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ABSTRACT For the efficiency optimization problem of wireless power transfer system, the most important
thing is that the frequency tracking control is needed to make the system work in a resonant state. The
parameters of the frequency tracking controller directly determine the control performance. In this paper,
we consider using an improved whale optimization algorithm to complete the PI parameter tuning of the
frequency tracking controller as a way to save personnel’s effort and time on the controller design. This
improved whale optimization algorithm mainly has the following improvements: firstly, it uses Kent chaotic
mapping to initialize the whale population, which improves the variegation of the initial solution; secondly,
it introduces adaptive weight coefficients and nonlinearly improves the convergence factor, which achieves
a balance between the algorithm’s global and local searching ability; finally, it introduces sine-cosine
algorithmic strategy and Cauchy reverse learning strategy, which avoids the problem that the algorithm is
easy to mature prematurely. The superiority of the improved algorithm is verified through the testing of
eight benchmark functions and the Wilcoxon rank sum test method. Finally, the algorithm is applied to the
PI parameter optimization of frequency tracking control, and the phase difference curves under the control of
different PI parameters are compared by simulation. The results show that the improved algorithm proposed
in this paper has a better performance for the PI parameter tuning of frequency tracking control in wireless
power transfer system, which can effectively help reduce the investment of human resources.

INDEX TERMS Wireless power transfer, frequency tracking control, PI control, whale optimization
algorithm.

I. INTRODUCTION

At present, the magnetically coupled resonance wireless
power transfer (MCR-WPT) system has been widely used in
electric vehicle wireless charging, health monitoring, embed-
ded devices and other fields due to the advantages of long
transmission distance and high transmission efficiency, and
has become a research hotspot in the field of wireless
charging [1]. However, factors such as ambient tempera-
ture, operating conditions, coil size and surface effects may
cause variations in the electrical parameters of the system.
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These variations may result in changes in the actual operating
resonant frequency, causing a rapid drop in transmission effi-
ciency. Therefore, keeping the MCR-WPT system operating
at resonant frequency is one of the key techniques to improve
transmission efficiency [2], [3].

To ensure that the MCR-WPT system operates in a reso-
nant state, the frequency tracking control method is widely
used in WPT systems due to its easy implementation and
fast response. The frequency tracking control determines the
resonant state by detecting the phase difference between
the voltage and current at the transmitter. If the MCR-WPT
system is detuned, there will be a phase difference between
voltage and current. The control system will generate a drive
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signal based on the feedback signal of the phase difference
and adjust the frequency of the inverter output voltage so
that the phase difference will be zero to keep the system in
resonance [4]. In order to improve the effect of frequency
tracking control, many scholars have introduced the the-
ory of fuzzy rules. By designing fuzzy rules, the frequency
tracking control system based on fuzzy PI control has been
realized [5], [6], [7]. However, this does not mean that the
traditional PID controller is not as effective as it should be.
On the contrary, PI controllers are widely used in engineering
fields due to their simple structure and easier implementation.
As long as the design of reasonable control parameters, the
control performance can still meet the needs of actual work-
ing conditions.

In recent years, population intelligence algorithms have
been gradually applied to various fields, including the optimal
tuning of controller parameters. For example, in the field of
vehicle cruise control, [8] improved the performance of the
reptile search algorithm via the integration of Lévy flight con-
cept and applies it to the parameter tuning of the PID control
of the vehicle cruise control system. Reference [9] developed
a novel AOA-NM meta-heuristic algorithm and combined it
with a PID controller based on Bode’s ideal transfer function
to achieve optimal performance of the automobile cruise
system. In addition, distinguishing from integer-order PID
controllers, fractional-order PID (FOPID) is able to more
accurately characterize the dynamics of the system by intro-
ducing fractional-order differentiation and integration, thus
providing better control performance [10]. And population
intelligence algorithms for parameter tuning of FOPID con-
trollers have also received attention from many scholars.
For example, [11] proposed a novel improved slime mold
algorithm to tune the parameters of the FOPID controller and
the PIDD? controller, which is applied to speed control of the
DC motor and terminal voltage level control of the automatic
voltage regulator. Reference [12] used a genetic algorithm
and constructed a cost function with respect to the tracking
error and control effort to optimize a FOPID controller for a
two coupled tanks system. Further, [13] designed a control
structure combining fuzzy control and FOPID control for a
Buck converter and used an antlion optimization algorithm
to adjust the gain of the fuzzy-FOPID.

The application of intelligent optimization algorithms
in controller parameter tuning has become increasingly
widespread. This is mainly due to the fact that these
algorithms are able to efficiently find global optimal or
near-optimal solutions in complex, nonlinear and multi-
dimensional parameter spaces by simulating evolutionary,
population behavior or physical processes in nature, which
can significantly improve the performance of the controllers
and reduce the time and cost of manual debugging. Therefore,
for the WPT frequency tracking control system, intelli-
gent algorithms can also be used to optimize the controller
parameters. In this paper, the whale optimization algorithm
is chosen to achieve the tuning of the frequency tracking
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controller parameters. Whale Optimization Algorithm
(WOA) is a bionic intelligence algorithm proposed by MIR-
JALILI in 2016 [14], which is simple to operate, requires
fewer parameters to be adjusted, and has been commonly
used within various engineering fields. However, the whale
algorithm is still difficult to avoid the shortcomings of
easy to fall into the local optimum, slow convergence of
the algorithm and insufficient convergence accuracy. For
these problems, scholars have made many improvement
measures.

Reference [15] proposed a hybrid algorithm of WOA and
PSO, which combines the search ability of WOA and the fast
convergence property of PSO. However, in the early stage
of the algorithm, WOA and PSO operate independently, and
the algorithm does not achieve the full sense of integration.
Moreover, in some cases, the characteristics of WOA and
PSO may not be fully complementary, resulting in the per-
formance of the hybrid algorithm is even worse than that of
one algorithm alone. Reference [16] proposed an improved
whale optimization algorithm, which improves the diversity
of the initial population by combining logistic chaos mapping
and skew tent mapping, and enhances the global search ability
by introducing the cross operator and Gaussian variational
operators. However, the introduction of more operators and
mapping methods leads to over-complexity of the algorithm,
which may lead to the generation of overfitting phenomena
and affect the generalization ability of the algorithm. Ref-
erence [17] enhanced the global search capability of WOA
by introducing an inertia weight factor and controlling the
value using reinforcement learning techniques and introduced
a variable neighborhood search algorithm to improve the
local optimization capability. However, the introduction of
reinforcement learning techniques requires an appropriate
dataset or training process to train the model, which may
require additional data collection and processing efforts. Ref-
erence [18] optimized the initial population distribution of
the algorithm; introduced segmented control parameters and
adaptive weights to improve the convergence speed of the
algorithm; added an adaptive learning factor to control the
variability of each individual’s learning ability to improve
the algorithm’s global searching ability; and introduced a
Cauchy perturbation on the optimal individual, which avoids
the problem that the algorithm is easy to fall into the local
optimum. However, the above strategies emphasize global
search, which may lead to premature convergence of the
algorithm to a non-global optimal solution. In some cases,
the balance between local and global search may be more
important. Reference [19] introduced chaotic mapping in the
initialization of the algorithm to maintain the diversity of
whale populations; introduced adaptive inertia weights in the
updating of whale spiral positions to prevent the algorithm
from falling into a local optimum; and introduced Lévy
flight in the random search of whales, which improved the
algorithm’s global search capability. However, the algorithm
introduces several new parameters, which need to be carefully
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adjusted to obtain the best performance, increasing the dif-
ficulty of algorithm parameter adjustment. Reference [20]
introduced cubic chaotic mapping initialization to enhance
the traversal of the initial solution; introduced adaptive inertia
weight coefficients and improved the convergence factor non-
linearly to balance the global search and local search ability;
improved the spiral search equation so that the whale dynam-
ically adjusts the search shape to enhance the algorithm’s
global search ability to break through the local optimum;
and introduced a generalized reverse learning mechanism in
order to enhance the algorithm’s ability to jump out of the
local optimum. Although the introduction of a variety of new
parameters and mechanisms improves the performance of
the algorithm, the computational complexity and cost of the
algorithm inevitably increase. Reference [21] used a tent map
function to optimize the distribution of the initial population
in the problem domain; constructed the new iteration-based
update strategies of convergence factor and inertia weight to
regulate the balance between global and local search capabil-
ities; and proposed an optimal feedback strategy in the prey
search phase to enhance the global search capability. How-
ever, the optimal feedback strategy is more sensitive to the
problem size, and it is necessary to analyze the problem size
in advance to better utilize this strategy in practical applica-
tions. Reference [22] improved the compact algorithm using
new parallel techniques for its shortcomings and combined
it with the whale algorithm to propose a parallel compact
based whale optimization algorithm. The algorithm has low
memory consumption and strong local optimization jump-
out ability, but it does not consider the ability to balance
global optimization and local optimization. Reference [23],
based on combining the whale optimization algorithm and
the slime mold algorithm, improved the probability of the
algorithm to obtain the global optimal solution by adjusting
the dynamic parameters and introducing dynamic weights.
However, no consideration is given to enhancing the diversity
of the initial solution, which may cause the algorithm to fall
into the local optimum.

For the frequency tracking control system of WPT, most
scholars use the control method combining fuzzy rules and
PI, and more complex ones combine neural networks, fuzzy
rules and PI [24]. Although these control methods can greatly
improve the effect of frequency tracking control, the com-
plex controller will inevitably increase the design difficulty,
and the debugging cycle will become longer, which is a
big challenge for the researchers’ energy and technology.
As for the basic PI controller, although it is simple in struc-
ture, easy to implement, and can also obtain good control
effect, but want to debug a set of appropriate parameters
need to have sufficient experience. Intelligent algorithms
can easily help us to optimize the parameters, which not
only can have a good control effect, but also can save us
a lot of time and energy. Therefore, this paper proposes
an Improved Whale Optimization Algorithm (IWOA) to
optimally adjust the PI parameters of frequency tracking
control.
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The contributions and structures of this paper are as fol-
lows:

(1) Aiming at the shortcomings of WOA, which is easy
to fall into local optimum and slow convergence, this paper
improves the algorithm in the following ways: firstly, the
Kent chaotic mapping is used to initialize the whale pop-
ulation to improve the diversity of the initial solution;
secondly, adaptive weighting coefficients are introduced and
the convergence factor is nonlinearly improved to achieve the
balance between the algorithm’s global search and the local
search ability; finally, the sine-cosine strategy and Cauchy
reverse learning strategy are introduced to avoid the problem
that the algorithm is prone to premature maturity.

(2) The improved algorithm is tested using eight bench-
mark test functions and evaluated using the Wilcoxon rank
sum test, comparing with other mainstream algorithms to
validate the capability of the proposed algorithm. The compu-
tational complexity of IWOA and WOA is also compared and
briefly analyzed from the perspective of algorithm runtime
using post hoc statistical methods.

(3) IWOA and WOA are applied to the frequency tracking
control PI parameter tuning of the WPT system, and the fre-
quency tracking control simulation is carried out to compare
the phase difference curves under the control of different PI
parameters and to verify the PI parameter tuning capability of
IWOA.

Il. SYSTEM MODELING AND ANALYSIS

A. MCR-WPT SYSTEM CIRCUIT MODELING

In this paper, the MCR-WPT system adopts a typical dual-
coil S-S topology, as shown in Fig. 1, which mainly consists
of a DC power supply, a full-bridge inverter circuit, resonant
circuits at the transmitter and receiver, a full-bridge rectifier
circuit and a load. Where Uy is the DC power supply; four
IGBTs Q; to Q4 constitute a full-bridge inverter; C; and
C are the resonance compensation capacitors corresponding
to the transmitter and receiver; Ry and R, are the parasitic
resistors of the transmitter and receiver; L; is the inductance
of the transmitter coil; L, is the inductance of the receiver
coil; M is the mutual inductance between the transmitter
coil and the receiver coil; the transmitter terminals D to Dy
constitute the full-bridge rectifier, Cr is the rectifier bridge
filter capacitor, Ry is the load resistance. The equivalent
circuit model is shown in Fig. 2.

For the convenience of analyzing and calculating the sys-
tem, Z; and Z; are denoted as the equivalent impedances
of the transmitter and receiver, whose expressions are,
respectively:

1
Z1 =R +joly + ——

Zy =Ry + Ry + joly + ——
JoCa

Applying Kirchhoff voltage law (KVL), the voltage equa-
tions of the resonant circuit at the transmitter and receiver can

13057



IEEE Access

X. Yang, J. Guan: Pl Parameters Tuning for Frequency Tracking Control

A DA

DK DA

High-frequency inverter Resonance circuit AC/DC rectifier Load

FIGURE 1. Main circuit structure of MCR-WPT with SS-type topology.

R:

FIGURE 2. Equivalent circuit model.

be obtained as follows:

@

hZy — Vi — joMI, =0
7y — joMI; =0

where, w is the angular frequency, 1 is the current at the
transmitter, I, is the current at the receiver, and Vj is the input
voltage at the receiver.

The expression for the current at the transmitter and
receiver can be found by Eq. (2) as:

_ 2oV
' = 772, + o?M?
JowMVy
=270
717> + ?M?

3

The equivalent input impedance Zj, of the system is calcu-
lated by Eq. (3) and expanded to obtain the expression as:
Y w?M?
I V4

. 1 w*M?
= |Ri +joL + - + : 7
JoCi Ry +Ro +jols + 756

“

Eq. (4) can be rewritten as:

2202
w°M~” (R, +R
Zin = | Ry + (Ro o)

2
(R +Ro)* + (a)Lz - w%z)

2112 1

+j a)Ll—

- 2
O Ro+ R+ (wha — )

&)

13058

The equivalent input impedance Z;, of the system is the
ratio of the high-frequency inverter output voltage to the
transmitter current, and the phase difference between the two
can be obtained from Eq. (5). Since R and R; are very small
and can be ignored, the phase difference is expressed as:

1\? T
L — — R>
(0) 2 a)Cz) R
?M2R x
— tan~! 1
6 = tan w*M? (a)Lz — —)
1 wCy
L —
w(C 2
(sz - —) +R2
L wC J
(6)
Analyzing Eq. 6) shows that when

oL-1/wC= joL+1/joC= 0, the phase difference 6 between
the voltage and current at the transmitter is constant at 0,
and the MCR-WPT system is in a resonant operating state.
At this time, no matter how the load value changes, the phase
difference does not change.

Based on the resonance condition, the detuning rate is
defined as:

L : 7
y=ob——% )

When y =0, the system is in resonance state, the coil
loop is purely resistive; when y > 0, the system is in over-
resonance state, the coil loop is inductive; when y < 0, the
system is in under-resonance state, the coil loop is capacitive.

According to Eq. (3) the input power Pj, and output power
Pout expressions of the system can be calculated as:

P VI — ZZVSZ
) ’M2V2R, ®)
Poyt = 2Ro =

(212, + 0?M?)’

Based on Eq. (1), Eq. (7) and Eq. (8) the system transmis-
sion efficiency 1 expression can be calculated as:

_ Pow  o*M’R,

P Z1222 + wM?Z7,

_ ®*M*R,

C Ri+jy) X Ry + Ry +jy)* + 0*M? (Ry + Ry + jy)

©))

From Eq. (9), it can be seen that when the system is in
the resonant state, the coil circuit equivalent impedance is the
smallest, the coil energy can realize the maximum efficiency
of transmission. When the system is working in the detuned
state, the equivalent circuit impedance is inductive or capaci-
tive. At this time, part of the power in the transmission process
will be consumed to do useless work, the transmission effi-
ciency of the system will be greatly reduced.
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B. FREQUENCY TRACKING CONTROL SYSTEM

From the modeling analysis of the MCR-WPT system in the
previous section, it can be seen that during the operation of
the system, the operating frequency of the inverter output
is required to be consistent with the intrinsic resonance fre-
quency of the system, so that the phase difference between the
voltage and the current at the transmitter is 0, and the max-
imum efficiency is maintained for energy transfer. In order
to realize this purpose, an effective detuning control method
should be implemented. In this paper, the frequency tracking
control method controlled by PI controller is selected, which
is simple in structure, easy to implement and effective. The
control system block diagram is shown in Fig. 3.

The frequency tracking control system consists of current
acquisition module, phase detector, PI controller, voltage
controlled oscillator (VCO) and pulse generator. First, the
phase detector is used to obtain the phase difference A6
between the voltage and current signals. A6 is used as the
error signal to output the frequency f through the PI con-
troller. Then the VCO outputs the waveform u with the same
frequency according to the f, and then the pulse generator
generates the corresponding PWM to drive the inverter, so as
to control the frequency of the output voltage of the inverter,
making the voltage and current have a phase difference
of 0, so that the MCR-WPT system can work in a resonant
state.

Ill. IMPROVED WHALE OPTIMIZATION ALGORITHM

The principle of PI controller is simple and the control effect
is good, however, the control parameter plays a decisive
role in the control performance. To debug a suitable set
of parameters requires personnel with sufficient experience.
Intelligent optimization algorithms can help us to find out
the optimal result of the problem within the given range.
In this paper, we propose to use the improved whale opti-
mization algorithm to optimize and tune the PI controller.
Aiming at the problems of the standard whale optimization
algorithm, such as slow convergence speed and easy to fall
into local optimization, this paper proposes an improved
whale optimization algorithm that incorporates four
strategies.

A. STANDARD WHALE OPTIMIZATION ALGORITHM

The Whale Optimization Algorithm is a new heuristic opti-
mization algorithm based on the principle of humpback whale
feeding behavior. In WOA, each feasible solution is repre-
sented by the position of a humpback whale. Each whale
has two behaviors during the hunting process: one is the
encircling prey behavior in which all the whales approach the
prey; the other is the bubble net behavior in which the whales
swim in a circle and emit bubbles to repel the prey. Whales
randomly adopt one of the two behaviors to hunt prey in each
generation of swimming. When whales hunt, they randomly
choose to swim to whales in the best position or to whales in
a random position.
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FIGURE 3. Block diagram of MCR-WPT frequency tracking control system.

1) ENCIRCLING PREY

To describe the behavior of humpback whales around their
prey during feeding, the following mathematical model is
proposed:

— - = -

Di=|C - X*t)-X ) (10)
— = - —
X(t+)=X*@1t)— A -D; (11)

where a is the distance between the individual whale and the
prey, ¢ is the current number of itgr)ations, X* (¢) is the current
best position of the \glale, and X (¢) is the current position
vector of the whale. A and C are coefficients, calculated as
follows:

A=23-7-7 (12)

C =27 (13)
2t

=2~ (14)
Tmax

—> —> .
where r{ and r> are random vectors in [0, 1], the value of
d decreases from 2 to 0 in a linear fashion, and Ty, is the
maximum number of iterations.

2) HUNTING FOR PREY
Based on the humpback whale’s hunting style, its prey hunt-
ing behavior is represented in a mathematical model as:

— = —
Dy=X"(t)— X (¢ (15)
3 = bl o
X (t+1)=Dy-e” -cosml)+ X" (1) (16)
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where 5; is the distance between the individual whale and its
prey, b is a constant, and / is a random number with values in
the range [—1, 1].

The whale swims in a spiral pattern toward its prey
while simultaneously narrowing its envelope. Assume that
the probability of choosing the mechanism of narrowing the
encirclement is p, and the probability of choosing the spiral
to update the whale’s position is 1 - p. The mathematical
description of this synchronized behavior is as follows:

X*(t)— A -D, 0.5

— — A < 0.

Xa+n=1"" O
Dy-e” -cosrl)+X*(t) p=>0.5

7)

A decreasing value of @ is set near the prey, and 7
is a linearly varying parameter, so that _v)vhen attacking the
prey, the magnitude of fluctuation of A decreases as @
decreases. During the iteration process, when the value of 7
decreases from2to0, A is any random value in [-a, a]. When
X is [—1, 1], the new position of an individual whale can
be defined anywhere in between the current position of the
individual whale and the position of prey. The algorithm sets
the condition that the whale launches an attack on the prey as
A<l

3) SEARCHING FOR PREY
The mathematical model when searching for prey is as
follows:

— - — -

D3 =|C 'and (t) - X (t) (18)
— — - =
X (t + 1) = Xyand (t) —A - D3 (19)

where m is the position of the randomly selected whale
and Ds is the distance of the randomly selected individual
whale from the prey.

When A > 1, an individual whale is randomly selected,
and the position update is performed by replacing the current
whale position with the randomly selected whale position,
which causes the whale to deviate from the prey and thus find
a more suitable prey.

B. IMPROVED WHALE OPTIMIZATION ALGORITHM
1) KENT CHAOTIC MAPPING INITIALIZATION
The population initialization of the standard WOA is to ran-
domly generate the positions of individual whales within
the upper and lower bounds, and such an initialization may
cause the whales to be unevenly distributed in terms of their
positions in the space, leading to the algorithm maturing pre-
maturely and falling into local optimum solutions. In order to
solve this problem, this paper adopts an initialization method
based on Kent chaotic sequences, which has better traversal
properties compared to the classical logistic mapping [25].
Due to the properties of chaotic mapping such as ran-
domness and traversal, it can be used in the initialization
of intelligent algorithm population. The principle is to use
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chaotic mapping to generate sequences between [0, 1], and
then initialize the whale population according to the chaos
factor. This can make the distribution of whales more rea-
sonable and uniform at the beginning and avoid premature
maturity. The mathematical model of Kent mapping is shown
in Eq. (20):

n O<x,<a
a
Xp+1 = l—xn (20)
a<x, <1
l1—a

where a is the tuning parameter of the Kent mapping, a €
(0, 1). The model initialized using chaotic mapping is shown
in Eq. (21):

X = Xmin + Chaos X (Xmax — Xmin) 2D

where xpmin and xmax are the lower and upper bounds on the
values of the independent variables, Chaos is the chaos factor
generated by the Kent mapping, and x is the position of the
individual mapped into the search space.

2) ADAPTIVE WEIGHTING COEFFICIENT AND IMPROVED
CONVERGENCE FACTOR

From the analysis of WOA, it can be seen that the con-
vergence factor @ is crucial for balancing the algorithm’s
global and local search ability, and the positional changes
between individuals in the population are also related to it.
However, the convergence factor @ in WOA decreases lin-
early from 2 to O as the number of iterations increases, which
makes the iteration speed of the algorithm slower; at the same
time, when the algorithm performs local optimization, the
search agent can only be close to the local optimum solution,
and cannot perform better local optimization. To address the
above problems, this paper improves the convergence factor
@ and introduces the adaptive weight coefficient w, which is
formulated as follows:

Tt
a = —cos +m)+1 (22)
(Maxiter )
dmt
w:kcos( 7 ) (23)
Maxiser

where ¢ is the current number of iterations, Max;., is the max-
imum number of iterations, and k and d are the adjustment
coefficients.

Because the cosine function has the characteristic of peri-
odically decreasing from 1 to -1, Eq. (22), compared with
the linear iteration of the original algorithm, the convergence
factor can decrease nonlinearly from 2 to 0. Similarly, Eq.
(23) makes the weights decrease nonlinearly from 1 to 0. The
adaptively adjusted WOA maintains a large weight at a small
iteration rate in the early stage of the iteration, which can
increase the algorithm’s global searching ability; the weight
drops rapidly after a certain iteration to improve the searching
accuracy in the later stage of the iteration, thus realizing the
balance between the global searching ability and the local
searching ability of the algorithm. After a certain number of
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iterations, the weight decreases rapidly, which improves the
optimization accuracy at the later stage of iteration, thus real-
izing the balance between the global and local optimization
ability of the algorithm. After the introduction of adaptive
adjustment strategy, Eq. (11), Eq. (16) and Eq. (19) are
updated as follows:

— = - =

X (t+1)=wX*(t)— A -Dy (24)
v N bl o

X (@+1)=Dy-e”" -cos2rl) +wX™ (1) (25)
— — - =

X (@t+1) =wXpuq (1) — A -Ds3 (26)

3) FUSION OF SINE-COSINE ALGORITHM STRATEGY

Sine cosine algorithm (SCA) mainly utilizes the mathemat-
ical properties of sine and cosine functions to achieve the
purpose of finding the optimal solution through iteration.
In SCA, it is assumed that the individuals in the population
of t-th generation are X/ = (xf],xfz, e ,xl.’D), where i =
1, 2, ..., N, N is the population size and D is the indi-
vidual dimension. The algorithm generates the positions of
N populations randomly in the space, calculates the fitness
value of each individual, and saves the optimal position and
its corresponding fitness value by sorting the fitness value
to store the best. The individual updates the position in the
manner shown in Eq. (27):

Xi(t+1)
X! () +a x sin (r3) x ‘mx* — X} (r)(, rs < 0.5

Xé (t) +a x cos (r3) X ‘;’4X’k —Xé (t)), rs > 0.5
(27)

where X é () is the position component of the i-th individual
in the d-th dimension of the #-th generation, X* is the current
optimal position, r3 is arandom number between [0, 2], r4 is
a random number between [0, 2], and rs5 is a random number
between [0, 1], and the parameter a is the same as that of Eq.
(22), which is used for controlling the search direction.
Considering that in WOA, the position of the individual
with the best fitness value is assigned to the leader of the
whale group at each iteration, in such a way that the algorithm
is prone to fall into local optimum, resulting in lower opti-
mization accuracy. In SCA, on the other hand, the algorithm
can randomly select the sine-cosine cross-searching opti-
mization, which makes the updating methods of the positions
complement each other, and better coordinates the global
optimization and local optimization ability, so that SCA grad-
ually shrinks and hovers around the target solution.
Therefore, in the IWOA proposed in this paper, the leader
that has been sorted to survive the optimization is not directly
proceeding to the next iteration process. Instead, the cur-
rent leader position is recorded, and at the same time, the
position of each individual in the population is updated with
the sine-cosine position according to Eq. (27). Then the
fitness value of each individual is calculated and a greedy
mechanism is introduced to filter a new leader position by
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comparing the fitness. Finally, the current optimal individual
whale position is updated by comparing the size of the fitness
value between the leader before the sine-cosine operation and
the new leader.

4) FUSION OF CAUCHY REVERSE LEARNING STRATEGY
Suppose P = x (x1,x2, -+ , X¢) is a point in k-dimensional
space, where x; € [a;, bi],1 =1, 2, ..., k, and g; and b; are
the minimum and maximum values of the point P in the i-th
dimension, then the reverse point of the point P is:

OP =X (X1,X2, "+ ,Xk) (28)

where X; = a; + b; — x;.

The above are the basic concepts and mathematical for-
mulas for reverse points in general. There are many novel
concepts of reverse points that have arisen, and among them
the mathematical formula of the Cauchy reverse point is as
follows:

a; + b;

QOP:rand( ,a,-—i—b,-—xi),i:l,l-",k

(29)

Compared with the ordinary reverse point, the Cauchy
reverse point is a randomly generated point between the mid-
point and the ordinary reverse point. In the IWOA proposed
in this paper, the Cauchy reverse jump method is also used
to generate the reverse population of the current population
according to Eq. (29), and then merge the two populations.
The fitness of all individuals is calculated and then sorted,
and half of the individuals with better fitness are selected to
enter the next iterative loop, thus speeding up the convergence
of the algorithm. The Cauchy reverse jump method is defined
as: if rand < Jr, the Cauchy reverse population of the current
population is generated. Where Jr is the jump rate, which is
used to control the weight of executing the Cauchy reverse
learning strategy during the iteration of the algorithm; rand
is a random number between [0, 1].

C. FLOWCHART OF IWOA
Based on the above four improvement strategies, the IWOA
flowchart proposed in this paper is shown in Fig. 4, and the
specific implementation steps are described as follows:

Stepl: Set the initial parameters, including the population
size N, the maximum number of iterations Tpax, and the
upper and lower limits of the solution space;

Step2: Kent chaotic mapping is used to initialize the whale
population according to Eq. (20) and Eq. (21);

Step3: Calculate the fitness of each individual whale and
record the current optimal individual whale and its position;

Step4: When the current iteration number is less than
the maximum iteration number, calculate the parameter ¥t
according to Eq. (22), calculate the parameter w according to
Eq. (23), update A and C, and generate a random number p;

Step5: If the random number p > 0.5, update the position of
whale population according to Eq. (25); otherwise, determine
whether |A| is less than 1. If |A| < 1, update the position of
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whale population according to Eq. (24), and if |A| > 1, update
the position of whale population according to Eq. (26);

Step6: Update the position of each whale individual in the
population according to Eq. (27), calculate the fitness value,
filter a new optimal whale individual by comparison, and
introduce a greedy mechanism to decide whether the current
optimal whale individual and its position need to be updated;

Step7: If rand[0, 1] < Jr, generate the reverse population of
the current population according to Eq. (29) and merge them,
calculate the fitness of all individuals, sort them, take the
whale individual with the optimal fitness value as the global
optimal solution, and select half of the individuals with better
fitness to enter the next iteration of the loop;

Step8: Determine whether the number of iterations reaches
the maximum number of iterations Tpax, if it meets, then
output the global optimal solution; otherwise return to Step4
to continue iteration.

The pseudocode is shown in Algorithm 1.

IV. EXPERIMENTS AND RESULTS ANALYSIS

The simulation experiments in this chapter are divided into
three parts. The first is the algorithm performance test of
the IWOA proposed in this paper, and eight benchmark test
functions are selected to be used for testing and evaluating
the optimization ability of the IWOA. The second is the
analysis of some simulations of the MCR-WPT system. The
third is the application of the IWOA to the PI Parameters
optimization of the frequency tracking control system.

The running environment for all the experiments in this
paper is 64 for Windows 11, the CPU type is AMD Ryzen 7
5800H with 3.2GHz, the main memory is 16G, and the pro-
gramming software is MATLAB R2020b.

A. ALGORITHM PERFORMANCE TESTING AND ANALYSIS
The experiments in this section select eight benchmark test
functions. As shown in Table 1, F1-F5 are single-peak func-
tions, where the local optimum of the function is the global
optimum of the function, which is usually used to test the
convergence speed of the algorithm and the accuracy of the
optimization search; F6-F8 are multi-peak functions, which
have multiple local optimums, and are usually used to test
the ability of the algorithm to jump out of the local optimum
and explore the global.

In order to verify the effectiveness of the algorithm, two
classical population optimization algorithms, PSO and GWO,
are selected for experiments with the standard WOA as well
as the IWOA proposed in this paper. To reduce experimental
chance, the four algorithms are subjected to 30 independent
experiments for each test function and the performance of the
algorithms is analyzed by the optimal value, average value
and standard deviation. The algorithm parameters set in the
experiment are: population size N=30, maximum number of
iterations T=200, and other specific parameters are shown in
Table 2. After 30 independent experiments were completed,
the results were subjected to data processing, and the specific
experimental data are shown in Table 3.
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Algorithm 1 The pseudocode of IWOA

1: Set the initial parameters

2: Kent chaotic mapping is used to initialize the whale popu-
lation

3: Calculate the fitness of each individual whale and record
the current optimal individual as the first whale optimal indi-
vidual X;(¢t)

4: while (T < Twmax)

5: for(i=0;i<N;it++)

6: Updatea, w, A,C, p

7 ifl (p <0.5)

8: if2(|A] < 1)

9: Update position by Equation (25)
10: else if2

11: Update position by Equation (27)
12: end if2

13: else ifl (p>0.5)

14: Update position by Equation (26)

15: end ifl

16:  Perform sine-cosine calculation on all whale individ-
uals, filter out a new optimal individual, and record it as the
second whale optimal individual X;(r)'.

17: i3 (F(Xi(1)) < F(Xi(t)'))

18: Retain the first optimal individual X;(¢) as the whale
leader.

19: elseif3

20: Replace X;(r) with the second optimal individual X;(z)
and update it to be the new whale leader

21: end if3

22: end for

23: if4 Rand [0,1] < Jr

24: Generate Cauchy reverse population QOP of current
population P

25: Half of the individuals with better fitness are selected to
enter the next iterative loop and use the individual with the
optimal fitness as the current optimal solution

26: else if4

27: Keep the current population into the next loop

28: end if4

29: T=T+1

30: end while

31: End of the algorithm, output the global optimal solution

From Table 3, it can be seen that in terms of the single-peak
functions F1-F5, IWOA has the strongest ability to find the
optimal solution among the four algorithms. It is able to find
the optimal solution in a faster and more stable way. For
functions F1 and F3, IWOA found the optimal solution 0 and
the average value is also 0. This shows that IWOA can find the
optimal solution in almost every one of the 30 experiments,
and the ability of finding the optimal solution is obviously
stronger than the other three functions; For functions F2 and
F4, although IWOA does not find the optimal solution, the
average values are 6.78E-219 and 6.10E-214, respectively,
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End
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FIGURE 4. The flowchart of IWOA.
which are more than 200 orders of magnitude different from TABLE 1. Test function.
the average values of the other three algorithms. It also
proves that IIWOA has the strongest ability to find the opti- F““:"“ Name Dim  Search Opt:““'l
mal solution; For function F5, the average of the IWOA number space value
solution results is slightly stronger than the other three algo- ¥ Sphere 30 [-100,100] 0
rithms, despite the fact that the difference between them and F2 Schwefel2.22 30 [-10, 10] 0
WOA and GWO is not very large. Overall, the experiments F3 Schwefell.2 30 [-100, 100] 0
demonstrate that the IWOA proposed in this paper has good F4 Schwefel2.21 30 [-100, 100] 0
optimization ability and convergence accuracy. F5 Quartic 30 [-1.28,1.28] 0
And for the multi-peak functions F6-F8, similarly, both F6 Rastrigin 30 [-5.12,5.12] 0

IWOA and WOA find optimal solutions for functions F6 and F7 Ackley 30 [-32,32] 0
F8, and the average value of IWOA is 0, which illustrates that F$ Griewank 30 [-600, 600] 0

IWOA finds the optimal solution almost every time; Although
IWOA does not find the optimal solution of function F7,
and the average result is not much different from that of
WOA, it has the smallest standard deviation, which shows the
stability and the ability to jump out of the local optimum of
IWOA. Overall, the experiments demonstrate that the IWOA
proposed in this paper has better global search capability and
the ability to avoid falling into local optimum.

In order to visualize and analyze the algorithm’s opti-
mization searching effect, the convergence curves of the four
algorithms on the eight benchmark test functions are given
in Fig. 5~12. Among them, Fig. 5~9 shows the convergence
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curves of single-peak functions F1-F5; Fig. 10~12 shows the
convergence curves of multi-peak functions F6-F8. As can
be seen from these figures, the convergence speed and con-
vergence accuracy of IWOA are significantly better than the
other algorithms. This is due to the fact that the algorithm
incorporates Kent chaotic mapping, the improved conver-
gence factor, the adaptive weighting coefficient, as well as the
sine-cosine strategy and the Cauchy reverse learning strategy,
so that the convergence speed and the solution accuracy of
IWOA are better than other algorithms.
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TABLE 2. Parameter settings of algorithms used in experiments.

Algorithm  Population  Iteration Others
PSO 30 200 C=C=2,0=[0.6,0.9]
a decreases linearly from 2 to
GWO 30 200 0
b=1, a decreases linearly from
WOA 30 200
2t00
IWOA 30 200 k=2, d=0.5, b=1, Jr=0.95

To further demonstrate the performance of the improved
algorithm, this paper uses Wilcoxon rank sum test to evaluate
the proposed improved algorithm. Statistical tests are used at
5% significant level to verify whether the results of each run
of the proposed improved algorithm in this paper are statis-
tically significantly different from other algorithms. Usually,
when p <5%, it can be considered as a strong validation of
the rejection of the null hypothesis, indicating that the two
compared algorithms are significantly different.

Table 4 lists the p-values of this paper’s proposed IWOA
with the other three compared algorithms in Wilcoxon test
under eight test functions. Where p1, p2, and p3 denote the p-
values of IWOA with WOA, GWO, and PSO, respectively,
and “+”, “=", and “-” indicate that the performance of
IWOA is better than, equal to and inferior to the compared
algorithms, respectively. The analysis of the results in Table 4
shows that the p-values of IWOA are basically much less than
5%, which indicates that the performance of the algorithm
proposed in this paper is statistically significantly better, and
further proves that the improved algorithm in this paper has a
stronger performance of optimality seeking.

It is easy to see that IWOA incorporates a variety of
strategies and the algorithm performance is more superior.
However, due to the fact that the algorithms in the sine-cosine
and Cauchy reverse strategy sessions will again solve for
whale population position and fitness, this leads to the
unavoidable fact that the computational complexity of the
IWOA is higher compared to the original WOA. Therefore,
in this paper, IWOA and WOA were compared and analyzed
from the perspective of algorithmic running time on the F1
test function. Similarly, in order to reduce the experimental
chance, 30 independent experiments are conducted on the
function under each condition and the average running time is
calculated. Table 5 shows the running time of the algorithms
for the same number of maximum iterations and growth
in population size, and Table 6 shows the running time of
the algorithms for the same population size and growth in
maximum iterations. Figures 13 and 14 show line graphs
corresponding to Tables 5 and 6, respectively.

It can be seen that under the same conditions, the run-
ning time of IWOA is longer than that of WOA, and the
running time of IWOA grows more with the linear increase
of the population size and the maximum number of itera-
tions, which verifies the previous conjecture. Although the
introduction of the sine-cosine strategy and Cauchy reverse
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TABLE 3. Comparison of the results of different algorithms.

Function Index PSO GWO WOA IWOA
Opt.  5.21E+00 4.26E-10  1.28E-35  0.00E+00
F1 Avg. 1.29E+01 1.02E-08 1.81E-27  0.00E+00
Std. 3.84E+00 2.17E-08  7.89E-27  0.00E+00
Opt.  8.12E+00 1.46E-06  1.34E-24  1.77E-232
F2 Avg. 1.42E+01 5.09E-01 5.26E-20  6.78E-219
Std. 2.84E+00 2.74E+00  9.62E-20  0.00E+00
Opt.  3.79E+02  3.76E-01 = 5.23E+04  0.00E+00
F3 Avg.  6.44E+02 4.07E+00 7.95E+04  0.00E+00
Std. 2.03E+02  7.22E+00 2.05E+04  0.00E+00
Opt.  2.19E+00 9.91E-03  3.02E+00 5.38E-231
F4 Avg.  3.09E+00 3.33E-02 6.40E+01 6.10E-214
Std. 4.39E-01  2.21E-02 2.43E+01  0.00E+00
Opt. 1.51E+01  1.27E-03  2.06E-04 1.95E-05
F5 Avg.  5.81E+01  6.84E-03  7.62E-03 3.14E-04
Std. 2.77E+01  3.51E-03  7.89E-03 3.71E-04
Opt. 1.76E+02  4.22E+00 0.00E+00  0.00E+00
Fo Avg.  2.45E+02 1.45E+01 7.58E-15  0.00E+00
Std. 2.57E+01  4.67E+00 0.00E+00  0.00E+00
Opt.  3.17E+00 6.06E-06  8.88E-16 8.88E-16
F7 Avg.  4.11E+00 1.74E-05  2.22E-14 8.88E-16
Std. 3.45E-01 1.16E-05  1.46E-14  3.94E-31
Opt. 5.56E-01  1.28E-09  0.00E+00  0.00E+00
F8 Avg.  7.82E-01  5.35E-03  3.86E-02  0.00E+00
Std. 7.50E-02  1.08E-02  1.48E-01  0.00E+00

strategy will strengthen the algorithm’s superiority seeking
ability, it has many more solution steps, and the complexity
of the algorithm’s computation will undoubtedly be higher.
Therefore, how to balance the superior optimization ability
and the lengthy solution time is a problem worth thinking
about. For the IWOA proposed in this paper, the parameters
of appropriate population size and maximum iterations can
be set to minimize the impact of computational complexity.

B. SIMULATION AND ANALYSIS OF MCR-WPT
In the MATLAB/Simulink simulation environment, the
MCR-WPT system is modeled according to Fig. 1. In order
to facilitate the simulation study, the electrical parameters of
the MCR-WPT are designed specifically as shown in Table 7.
When no frequency tracking control method is used and the
operating frequency is set to 70 kHz, the curves of voltage
and current at the transmitter can be obtained. As shown in
Fig. 15 and Fig. 16, Fig. 15 illustrates the curves of voltage
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and current at the transmitter, and Fig. 16 illustrates the curves
of energy transfer efficiency of the system. When the system
reaches stability, it is obvious that there is a large phase differ-
ence between the voltage and current at the transmitter. At this
time, the MCR-WPT system does not work in a resonant state,
and the energy transfer efficiency is only about 14%. This
shows that frequency tracking control is very necessary.
When the frequency tracking control system was added,
the PI Parameters were set to P=2000 and I=800000 by
the trial-and-error method. The voltage and current curves
at the transmitter are shown in Fig. 17. It can be found that
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the voltage and current are in the same frequency and phase
state, and the current value is also increased compared with
Fig. 15. At this time, the MCR-WPT operates in a resonant
state, which ensures that the system operates in high trans-
mission efficiency. The frequency curve is given in Fig. 18,
and it can be found that the frequency is finally stabilized
at 77.4 kHz, which indicates that the resonant frequency
of the system is 77.4 kHz. The energy transfer efficiency
curve of the MCR-WPT with frequency tracking control is
given in Fig. 19, and the transfer efficiency is stabilized at
75% after 0.01s. Compared with Fig. 16, the transmission
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TABLE 4. Wilcoxon rank sum test p value.

Function number j 2l D2 p3
F1 1.73e-06 1.73e-06 1.73¢-06
F2 1.73e-06 1.73e-06 1.73e-06
F3 1.73e-06 1.73¢-06 1.73e-06
F4 1.73e-06 1.73e-06 1.73e-06
F5 2.12e-06 1.73e-06 1.73e-06
F6 3.12e-02 1.73¢-06 1.73e-06
F7 1.58e-06 1.73e-06 1.73e-06
F8 2.50e-01 1.73¢-06 1.73¢-06
+/=/— 7/0/1 8/0/0 8/0/0

efficiency of the MCR-WPT with frequency tracking control
is significantly improved.

However, when the PI Parameters are tuned by the trial-
and-error method, it is usually inefficient and cannot ensure
that the parameters obtained have a good control effect.
Therefore, this paper proposes to use the IWOA optimization
algorithm to optimally tune the frequency tracking control PI
Parameters.

C. FREQUENCY TRACKING CONTROL SYSTEM WITH
IWOA-PI TUNING

In control systems, an error integration criterion is often
utilized to measure the excellence of control system perfor-
mance. The error integration criteria include Integral Square
Error criterion (ISE), Integral of Time and Square Error
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TABLE 5. Running time of the algorithm (Max_iteration=200).

Running time of Running time of

Population Size

WOA(s) IWOA(s)
30 0.047 0.098
60 0.061 0.153
90 0.076 0.199
120 0.09 0.246
150 0.104 0.285

TABLE 6. Running time of the algorithm (population size =30).

Running time of Running time of

Population Size

WOA(s) IWOA(s)
200 0.047 0.098
400 0.061 0.152
600 0.077 0.199
800 0.092 0.247
1000 0.106 0.299
—+—WOA =—#—IWOA
03
1
£ o
F
2 o1 . o——
g —r—"°
=
& 0
30 60 90 120 150

Population Size

FIGURE 13. Running time curve (Max_iteration=200).

criterion (ITSE), Integral Absolute Error criterion (IAE) and
Integral of Time and Absolute Error criterion (ITAE). ITAE
is the absolute value of the error multiplied by time and inte-
grated over time. It can reflect both the magnitude of the error
(control accuracy) and the speed of convergence of the error,
taking into account the control accuracy and convergence
speed, and is suitable for judging the performance of the
frequency tracking control system. The specific mathematical
formula for ITAE is:

ITAE = / o le (1) dt (30)
0

The objective function of the IWOA in this paper mainly
considers the control performance of the frequency track-
ing control system, so the objective function is established
according to Eq. (30), where e(t) is the phase difference
between the voltage and current at the transmitter. IWOA
searches for the optimal solution of the PI Parameters of the
frequency tracking control system according to the objective
function, and its specific schematic diagram is shown in
Fig. 20.

After setting the initial parameters, the algorithm starts to
run. each individual whale position generated by IWOA rep-
resents a set of PI control parameters, which are substituted
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TABLE 7. Electrical parameters of the MCR-WPT.
Parameter Value Parameter Value
U,/V 24 R,/Q 0.1
C, /nF 40 L, /pH 100
C, /nF 35 L,/uH 100
R/Q 0.1 R, /Q 20
C, /uF 100 M /pH 20
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FIGURE 15. Voltage and current curves at the transmitter without
frequency tracking control.
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FIGURE 16. Efficiency of MCR-WPT without frequency tracking control.

into the control model for simulation. Then the fitness value
of each individual whale is calculated based on the objective
function, and the fitness value is returned to the algorithm for
optimal fitness update. Repeated iterations are performed to
update the individual whale position and optimal fitness until
the maximum number of iterations is reached, and finally the
optimal controller parameters are output.
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FIGURE 17. Voltage and current curves at the transmitter with frequency
tracking control.
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FIGURE 18. The resonant frequency with frequency tracking control.
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FIGURE 19. Transmission efficiency of MCR-WPT with frequency tracking
control.

TABLE 8. Parameters of Pl controller.

Parameter WOA IWOA
P 1843.8709974 1304.2159889
1 3906572.1583 9893456.7482739

In section A, the algorithms are tested and the optimization
performance of IWOA is better than the other three algo-
rithms in general, and WOA is slightly better than PSO and
GWO; therefore, in this section, only two algorithms, IWOA
and WOA, are used for the simulation and comparison of
the frequency tracking control PI Parameters optimization,
in order to validate the PI Parameters optimization ability of
IWOA.

According to the principle shown in Fig. 20 to use IWOA
and WOA to optimize the frequency tracking control PI
Parameters, the obtained PI Parameters are shown in Table 8.
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FIGURE 21. Phase difference curves between voltage and current at the
transmitter of different Pl Parameters.

The original PI Parameters obtained by the trial-and-error
method and the optimized PI Parameters of WOA and IWOA
are substituted into the MCR-WPT frequency tracking con-
trol system for Simulink simulation, respectively. The phase
difference curves of the voltage and current at the transmitter
for different PI Parameters are shown in Fig. 21.

It can be found that although the curve of IWOA-PI control
has the largest phase difference at the very beginning, which
reaches 2.5°, the difference with the curves of WOA-PI and
original-PI control is not big, and the curve of IWOA-PI con-
trol quickly reduces to 0° within 0.005s, which is the fastest;
the curve of WOA-PI control reduces the phase difference
to 0° after 0.005s, which is medium speed; and the curve of
original-PI control did not reduce the phase difference to 0°
until 0.02s, which is the slowest.

It can be seen that the control performance of the PI Param-
eters derived from the IWOA optimization proposed in this
paper is better, with fast response speed and high accuracy,
and the IWOA is able to complete the optimization for the
frequency tracking control PI Parameters better.

Since the policy complexity of IWOA is higher than that
of WOA, the time spent in the optimization process of IWOA
is inevitably longer, but this extra time loss is within the
acceptable range. Moreover, in terms of control performance,
the response time of IWOA-PI is about 40% of that of WOA-
PI, indicating that the control effect of IWOA-PI is faster and
better than that of WOA-PI. When the system is stabilized,
the phase difference controlled by IWOA-PI is also kept at
0 degree at all times, indicating that the WPT system has been
working in a resonant state. For manual parameterization,
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it not only requires personnel to have rich experience and
consumes time and energy, but also the parameters debugged
may not be guaranteed to be optimal. Using IWOA, we can
easily obtain the PI parameters with excellent results, which
can help us find the optimal solution in a shorter time, thus
reducing the investment of human resources.

V. CONCLUSION

MCR-WPT needs to use frequency tracking control method
to keep the system in resonance state due to the characteristics
of its own principle. And the parameters of the controller
determine the control performance of the system. In order to
save personnel’s energy and time for controller design and
parameter tuning, this paper proposes to use an improved
whale optimization algorithm to complete the PI parameter
tuning of the frequency tracking controller. Regarding the
improvement point part of the algorithm: firstly, the initializa-
tion of Kent chaotic mapping is used to improve the diversity
of the initial solutions and accelerate the convergence speed
of the algorithm; secondly, the balance between the global
search and local search ability of the algorithm is considered,
and adaptive weight coefficients are introduced to nonlin-
early improve the convergence factor; finally, sine-cosine
algorithmic strategy and Cauchy reverse learning strategy
are introduced to avoid the problem that the algorithm is
prone to precocious maturity. With the fusion of the above
improvement points, IWOA outperforms other algorithms in
eight benchmark function tests as well as the Wilcoxon rank
sum test method, proving the superiority of the improved
algorithm. Subsequently, IWOA and WOA are applied to the
PI parameter optimization of frequency tracking control, and
the phase difference curves under the control of different PI
parameters are compared by simulation, in which the phase
difference curve controlled by IWOA-PI parameters has the
best effect and the fastest response speed. This shows that
the improved algorithm proposed in this paper has a better
performance for PI parameter tuning for frequency tracking
control in wireless power transfer systems.

The improved algorithm proposed in this paper performs
well in simulation applications, but the algorithm still has
some limitations. Due to the integration of a variety of
improvement strategies, the complexity of the algorithm
increases, leading to an increase in computational cost, which
will lead to an extension of the algorithm’s running time.
For the benchmark function test as well as this paper’s fre-
quency tracking control PI parameter tuning, although it is
inevitable to increase some time overhead, but they are within
the acceptable range. However, if facing other more complex
problems, the improved algorithm in this paper needs to
consume a lot of computation time, which may not be of
great help to improve efficiency, and may also put the cart
before the horse. In addition, the objective function estab-
lished in this paper during the algorithm optimization process
is the ITAE performance index. While ITAE is a useful
optimization objective, it is only one of multiple considera-
tions. PI gain does have a direct impact on the error index,
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but it does not always directly reflect control effectiveness.
Control effectiveness is a broader metric that includes sys-
tem stability, response speed, overshoot, and regulation time.
Moreover, it is essential to consider introducing a penalty to
the control effort in the objective function, as this helps to
improve the overall performance and stability of the system
and allows us to better weigh the error against the use of
the controller to find a better balance. Therefore, in future
research, a more in-depth analysis of the system control
factors is needed to obtain the control parameters with the
best control effect by establishing a detailed and reasonable
objective function.
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