, transformer networks have rarely
been taken as the backbone to Few-Shot Learning(FSL) tasks.
Transformer have comparable performance than ResNet [12]
only after pretraining on large dataset [9]. However, the
data-rich models might lack inherent inductive biases that
are crucial for smaller datasets. Thus, it leads to unsatisfying
performance because of the limited annotated data.

In this paper, we enable the inheritance of parameters from
pre-trained vision transformer(ViT) [9] without incurring
additional costs. We adopt transformer as the backbone to
train on source domain and use the whole-classification
method to learn a model. We capture a general sense
of semantic feature rather than only episodic instances.
We finetune the top layer of transformer during testing on
target domain. Now some works [13] get down to apply ViT
in image recognition, but there is no simple and effective
method for few-shot image classification. Our method offers
a baseline to measure the effectiveness of approaches with
ViT in the future. We show that simple training on whole class
of training set with pre-trained model is sufficient for few-
shot learning. During testing, we simply union the backbone
and the last few layers to train and achieve promising
performances [14], [15], [16].Our method is simple, scalable
and can be used as a baseline for transformer on few-shot
setting(FSL).
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Moreover, we propose a simple Nearest-neighbor Cen-
troid classifier with L2-normalization(NCL) for few-shot
learning,which leads to further improvements with the ViT
network. Although the similar method has been previously
considered, it has been overlooked that it outperforms
many sophisticated few-shot learning methods.To address
this aspect, we introduce a transformer-based model along
with a novel nearest-neighbor classifier NCL for few-shot
learning(FSL). Our method is called ViTFSL-baseline for
few-shot learning. Consequently, ViTFSL-baseline can also
be a significant baseline that has been overlooked.

To summarize, the main contributions are as follows:

1. A simple and effective transformer-based method is
proposed for few-shot image classification. To the best our
knowledge, we are among the first to take simple transformer
as backbone network with whole-classification to achieve
the few-shot learning tasks. Our approach could be acted
as the simple baseline for transformer-based few-shot image
recognition methods in the future.

2. A classifier NCL based on nearest-neighbor algorithm
is proposed to suppress the impact of feature inconsistencies
and employed to promote accuracy of few-shot image
classification.

3. Extensive experiments demonstrate that our few-shot
learning method achieves a high performance on benchmarks
and outperform its counterparts in terms of accuracy.

The remainder of this paper is arranged as follows.
Section II discusses related work, include meta-learning
and whole-classification methods. Section III illustrates the
content of the proposed model for few-shot learning in
details. Section IV evaluates the performance of the proposed
model with some comparable few-shot learning methods.
Finally, the conclusion is given in Section V.

Il. RELATED WORK
Few-shot learning is a challenging work in computer vision
field where the goal is rapid generalization to unseen tasks.
In recent years, researchers have proposed many novel
approaches to address the few-shot learning problems, result-
ing in significant advancements. Most of these approaches
fall under the umbrella of meta-learning [10], [17], which
involves training a model on the meta-train dataset by
mimicking few-shot image classification tasks.The well-
trained learner is then applied to the meta-test dataset.These
various meta-learning architectures for few-shot learning can
be roughly categorized into two groups,optimization-based
approaches and metric-based approaches.
Optimization-based approaches involve the application of
an optimization process on the support set in an episode
with the meta-learning method. Finn et al. [1] proposes
MAML to learn a model agnostic initialization that can
effectively generalize to new tasks with just a few gradient
steps. In MetaOptNet [18], the feature map is extracted to
be adapted well for a linear support vector machine(SVM)
classifier. Another study [19] employs LSTM-based meta-
learner to replace the stochastic gradient decent optimizer.
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While optimization-based approaches provide clarity in the
learning process, metric-based approaches can be utilized to
learn a deep feature representation with a distance metric
learning in the feature space. For instance, prototypical
network [10] calculates the euclidean average feature of
each category in support set and classifies new samples
from the query set using the nearest-centroid algorithm.
Sung et al. [11] proposes a relation module that compares
the feature of support and query set samples, which is trained
jointly with the backbone network. TADAM [20] is used
to employ a task conditioned metric distance leading to a
task-dependent metric space.

Our approach is similar to metric learning. We take
vision transformer [9] as the backbone network and evaluate
few-shot learning tasks with meta-learning method directly,
however the performance of the few-shot image classification
is poor.

While meta-learning approaches have shown significant
improvements in few-shot learning, their effectiveness is
challenged by a recent line of literature with simple whole-
classification. The whole-classification is a classification
model trained on the whole training label-set. TheA authors
of Cosine classifier [21]and Baseline++ [22] replace
the last linear layer with cosine classifier and train the
whole-classification model on train dataset. They then adapt
the well-trained model to few-shot image classification tasks
of novel classes by fine-tuning a new classifier. These meth-
ods have demonstrated competitive performance in few-shot
learning using non-episodic training paradigm. Many recent
works have also focused on transformer-based methods.
However, the effective adaptation of transformer-based
methods into the few-shot image classification tasks with
whole-classification is still underexplored.

This work aims to integrate the vision transformer(ViT)
into the whole-classification models and explore the effec-
tiveness of the solution. During training, we take ViT
as the backbone of the whole-classification model and
then process the feature with normalization. We adopt the
nearest-neighbor classifier NCL to replace the linear layer
on top. During testing, we adapt our well-trained model
for few-shot classification on novel classes. We regard our
method as ViTFSL-baseline for few-shot image classification
tasks. Our results show that ViTFSL-baseline is a simple and
effective few-shot learning baseline that has been overlooked.
The solution avoids the need to train over large number
of episodes as in meta-learning and achieves competitive
performance compared to other sophisticated algorithms.
Although each component in ViTFSL-baseline is not novel,
to the best of our knowledge, previous works have not
explored them as a whole.

. METHOD

A. PROBLEM DEFINE

We train a model on a labeled dataset Dp,s., Which consists
of abundant images from each base class in Cpgse. With the
well-trained model, our goal is to learn concepts on novel
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classes Dy With a few labeled samples per class. The
dataset D¢ also has many unlabeled images in each class
Chovel, Where Croper N Cpase = . The few-shot learning
task means the N-way K-shot image classification task in
this work and includes a support set Dy and a query set D,,.
Usually in a conventional few-shot image classification task,
a small support set contains N classes with K images per
class, which is sampled from Dy, and the corresponding
query set consists of images from the same N classes with
Q images each class. The goal of few-shot learning task is to
classify the N x Q query samples into N classes.

B. VISION TRANSFORMER AS FEATURE EXTRACTOR

1) IMAGE SEQUENTIALIZATION

The images are fed into ViT and a sequence of flattened
patches X, € R'P are generated. where N = HW /P? is
the number of patches in an image, D is the dimension of
images, (H, W) and (P, P) are the resolutions of the image
and patch, respectively. We denote the input image with
resolution H x W, the size of image patch as P.

2) PATCH EMBEDDING

To obtain the position information of patches in image,
position embedding is also added to inputs. Therefore, the
input sequence zp of ViT is denoted as:

20 = [x; E, x> E,...,xI],VE] + Epos. )
where N is the number of image patches, E € RPO*D jg
the patch embedding projection, and Ej,; € RNP denotes the
position embedding.

The encoder layer of transformers contains L lay-
ers of multi-layer perceptron(MLP) and multi-head self-
attention(MSA) blocks. Residual connections and Layer-
Norm are applied before and after every block, respectively.
Therefore, the output of the l-th layer can be shown as
follows:

Zj =MSA(LN (Zi—-1)+Zi—1 1€ 1,2,...,L. (2)
Zi=MLP (LN (Z)))+Z 1€1,2,...,L. A3)

where Z; is the image encoding operation and LN(-) is the
layer normalization. The first token of the last encoder layer
Zg is employed as the representation of global feature and
feed into a classifier to get the final classification results and
the potential information retained in the rest of the tokens is
discarded.

C. OUR APPROACH

The goal of training stage is to learn a feature extractor fjy
and classifier Cp, by training the model on the large labeled
base dataset Dj,.. Then given a N-way K -shot few-shot task
sampled from the novel dataset D;,,;, we utilize the feature
extractor fy with a new classifier C, to classify novel classes
with few labeled samples. We show that a simple method of
training a base model and then adapting it to novel classes
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FIGURE 1. Network architecture for a 3-way 2-shot problem with one query example.

can obtain competitive performance. The overall framework
is illustrated as Fig. 1.

In the training stage of Fig. 1, the samples of base
classes are fed into feature extractor fy and classifier C(- |
Wp) with the conventional cross-entropy loss. At the fine-
tuning stage, the support samples are fed into backbone to
get feature maps and then feature maps are processed by
feature transformation. Then we obtain similarity scores by
a distance metric between support and query feature maps
and predict the class label. The cinerus rectangles and the
colorful rectangles are feature maps of query set samples
and support set samples respectively. The colourful squares
before softmax are similarity scores between support and
query images. Similarity scores are measured by Euclidean
distance in feature space. The process of softmax are shown
in Eq. (6).

To build a simple baseline, we introduce a whole-
classification model which is trained on the whole class in
base dataset Dp,z. We train the feature extraction network
and a nearest neighbor classifier with conventional cross
entropy loss on all base categories of train set. Then we
utilize well-trained feature extraction network and a new
classifier to deploy few-shot tasks with nearest neighbor
algorithm in the novel dataset. Concretely, we train a model
on all base categories with cross-entropy loss, then and retain
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the encoder fy to map data points to an embedding feature
space.

A few-shot task consists of a support set S and a query
set Q. S. is defined as the few-shot examples in class ¢
on the support set. We calculate the mean embedding W,
as the centroid of class c. We construct class centroids
dynamically for each episode and then performs nearest
centroid classification.

= | Sc | &exesc

Jo(x). “

A feature vector w, is subtracted by w, and then the result
is normalized with L2 norm. w, denotes feature vector of
images. The formula is as follows:

we —well

Mean subtraction operation does not change Euclidean
distances between feature vectors, but it can achieve good
performance in combination with L2-normalization. We find
the centers to each category novel training sample and
then average the samples along with L2 normalization to
obtain the new centroid for the novel classes, similar to
simpleshot [23]. In setting of K-shot, we get a centroid for
each class by calculating the mean of the samples in same
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class. At inference time, we simply get the nearest center to
the query image and assign its label. The Nearest-neighbor
Centroid classifier with L2-normalization(NCL) requires less
memory and computation.

Interestingly, we obtain much closer performance to state
of the art with this simple method. For query example x; in
few-shot tasks, we predict the label of sample x; according to
the distance between the feature of sample x; and the mean
vector of class c:

exp (—d (fo(xi), W)
So_rexp (=d (fatx), wi))
where (-,-) denotes the distance of two vectors.

We are devoted to propose a simple baseline. There
is no additional complex techniques and hyper-parameter
optimization for the whole-classification training process.
Each component in our ViTFSL-baseline has been proposed
before, but we observe that none of the prior works exploits
them as a whole. Consequently, ViITFSL-baseline can also be
an significant baseline that has been overlooked.

py=clx)= (6)

D. LOSS FUNCTION

We exploit a few-shot classifier based on nearest-neighbor
algorithm. The feature map fy(x;) extracted from image x; is
processed by the nearest-neighbor learner.

1
Li=—minz D, (ilog(p)
(xi,yi) €Dpase

where the cross-entropy loss is loss function L1, B is the
number of training samples in Dpge. (xi,y;) means refers to
the samples and corresponding labels. p; denotes the label that
which needs to be predicted. The parameter 6 is embedded in
the p; by the fy(x;) in the Eq. (6). All the learnable weights
involved in our method are finetuned by minimizing L.

IV. RESULTS

Experimental details and results are presented in the sec-
tion. We run experiments on three benchmark datasets:
minilmagenet [24], tieredlmagenet [2], and CUB [25].
We also present analysis of experimentation to evaluate the
effectiveness of our approach. Conventionally, all results are
averaged over 1000 episodes for training and 600 tasks for
testing.

A. DATASETS
o MinilmageNet. The minilmageNet [24] benchmark
dataset is a subset of the ILSVRC-12 ImageNet dataset
[26], which has 100 classes and each category has
600 images as the setup [24]. We divide the classes
of minilmageNet into 64 base classes for training,
16 classes for validation, and 20 novel classes for the

test [27].
o TieredImageNet. A subset of ILSVRC-12 ImageNet
dataset [26], which consists a total of 34 categories
and 608 classes. It is another popular benchmark with
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much larger scale. All the images are divided into
20 base categories (351 classes) for training, 6 validation
categories (97 classes) and 8 novel categories (160
classes) for the test, following the [1] and [2]. The
setup is more challenging since base classes and novel
classes are disjoint classes and come from different
super-categories.

« CUB-200-2011(CUB). Caltech-UCSD Birds-200-2011
[25] is an extended dataset of CUB-200. We call it
CUB for short hereafter. The CUB benchmark dataset is
originally presented for fine-grained bird classification
task. CUB contains a total of 11,788 images, which
belong to 200 classes. As the paper [22] suggested, these
are grouped into 100 classes for training, 50 classes for
validation and 50 classes for testing.

o MinilmageNet— CUB. Following [22] and [28],
we use minilmageNet [24] as our base class and train a
model on it. We random sample 50 classes for validation
and 50 novel class for the test, all of the classes are from
CUB. We use CUB [25] dataset to verify the domain
transfer ability of model. In the experimental setting,
we use all 100 classes of minilmageNet for training and
utilize the testing set (50 classes) of CUB dataset for the
test.

B. IMPLEMENTATION DETAILS

« Experimental setting. Following prior work [23],
we train our model by randomly sampling 1000 N-way
K-shot episodes from the training set. We obtain the
average accuracy over all the tasks, and the average
accuracy with 95% confidence interval. For a N-way
K-shot task in testing set, the episode [11] contains
N classes that each class includes K labeled samples
for support set, and 15 query samples for query set.
We verify our method on three benchmarks under the
setting of 5-way 1-shot and 5-way 5-shot tasks. During
testing, 600 tasks are randomly sampled to evaluate our
model unless noted otherwise. For ease of comparison,
we report the mean accuracy and the 95% confidence
interval of the estimate of the mean accuracy.

o Implementation details. We are firstly to utilize
pre-trained model on the base dataset with the ViT [9].
Then, we fine-tune our model on the few-shot tasks in
the novel dataset. In this paper, we use ViT as backbone
to extract feature. We do not train the model from
scratch, but load the weights of pre-training to initialize
our model. We add a softmax layer on the top of ViT
to classify the classes. In addition, our method could be
taken as the baseline model of ViT for few-shot learning.
We run all our experiments on one NVIDIA TITAN
GPU (12G) by Pytorch [29]. During training, we select
horizontal flip, random crop as data augmentation.
All networks are trained for 30 epochs and stochastic
gradient descent is used as the optimizer to minimize
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the cross-entropy loss for few-shot classification tasks.
The initial learning rate is set to 0.01. We utilize the
validation set to decide when to early stop, and do not
use regularization techniques for simplicity.

o Vision Transformer. We employ the base vision of
Version Transformer(ViT) [9] as the backbone to extract
feature. All images are resized to 224 x 224 for ViT-
base. We set the patch size as 16 for ViT-base. We utilize
standard ViT-base with 12 layers, 12 attention heads,
feature dimension as 768. MLP is used for the projection
head with ReLU activation function in the hidden layer.
The projection head is a MLP and it has two layers
with GELU applied to the first fully-connected layer
and LayerNorm applied to the second fully-connected
layer. The MLP used to aggregate the dense score
matrix has two layers with GELU applied to the first
fully-connected layer and its output fullyconnected layer
is 1-d.

C. EXPERIMENTAL RESULTS

We verify the effectiveness of our method on popular FSL
datasets. Our approach is competitive with these state-of-
art models based on inductive method released on recent
literature. The results of 5-way 1-shot and 5-way 5-shot
learning are shown in Table 1 as they are the most common
practice. We didn’t run experiments for other algorithms and
get results from the original paper. When we choose methods
to compare against, we consider three aspects about algo-
rithms: 1) the methods are published recently, 2) the methods
use architectures most commonly, 3) the algorithms are not
significantly more complicated than ours. Note that our goal
is not to boost the state of the art, but rather to evaluate
the performance of the ViTFSL-baseline method about few-
shot learning which is severely underestimated in past years.
With the nearest-neighbor classifier NCL, our vanilla ViT
with whole-classification method is competitive with other
methods in spite of simplicity. With the self-attention module
in ViT, the network extracts the non-local information and
generates more discriminative features. Generally, few-shot
learning is implemented by meta-learning method, learns
feature information in episodes of train set, which could
extract feature only from several classes in episodes each
time. Different from the common practice,our network is
simple trained on whole class of training set. The train
method makes the net learn more semantic feature and
generate to the novel classes of test set better. We process
the feature extracted by backbone network with centriod L2
normalization in NCL classifier. As shown in Table 1, The
results are surprisingly well compared to approaches that
utilize meta-learning, and also compared against the highlight
simple baselines based upon pre-training with standard cross-
entropy loss. Moreover, the centriod with L2 normalization
of feature is a useful tool to reduce intra-class variation in
the few-shot image classification setting. Here, the results
demonstrate that ViTFSL-baseline boost the Baseline by a
large margin and becomes competitive even when compared
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against other meta-learning approaches. Discussion and
analysis in the next section show the effectiveness of our
approach. The performance of QSFormer is slightly better
than ours.The QSFormer involves global query-support sam-
ple Transformer branch and local patch Transformer learning
branch.They pay attention to the cross-attention mechanism
of support and query sets for image representation.Besides,
they adopt a local patch Transformer to extract structural
representation for each image sample by capturing the
long-range dependence of local image patches. The proposed
method outperforms most ResNet backbone networks in
Table 1. The advantage of transformer is fully exploited based
on whole-classification in our method. Transformer involves
a mixture of local and global feature information, no matter
for low level layers or high level layers. ResNet follows
the process of extracting global features from local features
more strictly. The Transformer network has a better ability to
integrate global information. The skip connection structure
in Transformer protects the transfer of representation from
the bottom level to the higher level, whilst ResNet skip
connections transmit less information at higher levels,
which further significantly reduces the precision of local
information in higher levels. The performance of HT is
inferior than others. HT has only 3 basic Transformer
layers. The parameter capacity is small, which makes it
difficult to extract complex image feature well. Compared
to other methods, our approach is very simple and easy to
understand.

To further show the superiority of our model,as illustrated
in Table 2, we also compare the results with other methods
on another animals dataset CUB. For experiments on
CUB dataset, we use the same training parameters for
minilmageNet. The CUB is a fine-grained benchmark for
few-shot image classification on birds dataset. The similarity
between the base and novel classes is greater than previous
datasets. It deserves our attention to understand how the
feature generalization transfers from base to novel dataset.
Our method shows reasonably well compared to previous
approach indicating that our simple approach is alternative
solution. We adopt transformer as the backbone to train on
source domain and use the whole-classification method to
learn a model. We capture a general sense of semantic feature
rather than only episodic instances. The feature information
extracted by our method is better than the method who is
based on Resnet with episodic paradigm. The other methods
can only be used to learn few features of images successively
and cannot obtain overall cognition on the distribution of
training set. In addition, our feature transformation in NCL
classifier has positive effect on the performance. The current
works tend to sophisticated algorithm and architectures for
performance gains. Different from them, we set out to
establish a baseline of ViT for few-shot image classification.
Our results are comparable or better than current literature.

To validate the generalization ability of our model,
we perform a cross-domain experiment by following setup in
[22] and [35]. A cross-domain scenario is more challenging
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TABLE 1. Average accuracies (%) of 1-shot and 5-shot classifiers for 5-way classification on minilmageNet and tieredimageNet. Our results are in bold.
All results of competitors are from the original papers. ‘—": not reported. * means results reported in QSFormer [28]. Our results are averaged over
600 episodes. Higher is better. All the results are reported with 95% confidence intervals.

minilmageNet

tieredImageNet

Model Backbone

1-shot 5-shot 1-shot 5-shot
CTX [30] Conv-4 52.38 +0.20 68.34 +0.16 55.32 +0.22 73.124+0.19
SSFormers [31] Conv-4 55.00 4+ 0.22 70.55 +0.17 55.54 +0.19 73.724+0.21
ProtoNet [22] ResNet10 51.98 +£0.84 72.64 £ 0.64 - -
RelationNet [22] ResNet10 52.19 +£0.83 70.20 £+ 0.66 - -
MAML [22] ResNet10 51.98 +0.84 66.62 4+ 0.83 - -
TapNet [32] ResNet12 61.65 + 0.15 76.36 +0.10 - -
MetaOptNet [18] ResNet12 62.64 + 0.61 78.63 + 0.46 65.99 +0.72 81.56 + 0.53
CAN [17] ResNet12 63.85 + 0.48 79.44 4+ 0.34 69.89 + 0.51 84.23 +£0.37
DC [33] ResNet12 62.53 +0.19 79.77 +£0.19 - -
Meta-Baseline [34] ResNet12 63.17 +0.23 79.26 £ 0.17 68.62 + 0.27 83.74 4+ 0.18
DeepEMD [35]* ResNet12 65.43 +0.28 79.28 +0.20 69.84 +0.32 84.06 +0.23
DeepBDC [36]* ResNet12 60.76 + 0.28 78.25 +0.20 63.03 +0.31 81.57 +0.22
QSFormer [28] ResNet12 65.24 + 0.28 79.96 £+ 0.20 72.47 £0.31 85.43 £+ 0.22
RFIC-simple [37] ResNet12 62.02 + 0.63 79.64 £+ 0.44 69.74 £ 0.72 84.41 £ 0.55
NCA assignment [38] ResNet12 62.55 +0.12 76.93 £ 0.11 68.35 4+ 0.13 81.04 +0.09
MSKPRN [39] ResNet12 59.20 £ 0.84 75.03 £ 0.68 - -
Chen [22] ResNet18 51.87 +£0.77 75.68 + 0.63 - -
MTL [40] ResNet18 62.10 + 1.80 75.50 + 0.80 - -
Simpleshot [23] ResNet18 62.85 + 0.20 80.02 +£0.14 69.09 £+ 0.22 84.58 £ 0.16
wDAE-GNN [41] WRN 61.07 +0.15 76.75+0.11 68.18 £ 0.16 83.09 £ 0.12
LEO [42] WRN 61.76 + 0.08 77.59 +£0.12 66.33 + 0.05 81.44 +0.09
HT [8] Transformer 54.10 &+ — 68.50 + — 56.10 &+ — 73.30 &+ —
SUN [7] Transformer 66.54 + 0.45 82.09 £+ 0.30 72.93 £ 0.50 86.70 +0.33
FewTURE [43] Transformer 68.02 + 0.88 84.51 +0.53 72.96 4+ 0.92 86.43 + 0.67
Ours Transformer 63.51 +0.20 80.30 £ 0.14 70.29 £ 0.15 84.12 +0.27

TABLE 2. Average accuracies(%) of 1-shot and 5-shot classifiers for
5-way classification on CUB. +: Results reported in [44]. * means results
reported in QSFormer [28]. Our results are in bold. All the results are
reported with 95% confidence intervals. Our results are averaged over
600 episodes.All results of competitors are from the original papers.
Higher is better.

TABLE 3. Average accuracies(%) of 1-shot and 5-shot classifiers for
5-way classification on Cross-domain experiments(minilmagenet —CUB).
* means results reported in QSFormer [28]. Our results are in bold. All the
results are reported with 95% confidence intervals. Our results are
averaged over 600 episodes.All results of competitors are from the
original papers. Higher is better.

Model Backbone CuB
1-shot 5-shot

MAML [1]F ResNet18 68.42+0.12  83.47+0.19
RelationNet [11]F ResNet18 68.58 £ 0.41 84.05 £ 0.15
Chen [22]F ResNet18 67.02+0.16 83.58 £0.12
SimpleShot [23] ResNet18 65+0.14 81.41 £ 0.20
Light transformer [45]  ResNet12 70.25 + — 86.60 £ —
RelationNet [11]* ResNet12 66.20 £0.99 82.30 £0.58
ProtoNet [10]* ResNet12 70.93+0.30 85.55+0.19
MatchNet [24]* ResNet12 70.21 £0.30 82.69 +0.22
DeepEMD [35]* ResNet12 70.71£0.30 86.13+0.19
DeepBDC [36]* ResNet12 65.45+0.29 85.01 £0.19
QSFormer [28]* ResNet12 75.44+0.29 86.30£0.19
Ours Transformer 76.41 +0.20 89.86+0.11

due to the larger divergence between two datasets. We train
our model on the minilmagenet dataset, and then evaluate the
model on CUB few-shot tasks with test classes. As illustrated
in Table 3, our ViTFSL-baseline achieves competitive
performance on the 1-shot setting. For the QSFormer, our
model also outperforms it on the 1-shot task by +1.86%.
The proposed method is also better than DeepEMD on the
1-shot task. On the 5-shot task, our method is inferior than
QSFormer and DeepEMD, however, is better than other
approaches. The results demonstrate that our model extracts
the discriminative feature across domains. Our model has a
good generalization capability in the cross-domain setting.
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methods 1-shot 5-shot

ProtoNet [10] 50.01 £ 0.82 72.02 £+ 0.67
MatchNet [24] 51.65 £+ 0.84 69.14 £ 0.72
FEAT [46]* 52.67 £ 0.29 72.65 £+ 0.25
DeepEMD [35] 54.24 + 0.86 78.86 + 0.65
DeepBDC [36]*  50.28 £ 0.27 76.49 + 0.23
QSFormer [28] 55.04 £ 0.29 77.12+0.24
Ours 56.90 £ 0.21 76.42+0.17

D. VISUALIZATIONS

We verify the effectiveness of our method in this section.
For the sake of illustration, we run our experiments on the
birds dataset CUB.Specifically, we sample samples from
target dataset, and employ our method to extract features.
In order to compare with other approaches, the instances are
also fed into baseline model [47]. Heatmaps are illustrated
in Fig. 2. The goal of our model is to extract the non-local
feature information in the images. Compared to baseline
method, Our attention maps could cover more key parts
and the cover area is bigger. The spatial correspondence
can be recognized in the instances by our structure. Our
method is better than the baseline approach in term of
the cover area of object in the foreground. Fig. 3 is the
confusion matrix for the birds images classification on
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TABLE 4. The precision, specificity, sensitivity and f-score for CUB.

classes Precision  Recall  Fl-score
Sooty_Albatross  0.778 0.683 0.727
Least_Auklet 1.000 0.875 0.933
Rusty_Blackbird  0.833 0.333 0.476
Bobolink 0.821 0.939 0.876
Cardinal 0.826 0.905 0.864
Eastern_Towhee 0.812 0.886 0.847
Fish_Crow 0.685 0.860 0.763
Purple_Finch 0.842 0.780  0.810
Gadwall 0.782 0.935 0.852
Eared_Grebe 0.889 1.000 0.941
Pine_Grosbeak 0.769 0.667 0.714
Ivory_Gull 0.892 0.786 0.836
Blue_Jay 0.887 1.000 0.940
Mallard 0.864 0.809 0.836
Mockingbird 0.862 0.543 0.666
Nighthawk 0.902 0.860 0.880
Ovenbird 0.689 0.894 0.778
Sayornis 0.635 0.851 0.727
Geococcyx 0.933 1.000 0.965
Fox_Sparrow 0.885 0.548 0.677
Artic_Tern 0.808 0.955 0.875

TABLE 5. The precision, specificity, sensitivity and f-score for
minilmageNet.

classes Precision  Recall  Fl-score
nematode 0.507 0.677 0.580
king_crab 0.743 0.663 0.701
gold_retriever 0.708 0.500 0.586
malamute 0.560 0.577 0.568
dalmatian 0.759 0.683 0.719
Afric_huntdog  0.605 0.837 0.702
lion 0.624 0.670 0.646
ant 0.576 0.470 0.518
black_ferret 0.467 0.593 0.523
bookshop 0.811 0.63 0.709
crate 0.583 0.623 0.602
cuirass 0.592 0.517 0.552
elec_guitar 0.484 0.637 0.550
hourglass 0.581 0.440 0.501
mixing_bowl 0.672 0.417 0.515
school_bus 0.826 0.917 0.869
scoreboard 0.869 0.820 0.844
thea_curtain 0.661 0.820 0.732
vase 0.480 0.367 0.416
trifle 0.659 0.740 0.697

CUB. The results are good for “Eared_Grebe”, “Blue_Jay”
and “Geococcyx”. Our module has a better ability to
distinguish between different images in the few-shot learning
tasks. The performances are worse for “Rusty_Blackbird”,
“Mockingbird” and “Fox_Sparrow”. Due to the more
similarity with several classes, they are easily recognized
other categories wrongly. Other corresponding metrics are
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TABLE 6. The precision, specificity, sensitivity and f-score for
tieredimageNet.

classes Precision Recall  Fl-score
Siberianhusky  0.706 0.751 0.728
Goldfish 0.835 0.840  0.837
Schipperke 0.669 0.729  0.698
Tibetanmastiff ~ 0.750 0.798 0.773
Orange 0.608 0.689  0.646
Bee 0.644 0.851 0.733
Dragonfly 0.834 0.694  0.758
Fence 0.787 0.692  0.736
Coffee 0.785 0.645  0.708
Winebottle 0.796 0.535  0.640
Sandbeach 0.874 0.820  0.846
bathtub 0.660 0.642  0.651
Teapot 0.478 0.611 0.536
Strawberry 0.831 0.763 0.796
Butterfly 0.913 0915 00914
Pizza 0.895 0.835  0.864
Electricray 0.655 0.734  0.692
Pomegranate 0.782 0.662 0.717
Fugu 0.666 0.688  0.677
Wirenetting 0.671 0.734 0.701
Teacup 0.593 0512  0.550
Hamburger 0.898 0.811 0.852
Lemon 0.662 0.803  0.726

shown in Table 4. It can be seen from Fig. 4 that the
classification performance is very good for “Afric_huntdog”,
“school_bus” and ‘““scoreboard”. Our module has a better
distinguishing ability for these classes. The performance
metrics for “hourglass,” “mixing_bowl,” and ‘“‘vase” are
comparatively lower. This is attributed to their higher
resemblance to several other classes, leading to a higher
likelihood of misclassification into different categories,
potentially resulting in lower evaluation scores for these three
classes. Other corresponding metrics are shown in Table 5.
Fig. 5 illustrates the notably strong classification performance
achieved for ‘Goldfish,’ ’Bee,” and ‘Butterfly’ by our model.
These categories exhibit distinct recognition due to the robust
capabilities of our model. However, comparatively lower
performance metrics are observed for ‘Teacup,” ’Teapot,
and ‘Winebottle.” This is attributed to their greater similarity
with several other classes, leading to a higher probability of
misclassification into different categories and subsequently
resulting in lower evaluation scores for these specific classes.
Further corresponding metrics are detailed in Table 6. Fig. 6
is the t-SNE plots of target images based on our method
and baseline. We could observe that the discrimination of
the features learned by our approach is higher than that
of baseline. The features obtained by baseline are mixed,
while the clusters of the features generated by our model
are separable, the distances between different clusters are
relatively larger. These positive performances verify the
effectiveness of our method.
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FIGURE 2. Comparison of heatmap visualization between Baseline and our method. The attention maps cover on the images in form of heatmap.
We can observe that our method is better than baseline on the fraction of coverage.
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FIGURE 3. Confusion matrix for the birds images classification on CUB.
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FIGURE 4. Confusion matrix for image classification on minilmageNet.
E. ANALYSIS OF EXPERIMENTS networks. It is a combination of different techniques.

We run simple ablation experiments on minilmageNet for
5-way 1-shot and the backbone is ViT. We select different
kinds of measure distance and feature process to verify
the effectiveness of our NCL classifier. Table 7 shows our
results. Feature processing techniques are helpful for the
improvement. In Table 7, the feature processing techniques
utilized are U, L and C, which are like the method
simpleshot. U is stand for unprocessed feature, L is L2
normalization for feature. C represents we subtract mean
of feature first and then do L2 normalization. That is to
say, C denotes equation (5). The experiments show that
classifiers with C outperform their U and L counterparts.
Euclidean NCL classifier works a bit better than NCL
classifier with squared cosine distance. The NCL classifier
with L1 distance achieves worst of all. The L1 distance
cannot fit the distance of features effectively. We do not claim
novelty in this literature. ViTFSL-baseline could be taken
as a strong baseline for few-shot learning with transformer
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Our method is sometimes better than or comparable to
existing algorithms on few-shot learning. We also conduct
experiments to evaluate the whole-classification method
with ViT. The results are shown in Table 8. The meta-
learning methods, ProtoNet and MatchNet, whose backbone
network are ConvNet-4, are classical algorithms in few-shot
learning. Although the ViT backbone is more sophisticated
than the ConvNet-4, we implementation the two methods
with ViT and obtain much worse performance than the
original paper. It can be observed that the transformer is not
suitable for meta-learning methods. We can try to use trans-
former with whole-classification for few-shot learning in the
future.

The parameters and FLOPs are shown in Table 9. Although
the parameters of our method is highest of all, our method is
simplicity itself. The FLOPs of our method is in the middle
level, even is lower than the method QSFormer and Chen,
which are based on ResNet12 or ResNet18. The results show
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FIGURE 5. Confusion matrix for image classification on tieredimageNet.

TABLE 7. The experiments for 5-way 1-shot classification on
minilmageNet.The methods utilize ViT as the backbone. All the results(%)

TABLE 8. The experiments for 5-way 1-shot classification on
minilmageNet. * means the meta-learning methods are reimplemented

are reported with 95% confidence intervals. Higher is better. Our results with ViT.
are averaged over 600 episodes.
methods backbone accuracy
Methods Feature process
U L C ProtoNet [10] ConvNet4 49.42 £ 0.78
- 0521091 6l581020 6219% 020 ProtoNet [10]* Transformer 39.76 + 0.20
cosine . . . . . .
Euclidean  61.59+0.20 62.60 £0.21  63.51 £0.20 MatchNet [24] ~ ConvNet4 43.56 +0.84
LI 20.17+£0.01  20.53+£0.02 20.78 + 0.06 MatchNet [24]*  Transformer ~ 39.58 4 0.20
L2 60.08 =0.20 60.92+£0.14 61.80+0.20 Ours Transformer 63.51 +0.20

that the proposed method is relatively simple and takes up
fewer computing resources.

We’ve provided a description of the applicability of our
proposed methods. Our approach utilizes a transformer model
based on a self-attention mechanism, primarily suited for
natural data within the ImageNet series. These datasets
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exhibit even feature distribution, allowing for easy extraction
of global features. For instance, minilmageNet and tieredIma-
geNet showcase compatibility with our method. However, our
method’s performance diminishes when applied to datasets
characterized by uneven feature distribution, significant scale
differences, and an abundance of local details, such as remote
sensing data set.
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FIGURE 6. t-SNE plots of tested embedding of birds samples on CUB. The top images is performance of

the baseline, the bottom is results for our approach.

TABLE 9. Comparisons of parameters and FLOPs.

Methods Backbone Params(M)  FLOPs(G)
QSFormer [28] ResNetl12 12.42 25.74
Chen [22] ResNet18 11.68 27.34
LEO [42] WRN 36.49 292.13
HT [8] Transformer 21.91 4.31
SUN [7] Transformer 39.48 23.43
FewTURE [43]  Transformer 21.59 4.25
Ours Transformer 85.65 16.88

V. CONCLUSION

While almost all present few-shot image -classification
approaches are based upon the meta-learning algorithm,
we propose a new whole-classification model for few-shot
image recognition with ViT to effectively extract the feature
from meta-train dataset and adapt well to the novel class data.
We propose a new simple framework ViTFSL-baseline by
incorporating the whole-classification model with ViT and a
novel NCL classifier for few-shot image recognition learning.
We take the advantage of ViT to train a large number of data,
and then process the features in the classifier, so that similar
features are easy to be aggregated and classified. We run
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extensive experiments on the few-shot recognition tasks to
demonstrate that our proposed ViTFSL-baseline achieves
appealing performance. Meanwhile, we also illustrates the
effectiveness and simple of our solution, which only employs
the whole-classification method and NCL classifier. In our
future work, we aim to explore the attention mechanism
between support set and query set based on the current work.
At the same time, the model should be simplified and have
good performance in the semi-supervised few-shot learning
scenario.
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