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ABSTRACT The use of machine learning algorithms for the assessment of speech fluency is increasingly
becoming recognized globally due to their ability to quickly identify speech impairments. This approach
is preferred over manual diagnosis, as it reduces the likelihood of human error and minimizes the delay in
commencing the therapy. A pipelined deep learner-dual classifier (PDL-DC) is proposed for the automated
detection of speech impairment. The assessment of individuals’ speech fluency consisted of two distinct
phases: the classification of speech disfluencies and the categorization of fluency disorders. Speech disfluen-
cies, including revisions, prolongations, whole-word repetitions, word-medial repetitions, and filled pauses,
were categorized into distinct groupings. The second aspect of classification pertains to the assessment of
fluency levels, wherein speakers are classified into three categories: healthy individuals, individuals with
stuttering, and individuals with Specific Language Impairment (SLI). The proposed model’s implementation
of a pipelined design enables the dual validation of a subject’s fluency. The proposed model demonstrates
an average classification accuracy, precision, and recall of 97%.

INDEX TERMS Fluency assessment, speech impairment, pipelined deep learner-dual classifier, healthy,
stuttering, specific language impairment.

I. INTRODUCTION
Speech is essential for communication because it allows us
to express ourselves and use platforms that are speech-based.
Disfluency is any interruption in speaking and can hurt a
person’s quality of life. Speech impairments make it difficult
for the speaker to render speech fluently. The nature of speech
impairments varies depending on the type of disability [1].
Disfluency patterns are often indicative of speech disorders,
such as stuttering. This research is motivated by the potential
impact on clinical speech therapy, where a deeper under-
standing of disfluencies can lead to improved diagnostic tools
and personalized therapeutic interventions. Filler disfluency
identification, which detects and counts any spoken inter-
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jections (such as ‘‘okay,’’ ‘‘right,’’ etc.), is a component of
several disfluency detection algorithms. Further investigation
indicates that these applications essentially seek a list of
interjections from the user before using the Speech-to-Text
(STT) technology to match any interjections in the list with
the spoken phrase. This is effective for interjections like
‘‘um’’ and ‘‘uh’’, as long as the STT tool being used con-
tains the required embeddings, but it can result in substantial
categorization errors for the majority of other utterances that
are meaningful words, such as ‘‘like,’’ which is frequently
used as a filler word in English. Since they come in a range
of shapes and sizes, stuttering and other disfluencies are
challenging to characterize. This significantly complicates
the problem space because variables like gender, age, accent,
and language may have a sure impact on each stutter’s
content.
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It is difficult to distinguish between all types of stuttering
using a single model because there are multiple classes of
stuttering, each with distinct sub-classes and significantly
different structures. Even a specific sort of stutter applied to
a single phrase can be performed in several ways. People are
exceptional at spotting stutters because of their familiarity
with them, but machine-learning models have traditionally
struggled with this. As a result, it is critical to properly
discern the disfluencies associated with each of the speech
impairments to provide an accurate diagnosis of the specific
speech impediment. This would allow for more prompt treat-
ment for the individuals. Moreover, disfluencies caused by
multilingualism limit the accuracy of the manual diagnosis
of speech impediments. Manual evaluation tools, such as the
Iowa Scale [2], rate the severity of stuttering on a range of 1 to
8. The Stuttering Severity Instrument (SSI-4) was also used
to differentiate between mild and severe stuttering severity
levels based on the syllabic count, which revealed substan-
tial disparities across Speech Language Pathologists (SLPs).
Consequently, distinguishing a speech-language impediment
from stuttering is extremely difficult [3], [4]. As a result,
a machine learning-enabled evaluation approach would assist
SLPs in detecting the appropriate speech impediment and
eventually recommending the appropriate therapy.

An autoencoder-based super learning architecture named
Pipelined Deep Learner—Dual Classifier (PDL—DC) is pro-
posed to rapidly and accurately measure fluency and its
disorders. Autoencoders find latent features, find anomalies,
classify images, and process natural language. An autoen-
coder has an input encoder, a hidden layer, and an output
decoder. After training on the input features, the encoder
expects test data class labels after reconstructing the input.
The decoder restructures the bottleneck representation to cre-
ate a rebuilt feature vector.

The significant contributions of this research work are:
• A unique deep learning framework for the Pipelined
Deep Learner-Dual Classifier (PDL-DC) with the
Speech Disfluency Categorization and the Fluency Dis-
order Classification is proposed. Testing of the proposed
model on the state-of-the-art UCLASS dataset for vali-
dating the efficacy of the proposed model.

• The core goal of deciphering the type of speech fluency
impairment of an individual is targeted in two phases
for accurate prediction of the fluency disorder. Phase I
includes speech disfluency classification, while Phase II
incorporates the categorization of speech fluency dis-
orders into three classes: stuttering, specific language
impairment, and healthy. The aforementioned phases of
classification are two separate entities, and to the best of
the author’s knowledge, the combination or connection
of one system to another was not attempted earlier.

II. BACK GROUND
A speech disfluency is any aberration or generally unusual
component of one’s speaking patterns. There are hundreds of
distinct types of speech disfluencies, which are sometimes

lumped along with language and swallowing difficulties.
Stuttering, often known as stammering, is a disease character-
ized by problems with the consistency of the flow and fluency
of speech. This frequently entails unintentional additions of
sounds and phrases, as well as a delay or difficulty in con-
tinuing steadily through a sentence. Despite being described
as a condition, stuttering can occur in anyone’s speech and
is frequently triggered by stress or anxiousness. The speech
disfluency classification models, which incorporate a unique
hybrid deep ensemble [5], [6], [7] for categorizing varied
speech disfluencies in the UCLASS [8] and Fluency Bank
datasets [9], achieve an accuracy range of 97 to 98.1 %. Flu-
entNet is a discrete model that comprises a residual CNN [10]
that learns frame-level representations of the speech spec-
trum. In the UCLASS dataset, the residual CNNwas followed
by cascading Bi-LSTM,which displayed an average accuracy
of 91.75 %. Additionally, a disfluency recognition system
using a deep residual network and Bi-LSTM [11] obtained
a miss rate of 10.03 % while categorizing distinct stuttering
disfluencies. An innovative strategy that uses a decision tree
model based on prosodic characteristics collected from a
voice data corpus [12] achieved 75.5% accuracy on average.
The best recall accuracy of the speech disfluency system
is between 84.8 and 89.7% for fluent vs. neutral-disfluent
classes and between 87.7 and 96.9% for fluent-neutral vs.
disfluent classes. This is done by running prosodic features
from a Japanese speech corpus through several support vector
machines [13]. Using Mel Frequency Cepstral Coefficients
(MFCCs) and phoneme probabilities from the datasets of
UCLASS, Fluency Bank, and SEP-28K, the new method
displayed a constant accuracy of 94% when training a neu-
ral network [14] to classify stuttering into four disfluency
classes. According to experimental data, the extraction of
acoustic features [15] from the UCLASS stuttered speech
corpus presented a 98 % recognition rate when identifying
two types of pauses. Using a dedicated Gaussian mixture
model, glottal features and other conventional speech fea-
tures like MFCCs, intensity, cepstra, and pitch were extracted
from speech signals to detect three distinct classifications of
disfluencies [16]. When trained on the Cognitive Stroop test
database, the baseline accuracy was 79–84% [17]. A k-NN
classifier may detect stuttering by extracting speech features,
mainly MFCC, from a voice corpus [18].
A novel approach that begins with the extraction of MFCC

features from the UCLASS database and then uses a combi-
nation of a k-NN classifier and support vector machines [19]
yields accuracy in the range of 86% to 93% in distinguishing
fluent speech from disfluent speech. After extracting MFCCs
from the speech dataset, a Stuttering Speech Recognition
(SSR) system [20] could distinguish class labels at a 94 %
accuracy rate using an adaptive optimization-based artificial
neural network. Another SSR used support vector machines,
Gaussian mixture models, and vector quantization to analyze
prosodic and source characteristics from theUCLASS dataset
achieving 90.51 %, 84.33 %, and 86.71 % accuracy [8]
respectively. An SSR system [21], [22] that used MFCC
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TABLE 1. Characteristics of the disfluency types.

TABLE 2. Number of disfluencies in the dataset.

features extracted from the UCLASS database showed an
average accuracy between 93.10% and 95.88% when using
the DMFCC-Vector Quantization (VQ) framework for anal-
ysis. Notably, a few studies in the recent literature [5], [10],
[14], [15], [18], [22], have attempted to measure the degree
of disfluency using traditional machine-learning approaches.
While machine learning approaches are less sensitive in
phonation deviation evaluation, a deep learner can pro-
vide accurate categorization. Identifying Specific Language
Impairment (SLI) and stuttering is another important but
sometimes overlooked part of a system that can be used in
real-time technology-assisted treatment. This motivated the
authors to propose a hybrid deep learning model with the
creation of a new dataset and also compared it with the state-
of-the-art UCLASS dataset [8].

III. RESEARCH FINDINGS
A. DATASET DESCRIPTION
The disfluent speech data corpus used in this study is made
up of spontaneous English speech samples from 27 bilingual
children, 14 male and 13 female, whose first language is
Tamil and their second language is English. They are between
the ages of four and seven years. The speech samples were
recorded after informed consent was obtained from a par-
ent or legal guardian. All methods were carried out under
relevant guidelines and regulations as in [23]. The sampling
frequency maintained all through the recording was 16 kHz.
Bilingual children demonstrated several disfluencies during
their speech rendition in their second language of commu-
nication other than their mother tongue, according to careful
observation. Their disfluent speech utterances were evaluated
to identify glottal feature abnormalities caused by speech
disfluencies. In the children’s utterances, five disfluencies
were observed: filled pauses, prolongations, revisions, word
repetitions and word-medial repetitions. Table 1 provides a
summary of the disfluencies as well as a description of the
same.

TABLE 3. Count of disfluencies as per fluency disorder.

From an extensive literature review and practical interac-
tion with children aged four to seven, the authors concluded
that those with stuttering disorder exhibited more prolonga-
tion andword-medial repetitions, whereas thosewith Specific
Language Impairment (SLI) exhibited filled pauses and
whole-word repetitions. The healthy patients were seen to be
fluent but exhibited revision disfluencies at times.

Table 2 and Table 3 elaborate on the total number of
healthy disfluencies such as revisions, SLI disfluencies such
as whole-word repetitions and filled gaps, and stuttering dis-
fluencies such as prolongations and word-medial repetitions.

PDL-DC was rigorously tested on the UCLASS dataset
using Leave-One-Subject-Out (LOSO) cross-validation to
confirm the effectiveness of the proposed model. The output
of models evaluated against this dataset is presented as the
mean of 25 experiments. A test set from one participant and
training data from 24 people are combined to create each
experiment. The UCLASS dataset was subjected to a 10-fold
cross-validation procedure, with a randomly chosen selection
of 90% of the samples from each stutter and 90% of the clean
samples being utilized for training. Tests were conducted
on the remaining 10% of both clean and stuttering samples.
Following training over 30 epochs for all experiments, the
loss exhibited no variation.

B. FEATURE EXTRACTION
Over voiced segments, a total of 9 glottal parameters and
their four statistical functionals were calculated. This gave us
36 glottal characteristics. To learn more about the glottal fea-
tures, the difference between different kinds of stuttering was
also brought up. The glottal characteristics from the speech
frames as shown in Table. 4 was used to train the proposed
hybrid deep learning model. The mean open quotient, which
represents the open and closure peaks of the signals at the
glottis, was calculated as the proportion of the opening phase
to the whole duration of the glottal signal cycle, as shown
in equation (1). The disfluencies had a longer open quotient,
indicating that the stuttering participants’ voice start time was
prolonged.

Mean Open Quotient =
Glottal opening phase period
Duration of glottal cycle

(1)

The Open Quotient (OQ) variability was measured as the rate
of opening phase duration of the glottal flow signal, measured
using equation (2).

OQ (Variability) =
Opening phase duration
Duration of glottal cycle

(2)
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TABLE 4. Glottal features.

The Normalized Amplitude Quotient viz. NAQ parametrizes
the closing phase of the glottis and was measured to be the
ratio of the quotient of amplitude to the time taken for one
glottal cycle to complete as shown in equation (3).

NAQ =
Amplitude Quotient

Duration of glottal cycle
(3)

The parameter H1H2 is the difference in the amplitude of
the first two glottal formants H1 and H2 which is a measure
of vocal quality. It was computed as per equation (4). The
change in the open quotient reflected on the H1H2 parameter
is shown in Figure 1(a).

H1H2 = 10log10

(
|As(f0)|

|As(2 ∗ f0)|

)
(4)

where, As(f0) is the spectral amplitude at the fundamental
frequency (f0) is the spectral amplitude at twice the f0.

The Harmonic Richness Factor is measured as the fraction
of the spectral amplitude of harmonics in total w.r.t. the
amplitude of fundamental frequency as shown in equation (5).

Harmonic Richness Factor = 10 log10

(∑
|As(f12)|

|As(f0)|

)
(5)

where, As(fn) is the spectral amplitude of the nth harmonic.
As shown in Figure 1, the mean Glottal Closure Instants

(GCI) for individuals with specific language impairment and
healthy instances were found to be lower due to a consid-
erably longer glottal closure time required in the successive
glottal cycles. Those who stutter had a lower normalized
amplitude quotient during subsequent glottal cycles. Because
of the disturbed voice onset, the stuttering individuals had the
lowest average open quotient for successive glottal cycles.
Also, the variance in the first harmonics of the glottal pulse
increased significantly for the stuttering people. The density
distributions of the average OQ, NAQ, and H1H2 were dif-
ferent for each disfluency, as shown in Figure 2. Furthermore,
the mean harmonic richness factor separated the filled pauses

from the other disfluencies. Since glottal characteristics dis-
tinguished disfluencies distinctively, they were used to train
the hybrid deep learning model for disfluency classification.

C. PROPOSED MODEL
The proposed hybrid model was made as a precise screening
tool to find out the speech-related issues in a person, as a
result of an intrinsic categorization of speech disfluencies.
The suggested hybrid model was hailed as the Pipelined Deep
Learner-Dual Classifier. Figure 3 displays the proposed PDL-
DC architecture, which includes a hybrid deep learner for
dual categorization. The suggested PDL-DCmodel, as shown
in the figure, combines a convolutional autoencoder [24]
with a super learner model [25] for fluency evaluation. The
procedure is divided into two stages: the disfluency catego-
rization phase and the fluency disorder classification phase.
The Speech Disfluency Categorization phase aims to deci-
pher the individual’s speech disfluency uttered using the
proposed hybrid deep learner model. The Fluency Disorder
Classification phase deciphers the type of speech fluency dis-
order suffered by the individual using the same hybrid deep
learner model. Furthermore, the suggested stages are diag-
nosed independently of one another. In this research work,
the convolutional autoencoder was incorporated for feature
engineering, to narrow down the best features collated with
the proposed PDL-DC model for executing accurate diagno-
sis at each phase. The convolutional autoencoder model is
composed of the encoder-decoder section each made of three
strata of convolutional layers. Each of the layers has been
constructed with a different number of neurons viz. first layer
was built with 36 neurons identical to the last layer of the
decoder. Further, the kernel size in each layer of the encoder
and decoder was tweaked to (2,2).

The model summary of the CAE with its encoder and
decoder is presented in Figure 5. The proposed PDL-DC
model, as previously stated, includes a super learner model
that intends to do analysis and prediction with high accu-
racy and precision. The super learner is a composite of
machine learners that use various categorization algorithms.
The super learner model’s process seeks to maintain an ideal
weight average of all the models. As a consequence, the
super learner model has been shown to provide accurate
predictions. The super-learner model in this study was built
using eight of the best-performing base models: logistic
regression, passive aggressor classifier, k-nearest neighbor’s
classifier, random forest classifier, bagging classifier, extra
trees classifier, extreme gradient boosting (XGB) classi-
fier, and multi-layered perceptron classifier. Furthermore, the
suggested super learner model has been combined with a
meta-learner, the XGB Classifier, for the prediction of class
labels. The architecture of the super learner is seen in detail
in Figure 4. The entire dataset utilized for model training,
validation and testing the Pipelined Deep Learner - Dual
Classifier as a whole was partitioned into a 60:20:20 ratio,
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FIGURE 1. Glottal feature comparison of Stuttering, SLI, and Healthy speech.

with 60% of the data utilized for the model’s learning phase
while the remaining 40% was dedicated for model validation
and testing [26].

This is conventionally followed to train and test the pro-
posed model. Finally, the activation functions of each layer
of the encoder and decoder were modified to Rectified Linear
Unit (ReLU) with the same padding.

IV. RESULTS AND DISCUSSION
The hypothesized phases of the hybrid model were assessed
using conventional classification performance measures such
as Cohen’s Kappa coefficient, classification accuracy, F1-
score along with its weighted, macro and micro measure-
ments, balanced accuracy, Jaccard score. Further, the error
metrics such as Hamming Loss were also investigated. Also,
the Confusion matrix was plotted to evaluate the effective-
ness of the base-models and the proposed Pipelined Deep
Learner-Dual Classifier (PDL-DC) model in distinguishing
one class label from other labels.

A. CLASSIFICATION
An evaluation metric that describes the model’s ability to
identify the output labels uniquely. It is the fraction of the
right predictions to the total number of classifications made
by the model. For 20 trials, the mean categorization accuracy
was calculated using equation (6).

Classification Accuracy =
Number of Correct Forecasts
Total Number of Predictions

(6)

From Table.5, it is interpreted that there is an improvement
in the model testing during the Fluency Disorder Classifica-
tion phase by 0.820 as compared to the Speech Disfluency
Categorization phase. Also, while validating the model, the
Fluency Disorder Classification phase scores 0.70 % points
better than the Speech Disfluency Categorization phase. This
proves the efficacy of the model in identifying the correct
disfluency disorders and categorizing them properly.

B. KAPPA COEFFICIENT
A statistical metric that is used to measure the level of corre-
lation between the predicted and the true labels in a model’s
prediction is Cohen’s kappa coefficient, presented as kappa
in the equation (7). The range of kappa is between 0 and 1; a
score close to 1 indicates a competent classifier.

kappa =
TL − PL
1 − PL

(7)

where TL: True label and PL: Predicted label
Table.5 demonstrates that when the proposed model is

validated and tested, it differs just by 1 % point in kappa
value between the Speech Disfluency Categorization phase
and the Fluency Disorder Classification phase. This displays
the model’s accuracy in correlating the true and predicted
labels.

C. F1 SCORE
The proposed phases of the hybrid model were rigorously
evaluated by calculating the F1 score. It is the measure of the
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FIGURE 2. Comparison of disfluency classes’ w.r.t. the Glottal features.

mean taken between the recall and precision scores. It was
calculated using equation (8).

F1score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(8)

After the model was verified and evaluated, the proposed
model during the Fluency Disorder Classification phase
surpassed in performance over the SpeechDisfluency Catego-
rization phase by one percentage point, as shown in Table 5.
This improvement is seen in all three cases viz. macro, micro
and weighted average. This shows how well the proposed
model detects and categorizes fluency disorders.

D. JACCARD SIMILARITY DISORDER
The predicted labels and the true labels were compared by
measuring the Jaccard Similarity Index (JSI). It gives the
score of the similitude between the classification model’s
prediction and the true class labels. It was measured utilizing
equation (9). The JSI disorder ranges from 0 to 1. A higher
JSI rating emphasizes accurate categorization.

JSI
(
ytrue, ypred

)
=

∣∣ytrue ⋂
ypred

∣∣∣∣ytrue ⋃
ypred

∣∣ (9)

The proposed model during the Fluency Disorder Classifi-
cation phase performs better by 2 % of JSI than during the

Speech Disfluency Categorization phase. This improvement
is seen in all three instances, namely macro, micro, and
weighted average. This demonstrates how accurately the pro-
posed model discerns the similarities between the predicted
label and the actual label which indicates how likely the
specific disfluencies have occurred.

E. HAMMING LOSS
The Hamming Loss is given by the proportion of true
classification labels to the detected labels, as depicted in
equation (10).

Hamming Loss
(
ytrue, ypred

)
=

|No. of ytrue|∣∣No. of ypred ∣∣ (10)

The results obtained during the evaluation of the postulated
phases of the proposed hybridmodel are illustrated in Table 5.
It is inferred that during the SpeechDisfluency Categorization
phase and theFluencyDisorder Classification phase, the pro-
posed model maintains an average of 0.02 loss. This indicates
the loss is almost nil.

The efficacy of the proposed Pipelined Deep Learner-Dual
Classifier (PDL-DC) model in both phases of classification
was measured using confusion matrices. Along the diagonal
elements of the confusion matrix, the true classifications are
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FIGURE 3. Proposed pipelined deep learner deep learning framework.

FIGURE 4. Super learner model architecture.

presented. The proposed PDL-DC model was trained over
70% of the available dataset while the remaining 30% of the
instances in the dataset were used as validation instances.

Models were trainedwith a batch size of 32 and a learning rate
of 0.001 using the Adam optimizer. With an early stopping
requirement of 15, early stopping was employed based on

VOLUME 12, 2024 24085



S. C. Pravin et al.: Disfluency Assessment Using Deep Super Learners

FIGURE 5. Encoder layout of the convolutional autoencoder.

Algorithm 1 Pseudocode for the CAE-based Feature
Engineering

1 begin
2 set vector size of input feature as ‘d’, the number

of hidden layers as ‘l’, and the number of classes
as ‘C’ initialize the epochs, number of neurons in
the hidden layers and learning rate

3 build a CAE with ‘d’ input nodes, ‘l’ layers of
hidden nodes with 64 units;

4 set number of units at the bottleneck layer as 10;
5 set number of neurons at the output layer of the

CAE as ‘d’ to match with the input layer;
6 set CAE weightsW t and Biases V(1), V(2) to an

initial zero;
7 for each training epoch
8 for databatch
9 compute feature resynthesis:
10 x̃ = φ(W t .φ(W t .x+ V (1)

+ V (2))
11 Evaluate the loss of reconstruction:
12 DKL (P(ỹ) |P(y))DKL (P(ỹ) |P(y)) =

−
∑

ỹϵy P (y) log (P(y) |P(ỹ))
13 set an update to modify the CAE weightsWt

and V(1), V(2)

14 end
15 end
16 discard output layer;
17 extricate feature vector from the bottleneck layer;
18 end

loss. Also, it was found that the proposed hybrid model’s
postulated phases yielded superior results in both phases of
classification.

F. CONFUSION MATRIX
The deployment of stutter detection using the proposedmodel
does not just apply to individuals with long-term stuttering
difficulties, but it may also appeal to the rest of the globe since
it can aid with communication skill enhancement. The con-
temporary models in the literature were compared with the
proposed Pipelined Deep Learner - Dual Classifier model’s
performance which is presented in Table 6. The literature in
[18, 22, 15, 10, 5, and 14] is compared against the proposed
method. In literature [18, 22, 15, 10, 5 and 14] and the pro-
posed work, UCLASS dataset is commonly used for testing
the conventional disfluency classification models. UCLASS
dataset comprises recordings from 128 stuttering children and
adults. In this research work, the UCLASS annotations of
25 subjects released by [10] were utilized. While testing the
proposed model with UCLASS dataset for Speech Disfluency
Categorization phase, the results of testing and validation
accuracy are almost the same. This proves the efficacy of
the model for the state-of-the-art dataset. The difference
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Algorithm 2 Pseudocode for the Super-Learner-
based Prediction
1 begin

2 Extricate bottleneck features from the CAE;
3 for 1 to total number of epochs:

4 fragment data into k folds;
5 for the respective fold:

6 for every base − model in the Super Learner :

7 fit the base-model on the bottleneck
features in the present fold;

8 validate each base-model by
computing class probabilities;

9 build classification probabilities for
the base-model;

10 end

11 end

12 update weights of the base-models;
13 compute mean likelihood of all the

base-models;
14 if the computed loss is lesser thanthe preceding epochloss

then

15 conjoin mean likelihood of the class labels
to the feature set;

16 else

17 store mean likelihood of the present
epoch; break for;

18 end

19 end

20 for

21 every sample in the test dataset do
22 for

23 every base-model in the Super Learner do
24 get individual class likelihood from the

base-model on the test dataset;
25 compute class-label likelihood for the

base-model;
26 end

27 end

28 get mean likelihood of all base-models;
29 classify the speech disfluency labels;
30 classify the fluency disorder labels;
31 formulate the confusion matrix;
32 end

in validation accuracy in percentage between the proposed
technique and the literature [18, 22, 15, 10, 5 and 14] are
10.92, 4.31, 11.56, -0.30, and 3.39 respectively. This shows
the proposed method outperforms other methods relatively in
validating the samples. The difference in testing accuracy in
percentage between the proposed technique and the literature
[18, 22, 15, 10, 5, and 14] are 4.94, 2.36, 4.75, -0.10, and
4.27 respectively. This shows that the proposed method out-
performs other methods relatively by effective testing of the
samples.

TABLE 5. Evaluation of the proposed hybrid model.

During the Speech Disfluency Categorization phase, the
hybrid model proved to classify well the classes of filled
pause, prolongation, word repetition and word-medial repe-
tition as depicted in Figure 6 (a). There is 100 % accuracy
in identifying the filled pause. In identifying the prolon-
gation, almost 97 % of identification accuracy was seen.
Since there is a thin line of demarcation between the whole
word repetition and word-medial repetition, error rate dif-
fered just by a percent in distinguishing them. Also, in 96%
of instances, the suggested model was able to identify the
revision disfluencies. On the whole, the proposed model was
able to identify speech disfluencies in 97.5% of the cases,
which reflects the efficacy of the model during the Speech
Disfluency Categorization phase. Further, during the Fluency
Disorder Analysis phase of the hybrid model, the classes
of Stuttering, SLI and Healthy were categorized as depicted
in Figure 6 (b). From Fig. 6 (b), the proposed model was
able to identify the Specific Language Impairment (SLI) and
stuttering by 99%. Stuttering is characterized by glitches
observed in the flow and fluency of speech. This frequently
entails unintentional additions of sounds and phrases, as well
as a delay or difficulty continuing steadily through a sentence,
and sometimes resembles the SLI. Although labeled as a
condition, stuttering can be observed occasionally in healthy
subjects’ speech as well and is frequently caused by stress or
anxiety. In a nutshell, it has been established that the proposed
hybrid model outperforms any conventional model in terms
of performance and resource utilization in the task of distin-
guishing disfluencies and demarcating fluency disorders.

V. CONCLUSION
The proposed Pipelined Deep Learner-Dual Classifier model
has been built to render a holistic assessment of the fluency of
a person. Stuttering and SLI remain the most difficult speech
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TABLE 6. Comparison with contemporary research on disfluency classification.

FIGURE 6. (a) Confusion matrix heatmap of phase i classification: speech disfluency categorization and (b) heatmap of phase ii
model: fluency disorder classification.

disorders to distinguish because of a thin line of demarcation
between them, which makes it tricky to model using sim-
ple algorithms. Thus, the PDL-DC model was designed to
precisely classify the stuttering disfluencies from SLI disflu-
encies. PDL-DC could recognize five forms of speech disflu-

encies: filled pauses, prolongations, revisions, word repeats
and word-medial repetitions. This model employs a hybrid
combination of convolutional autoencoder and super learning
model for learning efficient temporal correlations and spec-
tral frame-level speech representations from disfluent speech.
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To correctly detect the needed influences and significant sec-
tions of speech, the proposed model provides state-of-the-art
disfluency classification results compared to previous work
in the field. As there is no dataset available with instances
of disfluencies from subjects exhibiting stuttering and SLI,
the authors intended to create a disfluent speech dataset to
permit an in-depth study on disfluency identification. Exper-
imentally, the suggested hybrid model demonstrated greater
classification accuracy and reduced computational complex-
ity than other traditional ensembles described in the current
literature. As a consequence, the proposedmodelmay be used
as an accurate fluency assessment tool to distinguish speech
disfluencies pronounced by subjects with varied fluency dis-
orders and to analyse the presence of stuttering disorder
or a particular language impairment in patients based on
the real-time data provided by Clinicians. Further, fluency
assessment tests may be carried out rapidly for students which
would reveal their proficiency in the language.

In future, the building robust models to assess the intensity
of various speech-related disorders will be focused. This
would also involve deeper analysis into the physiological
bases behind the origin of speech disorders in subjects.
Further, an automated speech therapy suggestive aid and
AI-enabled speech therapy are also thought-out to be a viable
future work.
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