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ABSTRACT Despite the considerable progress made in the development of deep neural networks (DNNs),
their vulnerability to adversarial attacks remains a major hindrance to their practical application. Conse-
quently, there has been a surge of interest and investment in researching adversarial attacks and defense
mechanisms, with a considerable focus on comprehending the properties of adversarial robustness. Among
these intriguing studies, a couple of works show that multi-task learning can enhance the adversarial
robustness of DNNs. Based on the previous works, we propose an efficient way to improve the adversarial
robustness of a given main task in a more practical multi-task learning scenario by leveraging self-defined
auxiliary task. The core concept of our proposed approach lies not just in jointly training predefined auxiliary
tasks but in manually defining auxiliary tasks based on the built-in labels of given data, which enables
users to efficiently perform multi-task learning without the need for pre-defined auxiliary tasks. The newly
generated self-defined tasks remain ‘‘hidden’’ from attackers and serve a supplementary role in improving the
adversarial accuracy of the main task. In addition, the hidden auxiliary tasks also enable to build a rejection
module that utilizes predictions from the auxiliary tasks to enhance the reliability of the prediction results.
Through experiments conducted on five benchmark datasets, we confirmed that multi-task learning with
self-defined hidden tasks can be actively employed to enhance the adversarial robustness and reliability.

INDEX TERMS Adversarial attack, adversarial robustness, multi-task learning, adversarial training,
self-defined auxiliary tasks.

I. INTRODUCTION
Over the past few years, research on deep neural networks
(DNNs) has advanced significantly, surpassing human abili-
ties in multiple domains [1], [2], [3]. Particularly in computer
vision, there has been substantial growth in research and prac-
tical applications such as autonomous vehicles and surveil-
lance systems [4], [5], [6]. Consequently, experts forecast the
gradual replacement of most human jobs by AI systems [7].
However, efforts to mitigate the adversarial vulnerability of
DNNs to adversarial attacks are still insufficient, presenting
a crucial and challenging problem for the future era of AI.
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Some previous studies have already emphasized the neces-
sity of adversarial robustness from this perspective [8], [9],
[10], [11].

In response to this need, the importance of research in
the field of adversarial defense has increased substantially.
Research on adversarial defense methods [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], the
existence of adversarial examples [9], [26], [27], [28], [29],
[30], and the properties of adversarial robustness has been
conducted from various perspectives [23], [31], [32], [33],
[34], [35], [36], [37], [38]. Among the various approaches,
adversarial training [9], [23], [26], [39], [40] is one of the
most widely used defense methods that employs adversarial
examples as training data. While adversarial training is an
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effective method to significantly improve the robustness of
DNNs, it suffers from decrease in the generalization ability of
models [35], [36], [37]. In other words, adversarial training
aims to classify adversarial examples, but this may com-
plicate the model’s decision boundaries and result in lower
generalization performance on clean samples.

As a means of improving the generalization ability of
DNNs, there are studies that utilize multi-task learning
(MTL) [41], [42], [43], [44], [45]. Multi-task learning models
perform better than models trained on a single task, as it
enables generalized representation learning by optimizing
the model for multiple tasks. Interestingly, there are several
studies that have leveraged the benefits of multi-task learn-
ing to improve adversarial robustness [38], [46], [47]. Mao
et al. [38] empirically demonstrated that a model trained on
multiple tasks exhibits enhanced adversarial robustness for
the main task compared to models trained individually. In
a follow-up study, Ghamizi et al. [46] discussed the condi-
tion that multi-task learning can have a positive effect on
adversarial robustness and proposed a guide for practitioners
to develop multi-task learning models by conducting experi-
ments under diverse conditions.

While previous studies [38], [46] have focused on improv-
ing the adversarial accuracy for the main task of multi-task
learning models with the assumption that several pre-defined
tasks are given, this paper considers more practical scenarios:
When aiming to enhance the accuracy against adversarial
examples for a particular main task through multi-task learn-
ing, there is no guarantee that pre-defined auxiliary tasks
are always available or that the data for auxiliary tasks is
fully labeled for training. Thus, we take an approach to
self-defining auxiliary tasks for applying multi-task learning.
The main goal of this research is to mitigate the degradation
of accuracy for the main task against adversarial attacks,
which means that the model produces correct output predic-
tions for given adversarial examples. In the extreme case,
we can assume that the attacker can performwhite-box attack.
However, our proposed self-defined task generation approach
offers a vast array of potential auxiliary tasks that users
can create which means unrecognizable to attacker. In this
regard, we consider a gray-box attack scenario to evaluate the
proposed multi-task learning approach.

The proposed self-defined task generation method enables
users to easily define auxiliary tasks and employ them in both
multi-task learning and adversarial training to improve the
adversarial accuracy of the main task. As auxiliary tasks are
generated by recombining the classes of the main task or by
utilizing the inherent attributes of the data, there is no need for
costly data-wise labeling. Furthermore, since auxiliary tasks
are additionally defined, they are treated as hidden tasks that
are not exposed to external attackers.

In this paper, we conducted experiments on five widely
used datasets in computer vision. We measured the accu-
racy for clean samples and adversarial examples gener-
ated in the gray-box setting for each dataset. Additionally,

in experiments involving adversarial sample rejection,
we measured the accuracy of samples that passed through
the rejection module. The experimental results demonstrate
that self-defined hidden tasks have positive effects on the
adversarial accuracy for the main task. We also endeav-
ored to further improve the adversarial accuracy of the main
task through adversarial sample rejection by leveraging the
relationship between the main task and auxiliary tasks. To
summarize, our contributions are as follows:

• We propose a multi-task learning approach to enhance
the adversarial robustness of the main task in more
practical situations by enabling users to efficiently
generate auxiliary tasks without relying on predefined
ones.

• We show that our multi-task learning approach can be
easily combined with adversarial training to maximize
the robustness of the model.

• We leverage the predictions of self-defined auxiliary
tasks to reject inputs suspected of being adversar-
ial examples and improve the reliability of prediction
results of the main task.

• We empirically show that the adversarial accuracy of
the main task can be improved by combiningmulti-task
learning using self-defined hidden tasks with adversar-
ial training and the rejection module.

II. RELATED WORKS
A. MULTI-TASK LEARNING
Multitask learning for neural networks was pioneered by
Caruana [41]. The core idea of multi-task learning is to
improve the generalization performance of the model by
sharing and transferring knowledge between various tasks. It
also enables a single model to perform multiple tasks, which
is computationally more efficient than training an indepen-
dent model for each task. Due to its advantages, multi-task
learning has been widely applied across various domains of
deep learning [43], [44], [45], [48].

Multi-task learning has also been applied to research on
adversarial robustness [38], [46], [47]. Mao et al. [38] posi-
tively evaluated that the existing trade-off problem between
clean accuracy and robustness gain [35] can be resolved
since multi-task learning preserves clean accuracy while
also improving adversarial robustness. In a follow-up study
[46], Ghamizi et al claimed that there are varying levels of
inherent adversarial vulnerability across tasks, and simply
increasing the number of tasks does not guarantee a more
robust model. Additionally, they proposed a guideline for task
selection.

Although previous works [38], [46] have found intriguing
properties of multi-task learning regarding adversarial robust-
ness, the experiments were only conducted on limited types of
tasks and datasets. The tasks in the previous works [38], [46]
consist of pre-defined pixel-level prediction tasks, such as
semantic segmentation, edge detection, and depth estimation.
However, the discussion of improving robustness through
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a combination of pre-defined auxiliary tasks is not always
feasible in real-world scenarios. In this regard, we propose
an approach to self-define new auxiliary tasks to enhance the
robustness of a given main task, instead of using pre-defined
tasks. Our proposed method involves defining the auxiliary
tasks based on the built-in labels of the data and leveraging
them to improve the reliability of the main task.

B. ADVERSARIAL ATTACK AND DEFENSE
Starting with the discussion of the high vulnerability of
DNN systems to data with tiny, undetectable perturbations
[9], there has been substantial research on adversarial attack
and defense. Adversarial attacks fall into several categories
based on their purpose and methodology. Among these,
adversarial attack in this paper refers to evasion attacks,
which have gained significant attention in this field. Eva-
sion attacks generate adversarial examples by injecting
human-imperceptible noise into input data, leading to mal-
function of target model in the inference phase. Well-known
adversarial attack algorithms include the Limited Memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method [9],
Fast Gradient Sign Method (FGSM) [26], Jacobian-based
Saliency Map Attack (JSMA) [49], Basic Iterative Method
(BIM) [50], Projected Gradient Descent (PGD) [23], and the
Carlini & Wagner (CW) attack [55]. Among these, iterative
first-order optimization-based adversaries [23], [55] are most
often used as benchmarks due to their efficiency and intensity.

In line with the research on attack methods, adversar-
ial defense has been studied from many aspects, including
strengthening the model itself by training adversarial exam-
ples [9], [23], hiding the gradients of the model to make it
difficult to attack [56], transforming input samples to remove
perturbations [58], [59], [60], and randomized smoothing to
guarantee correct prediction within a certain range of inputs
[24], [25]. However, many defense methods are considered
unreliable due to their limited applicability [51], [52], [53],
[54], [55], [56], [57]. Developing reliable defense methods is
challenging because there is a lack of precise comprehension
of the phenomenon of adversarial examples, coupled with the
need to consider various factors such as the attack and defense
environment.

Instead of correctly classifying adversarial examples, other
approaches for detection and rejection also form part of
defense research [14], [15], [16], [17], [18], [19], [20], [21].
These detection and rejection methods also involve research
in various aspects [21] such as dimensionality reduction for
reducing attack success rate [18], detecting adversarial exam-
ples through statistical test and retraining them by assigning
new labels [19], designing additional detectors to distin-
guish between adversarial examples and benign input [20].
An edge-consistency based detection method that utilizes
multi-task learning to jointly train semantic segmentation and
edge detection was also proposed [47].
While various defense methods have been studied, adver-

sarial training [9], [23], [26], [39] is considered to be a reliable

defense method in the literature to date. This is because,
despite the limitations of adversarial training, it allows the
model to perform robustly against adversarial attacks, and it
also provides advantages that can be applied to general tasks.
Adversarial training can serve as a benchmark for assessing
both attack and defense by itself, or it can be combined with
other defense methods. By combining adversarial training
with our proposed multi-task learning approach, significant
improvements in adversarial accuracy can be achieved.

III. METHODS
In this section, we first describe the problem we aim to
address and the attack methods for model evaluation in
Subsection A. In Subsection B, we explain the mecha-
nism of self-defined task generation and its application for
designing multi-task learning models, as well as the threat
model. Subsection C covers the combination of the pro-
posed multi-task learning models with adversarial training.
Finally, in Subsection D, we explain the adversarial sample
rejection using prediction consistency between main task and
self-defined hidden tasks.

FIGURE 1. Illustration of self-defined task generation. Here, an auxiliary
task is generated by transforming the main task’s built-in labels with
those for odd-even classification task, which is related to the
mathematical characteristics of the data.

A. PROBLEM FORMULATION
In this study, our goal is to improve the adversarial accuracy
of the main task, which involves recognizing the built-in
labels of data. A model that is exclusively trained on the
main task T0 is referred to as a ‘‘single task learning model’’.
Considering the dataset for the main task D0={(xn,yn)}

N
n=1,

where yn ∈ {1, . . . ,K } (K ≥ 2) denotes the target labels
for K -class classification, we can write the single task
loss L0 as

L0 =

N∑
n=1

l (xn, yn) (1)

where l denotes the loss function for each sample (xn, yn).
We assume that the adversary has white-box knowledge

of the single task victim model: The adversary can access
all specific settings of the victim model, including network
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FIGURE 2. The overall process of our proposed multi-task learning approach with self-defined auxiliary tasks. The overall structure is simple, making it
easily applicable to any dataset or network. The mapping function that generates auxiliary tasks varies based on user preferences or criteria, making it
almost impossible to define a specific form. Hence, it can be naturally assumed that attackers are limited to conducting attacks within a gray-box
environment.

structure, hyperparameters, model’s output, dataset, etc. In
this scenario, the adversary can generate adversarial examples
to attack the victim model through the optimization,

argmax
η

L0 (θ0, xn + η, yn) , s.t. ∥η∥p ≤ ϵ, (2)

where θ0 is the trained weights of the single task learning
model, η denotes the perturbation to be optimized and ϵ is
the constraints. We now try to add some auxiliary tasks for
multi-task learning that can be easily defined by using built-
in labels.

Figure 2. illustrates the overall process of our proposed
approach. By applying the mapping function which will be
described in the following section, the users can generate
auxiliary tasks and utilize them for training multi-task model.
In inference phase, the trained model makes a prediction for
the main task for the given query and does not return any
prediction if the sample does not pass the rejection module.
The self-defined auxiliary tasks and their predictions are only
used in the rejection module and training the model, which
means they are hidden from attacker. Thereby, we naturally
assume that the adversary can attack the model with gray-box
knowledge.

B. SELF-DEFINED HIDDEN TASKS
In the context of multi-task learning, auxiliary tasks are
required alongside the previously defined main task T0 that
needs to be solved originally. We manually generate addi-
tional tasks through ‘‘self-defined task generation’’. This
process involves transforming the built-in labels (labels for
the main task) of the data from different user-oriented
perspectives.

For the mth auxiliary task, we define a new target label ymn
for each input xn using the built-in label yn. In this context,
we need to define a mapping function Pm from yn to ymn . The
first step is to determine the number of classes Km for the
mth auxiliary task to be generated. Then, each built-in label
value k ∈ {1, . . . ,K } is mapped to a new value Pm (k) =

km ∈ {1, . . . ,Km} based on user-established criteria, such
as visual or abstract characteristics of the data, or random
selection. By applying themapping functionPm to each target
output yn ∈ {1, . . . ,K }, we obtain the new target output
ymn ∈ {1, . . . ,Km} for the auxiliary task, which can be written
as Pm(yn) = ymn . Applying this transformation to whole
dataset D0 results in generation of a new auxiliary task with
dataset Dm = {(xn, ymn )}. Note that the mapping function can
be defined in the case where K is larger than Km. Therefore,
in this paper, we assume K is larger than 2.
The self-defined task generation allows users to generate

new tasks from both visual and abstract characteristics of
data (e.g., ‘‘curve shaped’’ for visual characteristics of road
sign data, and ‘‘odd-even’’ for mathematical characteristics
of digit data). Note that the users can easily generate auxil-
iary tasks by transforming the built-in labels from as many
different perspectives as they desire. This approach offers
significant convenience as intricate data analysis or costly
labeling for individual data points is not required. An example
of this process is illustrated in Figure 1.

We refer to a model trained on one or more additional
auxiliary tasks Tm (m = 1, . . . ,M) along with the main task
T0 as ‘‘multi-task learning model’’. Let {1, . . . ,K0} and
{1, . . . ,Km} denote the composition of classes for T0 and
Tm respectively, where K0 and Km are the number of target
labels for the main task and mth auxiliary task, respectively.
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When training the multi-task learning model, the single task
loss L0 can be extended to a multi-task loss L by integrating
the dataset Dm (m= 0, . . . ,M) as follows:

L =

N∑
n=1

M∑
m=0

l
(
xn, ymn

)
. (3)

Note that these self-defined tasks are utilized to train
the victim models, but do not directly produce outputs for
queries. Therefore, they are ‘‘hidden’’ tasks that are unknown
to the attacker, and we can naturally assume a gray-box sce-
nario. The adversary perceives the multi-task victim model to
be a single task victim model trained on the main task only.
In the pursuit of generating strong attack samples, we assume
that the adversary can access the trained weights in all layers
except the output layers for auxiliary tasks in the multi-task
victimmodel. Under this assumption, adversarial examples to
attack the multi-task victim model can be generated through
the optimization:

argmax
η

L
(
θ, xn + η, y0n

)
, s.t. ∥η∥p ≤ ϵ, (4)

where θ denotes the adversary-aware trained weights of the
multi-task learning model, and y0n is the target label for the
main task.

C. COMBINATION WITH ADVERSARIAL TRAINING
Our proposed multi-task learning approach can be easily
combined with other existing adversarial defense methods.
In this paper, we apply the adversarial training methods to
the proposed multi-task learning and investigate how the
self-defined auxiliary tasks affect the adversarial robustness
of the main task. We choose the PGD adversarial training
[23], which is one of the most commonly used adversarial
training methods. It generates adversarial examples using
PGD attack for every mini batch in the training phase and
trains the model to minimize its loss. The objective function
of the PGD adversarial training in single task victim model
can be formulated as:

min
θ0

E(x,y0)∼D

[
min
η≤∈

l(θ0, x + η, y0)
]

. (5)

Based on the adversary’s gray-box knowledge of the
multi-task victim model assumed earlier, the adversarial
examples used to attack the victim models are constructed
only using the target labels for the main task. Equation (5)
can be extended to our PGD adversarial training in multi-task
victim model as follows:

min
θ

M∑
m=0

l(ρ (θ) , ym), (6)

where

ρ (θ) = E(x,y0)∼D

[
min
η≤∈

l
(
θ, x+ η, y0

)]
. (7)

As a result, the multi-task learning model with adversarial
training is trained to minimize the multi-task loss for all tasks

with given adversarial examples generated solely based on
the information from the main task.

D. ADVERSARIAL SAMPLE REJECTION
The proposed self-defined hidden tasks can also be utilized
for prediction-consistency based adversarial sample rejec-
tion. The rejection module validates the main task prediction
for a given input sample by leveraging the predictions of
auxiliary tasks, enabling the rejection of samples suspected
to be adversarial examples. That is to say, it rejects given
samples when the prediction results of the main task and
auxiliary tasks conflict with each other. Referring to Figure 1,
when the model recognizes the main task as ‘‘1’’ and the
auxiliary task as ‘‘even’’ for a given input, a rejection occurs
because ‘‘1’’ cannot be ‘‘even’’.

Denoting the prediction result for the main task is f0 (xn)
and that for the auxiliary task is fm (xn), the proposed rejection
module R rejects xn according to the following conditions:

R (xn)

{
= 1 if Pm(f0(xn)) ̸= fm (xn) for some m
= 0 otherwise

(8)

where Pm denotes the mapping function that is defined in
Section III. The rejection module R rejects the input sample
xn if its result is 1 and passes otherwise. As the number
of auxiliary tasks increases, the criteria for rejection can be
adjusted more strictly. This rejection approach is possible
because a mapping relationship between the labels of the
auxiliary task and the main task is formed during the process
of self-definition.

Note that this approach leverages the gray-box attack set-
ting, where information about auxiliary tasks is hidden from
the adversary. Thereby, the generated adversarial examples,
which are based solely on the main task information, have
limited impact on the predictions of the auxiliary tasks. This
could reduce a significant drop in recognition performance
on the main task when adversarial examples are given to
the multi-task victim model. In addition, this approach of
rejection does not need to set a data-dependent threshold,
unlike conventional rejection methods.

IV. EXPERIMENTS
To confirm the effectiveness of our proposedmethod, we con-
ducted experiments on five benchmark datasets. We per-
formed these experiments using one of the widely employed
repositories, ‘‘advertorch’’ [61]. In this section, we cover
the general contents of the experimental settings: datasets,
networks for victim models, training strategies, and attack
parameters for generating adversarial examples. In the fol-
lowing subsections, we show the experimental results and
analysis. We intend to describe our experimental setup in as
much detail as possible for reproducibility.

A. DATASETS
We now proceed to describe the specific compositions of five
datasets used in our experiments. We employed MNIST [62]
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and CIFAR10 [65], which are frequently used not only in
computer vision but also in the field of adversarial attack and
defense for base experiments. However, these two datasets
are relatively well-refined, making it difficult to evaluate
the real-world applicability of the proposed method. Hence,
we chose the SVHN [63] (Street View House Number)
dataset which is known to be noisier and more challeng-
ing than MNIST because its images contain shape of other
numbers around the central number being labeled. In order
to assess the practical applicability, we used the GTSRB
[64] dataset, commonly used in research related to traffic
sign recognition of autonomous driving systems. Addition-
ally, we employed the Tiny-ImageNet [69] dataset to test the
applicability on a larger dataset.

TABLE 1. Self-defined hidden tasks used in the experiments. Each entry
in the table represents properties of classes and their corresponding
label values in parentheses.

MNIST contains 28×28 gray-scale images with a total
of 10 class labels and consists of 60,000 training data and
10,000 test data. SVHN includes 32×32 RGB-scale numeric
data which also has 10-digit class labels consists of 73,257
training and 26,032 test data. GTSRB (German Traffic Sign
Recognition Benchmark) [64] dataset contains 43 different
types of traffic signs found on the road and consists of 39,209
training and 12,630 test data. While the image sizes exhibit
variation, we resize them to 112×112 pixels. CIFAR10 [65]
is composed of 32×32 RGB-scale data featuring 10 distinct
objects or animals and comprises 50,000 training and 10,000
test data. Lastly, Tiny ImageNet contains 100,000 training
data of 200 classes (500 per class), each sample is 64×64
RGB-scale data and we resize them to 32×32. Since the test
set of Tiny ImageNet is unlabeled data, we used the 10,000
validation samples to evaluate the model.

Table 1 shows the auxiliary tasks used in the experiments,
which are made by the proposed self-defined task genera-
tion. The contents of the table represent the classes of each
auxiliary task, with the corresponding label values in paren-
theses. When defining mapping function Pm for MNIST and
SVHN, we utilized characteristics of integers. The ‘‘odd-
even’’ task is to classify odd numbers and even numbers, and
the ‘‘prime number’’ task is to classify prime and composite.
For GTSRB, we used visual attributes: The label of ‘‘circular-
shaped’’ task is determined by the frame shape of traffic sign
(circular or polygon), and the ‘‘include character’’ task is to
distinguish the presence of characters besides graphics. In the

case of CIFAR10, we used semantic attributes: The ‘‘animal’’
task is to determine whether the object in the image is animal
or not, and the ‘‘activity area’’ task is to categorize them
based on their primary activity areas. Tiny ImageNet contains
a much larger number of diverse classes than other datasets.
Therefore, there exists a significantly larger variety of poten-
tial auxiliary tasks that users can generate compared to other
datasets. For simple application of our proposed approach,
we generated the ‘‘natural or artefact’’ task based on whether
a sample is a natural thing (e.g., animal, vegetation, and
natural landscape) or an artifact (e.g., building, structure,
machine, and processed food). For the second auxiliary task,
we generated the ‘‘animal or machine’’ task with three classes
based on whether the sample belongs to animal, machine,
or others. The data files used in our experiments are available
at https://github.com/ChanghunHyun/Self-defined_MTL.

B. TRAINING VICTIM MODELS
We basically followed the backbone networks and other
experimental settings in [23] for MNIST and CIFAR10:
LeNet for MNIST and ResNet [66] and its wider version for
CIFAR10, and other hyperparameter settings for the victim
models. We employed AlexNet for GTSRB, and ResNet-18
was used for SVHN and Tiny ImageNet. The hyperparame-
ters and optimizers are manually tuned. In the experiments
with CIFAR10 and Tiny ImageNet, we utilized random data
augmentation techniques such as horizontal flip to enhance
the model’s performance. In order to perform multi-task
learning, the backbone layers prior to the final output layer
are shared, and the output nodes are specifically designed
based on the number of classes of each task. This hard
parameter sharing with multi-head structure is commonly
used in multi-task learning and is known to have the best
effect in preventing overfitting and improving generalization
performance [45].

We conducted both natural training and adversarial training
on five datasets, adjusting the training hyperparameters for
each run as necessary for learning convergence. We applied
the SGD optimizer with a learning rate of 0.1 (decayed by
a factor of ten every 50 epochs) for all datasets. The victim
models for all datasets are trained until convergence which
takes an average of 200 to a maximum of 300 epochs depend-
ing on the dataset and task. As discussed in [67] and [68],
evaluating the model’s performance using the checkpoint
at the end of training epoch is appropriate for models that
consistently exhibit a decreasing test loss. However, since
overfitting commonly occurs during adversarial training,
we selected a checkpoint that exhibited the best adversarial
accuracy within the range where the training loss had suf-
ficiently converged without a consistent increase in the test
loss.

C. ATTACK METHODS
In order to evaluate the effect of multi-task learning models
against various attacks, we choose three attack methods.
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TABLE 2. Main-task classification accuracy on clean samples and three different types of adversarial attack samples (%). For each dataset, the first row
shows the baseline performances of a single-task victim model trained for main task only, and the remaining three rows show the performances of the
multi-task learning models with different task combinations. The second and third column blocks, separated by bold vertical lines, represent the training
strategies of the victim models.

Firstly, we evaluate the models against l∞-bounded PGD
attackwhich is one of the strongest first order adversaries. For
PGD attack onMNIST dataset, we perform l∞-bounded PGD
attack, 40 iteration runs with step size 0.01 and ϵ = 0.3 for
perturbation, while 7 iteration runs with step size 2/255 and
ϵ = 8/255 for SVHN, GTSRB, CIFAR10, and Tiny Ima-
geNet. In PGD targeted attack, the target is assigned to a class
that is +1 to the sample’s ground-truth. These attack param-
eters are chosen considering previous studies to generate
sufficiently small perturbations for deceiving the model [23].
The experiments against CW [55] attack, which is another

strong optimization-based unbounded attack method, serve
the purpose of evaluating the model using a different attack
strategy from that used in adversarial training.We set 5 binary
search steps, 0 confidence, initial constant as 1 equally, and
the remaining parameters are set as follows: 0.01 learning
rate forMNIST, and CIFAR10, 0.001 for SVHN, GTSRB and
Tiny ImageNet.

D. EFFECT OF MULTI-TASK LEARNING
In this section, we investigate how multi-task learning affects
the adversarial robustness of the main task. We first present
and analyze the experimental results of self-defined multi-
task learning without adversarial sample rejection. Table 2
shows the classification accuracies on test data for vari-
ous multi-task learning models. The second column of the
table indicates task combinations: single task learning (main
task only), and three multi-task combinations. Next, the
two large column blocks, each divided into four branches,

show the evaluation results for two different learning strate-
gies, depending on the data and loss used for training.
Specifically, the left four columns show the results for the
natural training using only the original data, and the right
four columns show the results for the model obtained by
performing adversarial training. For each trained model,
we investigate its performance on four different test data:
original clean samples and adversarial samples by dif-
ferent attack methods. In order to assess the robustness
gain of the multi-task models, we need to compare the
performance of single task model with other multi-task com-
binations. To enhance visibility, the performance values of
single task model are highlighted in bold black font and
shaded cells, and those of the multi-task models that exhibit
improvement over the single task model are shown in bold
blue.

As is well known in the literature, we can see that the
overall accuracy of natural trained models against adversarial
samples are very low without any defense technique. How-
ever, compared to the single task model, the multi-task learn-
ing models exhibit an overall improvement in the clean and
adversarial accuracy. In the case of adversarial-trained mod-
els, the accuracies of single task model against adversarial
examples exhibit strong robustness. Furthermore, compared
to the single task model, the multi-task learning with the
proposed self-defined tasks exhibits a substantial improve-
ment in the majority of cases.

In terms of the trade-off between clean accuracy and adver-
sarial robustness [35], we can see that there is a significant
trade-off induced by adversarial training when comparing
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FIGURE 3. Main task adversarial accuracy of natural training models with and without rejection.

FIGURE 4. Main task adversarial accuracy of PGD adversarial-trained models with and without rejection.

PGD adversarial trainedmodels and naturally trainedmodels.
However, when comparing single task andmulti-task learning
models under the same training strategy, we can see that
multi-task learning compensates for the generalization ability
lost through adversarial training.

In summary, when comparing single task to multi-task
victim models, multi-task learning with natural training
improved adversarial accuracy by an average of 0.44%,with a
maximum improvement of 7.30%. With adversarial training,
multi-task learning yielded an average adversarial accuracy
improvement of 1.44%, with a maximum improvement of
8.95%. These results suggest that employingmulti-task learn-
ing with self-defined hidden tasks can enhance a model’s
adversarial robustness.

However, the increase in the number of tasks or task combi-
nations in the multi-task models does not always increase the
robustness gain, which is in the same context as the results
in [46]. In a minority of cases, the multi-task victim model

has no robustness gain, or rather, the robustness was slightly
lower than that of the single task victimmodel. As can be seen
in the experiments on GTSRB and MNIST, we observed that
using one auxiliary task for multi-task learning sometimes
resulted in a more significant robustness gain compared to
using two auxiliary tasks. This suggests that the model’s
robustness gain can vary depending on the combination of
tasks, emphasizing the need to establish criteria for gener-
ating appropriate self-defined hidden tasks. In this regard,
it might be worthwhile to consider using the guidance for task
selection proposed by Ghamizi et al. [46].

For more exploration of the experiment, the results appear
to be related to the difficulty level of the original tasks.
In the case of MNIST, which involves simple grayscale
digit recognition, the task’s difficulty is relatively lower than
other datasets. Consequently, the adversarial-trained model
exhibits recognition rates on clean data nearly identical to
those of the naturally trained model, while also demonstrat-
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TABLE 3. Classification accuracy of auxiliary tasks in multi-task learning models (%). For each dataset, the values located in the third row represent the
average accuracy for the two auxiliary tasks. Compared to the PGD adversarial-trained model, the recognition performance of the auxiliary tasks in the
natural training model is generally lower and exhibits higher variance. The values highlighted in red represent the accuracies of auxiliary tasks in cases
where the main task’s accuracy decreased through the rejection module.

ing a high level of robustness against adversarial samples.
Conversely, the SVHN dataset presents a more challenging
and practical digit recognition task compared to MNIST due
to the increased presence of noise around the digits being
recognized. Often, there are neighboring digits near the target
digit, making the task significantly more challenging. As
a result, SVHN generally shows lower overall recognition
performance compared to MNIST. GTSRB has a larger num-
ber of classes compared to MNIST, SVHN, and CIFAR10
datasets. In terms of adversarial-trained model performance,
it exhibits performance levels similar to SVHN. CIFAR10 has
fewer classes compared to GTSRB, yet it is characterized by
significant variation within classes. In both natural-trained
and adversarial-trained models, CIFAR10 exhibits lower
performance compared to other datasets. Tiny ImageNet,
which has the largest number of classes and substantial
intra-class variation, faced challenges in establishing a high
base performance for the model. Consequently, this difficulty
leads to low robustness in adversarial-trained models as well.

One notable point can be observed in the experimental
results of GTSRB. The naturally trained GTSRB model
exhibits a higher recognition rate against PGD attacks com-
pared to other datasets. This phenomenon seems to stem
from the characteristics inherent in the dataset itself. GTSRB
comprises relatively well-refined data where the frames of
traffic signs and the symbols or characters within them are
distinct and clear. The variability of GTSRB mainly arises
from changes in lighting or background noise. This character-
istic indicates high inter-class variation while exhibiting low
intra-class variation. Consequently, even when attacked using
the same method and parameters as other datasets, natural
trained GTSRB model shows a higher resilience.

E. RESULTS WITH REJECTION MODULE
In order to increase the reliability of the system’s output,
we can use the proposed rejection module for refusing to

make predictions for data that is suspected of being an attack
(or for which the confidence on the prediction is low). First,
we analyze the experimental results of four datasets except
for Tiny ImageNet. When we applied the rejection module
to the four datasets, the average rejection rate for clean sam-
ples is 0.44% in the natural trained models, while 1.64% in
adversarial-trained models, indicating that the rejection rate
for clean samples is not significant in both training strategies.
The average rejection rate for adversarial examples in the
natural trained model is 4.40%, while that of in adversarial
training is 4.71%. This rejection rate may be considered
insufficient as the module’s performance in detecting the
attack. However, the significance of the rejection mecha-
nism in this study lies in its ability to supplement the low
recognition performance of the main task against adversarial
examples by utilizing the relatively higher performance of the
auxiliary tasks as will be discussedmore in the last part of this
section.

Figures 3 and 4 show the changes in accuracy when the
rejection module is employed. Figure 3 displays the perfor-
mance changes with the natural trained model and Figure 4
shows the changes achieved through the PGD adversarial-
trained model. The blue bars represent the accuracy of the
main task without utilizing the rejection module, which are
equivalent to the performance values presented in Table 2 for
the multi-task victimmodels. The red bars represent the accu-
racy for the input samples filtered through the rejection mod-
ule. In the natural trained model (Figure 3), the overall effect
of utilizing the rejection module to filter input samples is not
significantly pronounced. However, in the PGD adversarial-
trained model (Figure 4), the main task adversarial accu-
racies are improved for all datasets and task combinations
through the sample filtering effect of the rejection
module.

Table 3 shows the accuracy of auxiliary tasks for multi-
task learning models based on various learning strategies,
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datasets, and task combinations explored in this study. In
cases where two auxiliary tasks are employed, the average
accuracy for both tasks is indicated. The difference between
the rejection effects is due to uneven and low auxiliary task
accuracies of natural trained models which are highlighted
in red in Table 3. Precisely, in 13 out of 48 task combina-
tions in natural trained models show negative effect through
the rejection module. On the other hand, in the adversarial-
trained model, the recognition performance of the auxiliary
task against adversarial examples is at least around 73%,
significantly higher than that of the natural trained model.
Therefore, it can be considered that the adversarial-trained
model performs a more reliable rejection compared to the
natural trained model.

Experimental results with rejection module on Tiny Ima-
geNet require a different interpretation. Since the Tiny Ima-
geNet is a very complex dataset, the clean accuracy of the
natural trained model is very low, around 44%. The trade-
off between clean accuracy and robustness was severe, and
adversarial training did not improve the recognition perfor-
mance of auxiliary tasks compared to natural trained model.
We estimate that the low base performance of the model is the
reason why the proposed rejection module did not improve
the performance of the model. However, experiments on Tiny
ImageNet without rejection module still consistently demon-
strated that multi-task learning through self-defined auxiliary
tasks improves robustness in both natural and adversarial-
trained models. Moreover, the significance of this study is
that the effectiveness of the proposed rejection module is
evident on practical datasets such as SVHN and GTSRB.
For larger and more complex datasets, it is expected that
applying the proposed rejection module after maximizing the
base performance of the model through appropriate learning
strategies would yield positive effect.

V. LIMITATIONS
While our proposed multi-task learning with self-defined
task generation demonstrates a positive impact on enhanc-
ing the adversarial robustness of the model diverse datasets,
it exhibits several limitations. Firstly, as mentioned in
Section III-B, our experiments to date have been limited
to cases where the number of labels of built-in label K is
larger than the number of labels of mth auxiliary task Km.
However, our proposed approach holds potential applicabil-
ity in cases where Km is larger than K , and experimental
verification will be one of our future works. The second
limitation is that our proposed rejection module is dependent
on the model’s recognition performance for auxiliary tasks.
As shown in the experimental results of the natural trained
model on various datasets, when the recognition performance
for auxiliary tasks against adversarial examples is inadequate,
the proposed rejection module does not always positively
impact on the main task performance. Hence, there is a need
for further research aimed at refining the rejectionmechanism

or enhancing model’s performance for auxiliary tasks against
adversarial examples.

VI. CONCLUSION
In this paper, we propose an efficient method for enhanc-
ing adversarial robustness of DNNs by multi-task learning
with self-defined hidden tasks and adversarial training. By
mapping built-in labels of main task to new labels, users
can generate auxiliary tasks without additional labeling costs
and leverage them for multi-task learning. Moreover, it is
also possible to use the prediction results of auxiliary tasks
for adversarial sample rejection. In practical scenarios, self-
defined hidden tasks are difficult for attackers to discern,
and these are suitable as supplementary tasks for improving
the main task’s adversarial accuracy. Through experiments
conducted on five datasets, we confirmed that our proposed
approach is effective in robustness gain for the main task.
However, since not all combinations of tasks improve the
adversarial robustness of the main task, establishing criteria
for appropriate task generation is still needed, and this will be
one of our future works. In addition, we plan to explore the
application of our proposed method to binary classification
problems as well as regression problems. Furthermore, the
method of using information from self-defined hidden tasks
in the prediction process of the main task will also be studied.
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