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ABSTRACT In the field of health management, predicting the remaining useful life (RUL) of a device
becomes critical. However, the RUL prediction process is often affected by a various of confounding
factors, resulting in reduced prediction accuracy. To improve the accuracy of RUL prediction, this study
first extracts the root mean square, skewness, and Kurtosis from the bearing characteristics, and adopts
the multidimensional scale change features to construct a health indicator that fully reflects the bearing
degradation trend. Then, a combination of the Isolation forest algorithm and the 3σ criterion was used to
adaptively determine the first prediction time (FPT) of the bearings. Subsequently, the time series model
SCINet is introduced for the first time into the field of bearing life prediction and used to predict the RUL
of bearings. Finally, a series of multi-step prediction experiments are conducted on two publicly available
datasets, PHM2012 and XJTU-SY, and compared with LSTM, GRU, Informer, and TCNmodels. The results
show that the improved IF-SCINET has a stronger prediction capability compared to the traditional model,
which significantly improves the accuracy and stability of bearing RUL prediction.

INDEX TERMS First prediction time, isolation forest, remaining life prediction, rolling bearing, sample
convolutional interaction.

I. INTRODUCTION
Rolling bearings play an important and crucial role in rotating
machinery. With the increasing complexity of the mechanical
structure, the incidence of equipment failure has increased
significantly. Once a failure occurs, it not only leads to
equipment downtime and maintenance, but can also lead
to more serious safety issues [1], [2]. According to rel-
evant statistics, about 40% to 50% of equipment failures
are caused by anomalies in the operation of rolling bear-
ings [3]. Consequently, the practice of prognostics and health
management (PHM) for bearings has become indispens-
able [4], [5]. One essential aspect of PHM is the prediction
of remaining bearing life, which is crucial for ensuring
equipment reliability and preventing potentially severe safety
incidents [6], [7], [8], [9].
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Presently, existing methodologies for Remaining Useful
Life (RUL) prediction can be generally classified into two
principal categories: model-based prediction and data-driven
prediction [10]. Model-based approaches conventionally rely
on mathematical or physical models to elucidate the process
of bearing degradation [11], [12], [13], [14]. Nevertheless,
in light of the escalating intricacy of contemporary equip-
ment, attaining a precise physical model to elucidate the
operational conditions of bearings is becoming progressively
arduous. In contradistinction, a data-driven approach can
directly harness the information garnered from sensors to
prognosticate the trajectory of bearing degradation, obviating
the imperative for an exhaustive understanding of the intri-
cacies of bearing failure mechanisms [15], [16]. This makes
the data-driven approach particularly suitable for complex
systems, where fault conditions can be analyzed by detecting
changes in measurement data. Data-driven methodologies
can be further categorized into statistical data-based [17],
machine learning, and deep learning paradigms [18], [19].
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Although statistical approaches exhibit commendable predic-
tive performancewithin the confines of linearity assumptions,
they tend to falter in capturing non-linear features inherent
in sequential data [20]. Consequently, in recent times, data-
driven predictive techniques have progressively transitioned
into the domains of machine learning and deep learning.
Within the machine learning domain, research predomi-
nantly revolves aroundmethodologies such as Support Vector
Machines (SVM) [21], Markov Decision Process (MDP)
model [22], and Random Forests (RF) [23]. In contrast, deep
learning, characterized by the utilization of intricate neural
network architectures to bolster mapping capabilities, has
exhibited notable advantages in terms of predictive accuracy
compared to conventional machine learning methodologies.
In the sphere of sequence modeling, deep neural networks
encompass Long Short-Term Memory Networks (LSTMs)
[24], [25], [26], Gated Recurrent Unit Networks (GRUs),
Temporal Convolutional Networks (TCNs) [27], as well
as Transformer-based architectures, including its variant,
Informer. Recent years have witnessed the emergence of
a multitude of deep learning methodologies for Remaining
Useful Life (RUL) prediction, as enumerated below.

In a previous study, Yang et al. [28] constructed a gener-
alized regression neural network (GRNN) model based on
health metrics for predicting the RUL of rolling bearings.
The method showed good performance in terms of predic-
tion accuracy and reliability. Wang et al. [29] proposed a
CNN-LSTM-PSO tool residual life prediction method based
on multi-channel feature fusion to address the problems
of weak tool wear state features, difficult extraction, and
low prediction precision and accuracy. Cao et al. [30] used
a parallel GRU, a comprehensive strategy of a two-stage
attention mechanism and nonparametric uncertainty quan-
tification methods to obtain accurate and reliable prediction
results. Wang et al. [31] combined improved TCN and migra-
tion learning to construct a bearing life prediction model that
better exploits the inherent degradation tendency of the bear-
ings, thus effectively improving the prediction accuracy of the
remaining life. In addition, Liu et al. [32] proposed a novel
autonomous optimization Transformer, which combines a
cyclic mechanism and a positional embedding algorithm to
achieve accurate prediction of long sequences.

Nonetheless, these sequence modeling networks are not
without inherent limitations. Recurrent Neural Networks
(RNNs), for instance, exhibit vulnerability to issues such
as error accumulation, gradient vanishing, and gradient
explosion. While Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) architectures offer partial mit-
igation of these concerns, they do not provide complete
resolutions. Transformer and Informer models, on the other
hand, typically require substantial computational resources,
constraining their applicability in resource-constrained
settings. Additionally, Temporal Convolutional Networks
(TCNs) require raw sequences with valid historical lengths,
potentially demanding increased memory resources during

evaluation. During the 36th Conference on Neural Infor-
mation Processing Systems (NeurIPS 2022, Liu et al. [33]
introduced an inventive neural network framework known as
the Sample Convolution and Interaction Network (SCINet).
Its central concept revolves around the comprehensive
exploitation of a unique temporal property intrinsic to time
series data, specifically, the robust preservation of temporal
relationships even after undergoing downsampling into two
distinct subsequences. When considered from the perspec-
tive of computational cost, SCINet significantly outperforms
the Transformer model in terms of efficiency. Further-
more, SCINet effectively addresses two notable limitations
associated with Temporal Convolutional Networks (TCNs),
namely, the absence of a requirement for output sequences
of equal length as input and the prevention of inadvertent
leakage of future information. SCINet surpasses traditional
RNNs, Transformer models, and TCNs in the realm of time
series prediction. However, it is noteworthy that, to date,
SCINet has not been employed in the domain of bearing life
prediction. Consequently, this study pioneers the incorpora-
tion of SCINet into the prediction of RUL for bearings.

The inherently microscopic scale of the bearing seal
structure renders direct, non-destructive observation of its
degradation exceedingly challenging [34]. Consequently, the
imperative arises for the establishment of a Health Indica-
tor (HI) capable of characterizing the state and extent of
degradation in bearings. This degradation indicator serves
as a means to encapsulate the operational condition and
performance of the bearing during its service life, and it
lays the essential groundwork for the accurate prediction of
Rolling Bearings’ Remaining Useful Life (RUL). An ideal
HI not only elucidates the trend of machinery deteriora-
tion but also significantly enhances the precision of RUL
prediction [35]. Within the domain of machine RUL pre-
diction, the Root Mean Square (RMS) stands as the most
widely adopted and utilized HI [36]. Liu et al. [37] employed
the Root Mean Square (RMS) as the degradation index
for rolling bearings. They implemented a statistical process
control (SPC) methodology to segment the degradation pro-
cess into distinct stages, enabling adaptive model switching,
and utilized the expectation maximization (EM) algorithm
for real-time parameter updates. This approach facilitated
the prediction of Remaining Useful Life (RUL) distribu-
tion across various degradation stages. Yang et al. [38] on
the other hand, adopted RMS as the Health Indicator (HI)
and introduced two novel evaluation metrics, the global
gain indicator and local gain indicator, designed to discern
diverse states of rolling bearings. However, relying solely
on RMS as the exclusive degradation indicator for bearings
may prove insufficient for capturing localized degradation
patterns, potentially undermining the accuracy of overall
RUL predictions. Alternatively, the extraction of multiple
features from the raw vibration signals, followed by their
consolidation into a unified feature, can heighten the sen-
sitivity of health state information. This approach not only
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enhances the precision of bearing predictions but also averts
the potential for inaccuracies in the results [39]. Ni et al. [40]
devised a novel Health Index (HI) for tracking degradation.
This innovative HI incorporated information from spectral
correlation, Wasserstein distance, and linear rectification,
enabling it to represent all periodic power spectral probability
distributions over time. In recent years, some methods for
the adaptive extraction of health metrics have been gradually
developed. Chen et al. [41] proposed a deep convolutional
autoencoder based on quadratic function for constructing
health metrics of bearings. Qin et al. [42] proposed a
new degradation trend-constrained variational self-encoder to
construct health indicators with obvious degradation trends.
Zhou et al. [43] innovatively constructed a health indicator
characterizing the degradation process by distributing the
contact ratio metric. In the present investigation, a novel and
all-encompassing health metric is introduced to delineate the
bearing’s degradation trend. This metric is grounded in the
utilization of the RMS to capture global characteristics, with
kurtosis and skewness employed to encapsulate local fea-
tures. Subsequently, a distance matrix is assembled through
the application of standardized Euclidean distances, and the
amalgamation of these health metrics is accomplished via a
multidimensional scaling transformation.

In the realm of traditional data-driven Remaining Useful
Life (RUL) prediction research, due attention to the First
Prediction Time (FPT) has often been disregarded. Never-
theless, FPT plays a pivotal role in the precision of RUL
prediction. An incorrect determination of FPT can lead to the
omission of critical information regarding early failures or
the inclusion of early failure data within the RUL estimation.
Kong et al. [44] employed the 3σ criterion technique to delin-
eate distinct health stages. Wang et al. [45] performed health
stage identification by measuring the gradient of degradation
within a sliding window to characterize the degradation trend
and to identify jump points. Wasim Ahmad et al. [36] utilized
the rate of growth of a health indicator to ascertain the onset
of health state degradation in a bearing. Nonetheless, it should
be noted that these methods may be susceptible to substantial
impacts when subjected to noise disturbances. In the present
study, we propose an approach that combines the Isolation
Forest algorithm with the 3σmethod to determine the initial
degradation point of the bearing.

A rolling bearing RUL prediction method based on
IF-SCINet is proposed to address the above problems. The
main contributions of this study include the following three
aspects:

(1) A health indicator that more comprehensively reflects
the bearing degradation trend is proposed for RUL predic-
tion. The indicator is based on the seuclidean distance to
construct the distance matrix, and the root mean square,
skewness, and kurtosis are fused by a multidimensional scale
transformation to realize a comprehensive representation of
the bearing degradation trend.

(2) The anomaly detection algorithm Isolation Forest is
applied to detect the initial degradation point of the bearing,

and combined with the 3σ method criterion to determine the
range of anomaly proportion, and finally combined with the
grid search algorithm to determine the FPT.

(3) In this study, SCINet was used for the first time for
RUL prediction of bearings and validated with PHM2012
and XJTU-SY datasets, and good experimental results were
obtained.

The rest of the paper is organized as follows: Section II
describes the basic theoretical background of the proposed
method; Section III presents the details of the proposed pre-
diction model; Section IV validates the effectiveness of the
proposed method using the PHM2012 and XJTU-SY bearing
datasets; and Section V concludes the paper.

II. BASIC THEORETICAL BACKGROUND
A. DESCRIPTION OF SELECTED FEATURES
In the bearing vibration index, the root mean square is a
very important index, which reflects the strength and stabil-
ity of the bearing vibration signal. For the time series data
x1, x2, · · · , xN , there is the following formula:

xrms =

√√√√ 1
N

N∑
i=1

x2i (1)

Kurtosis reacts to the shock characteristics of bearing
vibration signals. Kurtosis is particularly sensitive to shock
signals and is especially suitable for surface damage type
faults, especially for early fault characterization.

α =
1
N

N∑
i=1

x4i (2)

Skewness reflects the asymmetry of the vibration signal
and is used to measure the asymmetry of the probability dis-
tribution of a random variable. Normally the vibration signal
is symmetric about the x-axis, when the skewness should be
close to 0. If the friction or collision in a certain direction of
the equipment is large, it will cause the vibration asymmetry
and make the skewness larger.

β =
1
N

N∑
i=1

x3i (3)

In the above equation: xi denotes each data point in the
dataset and N denotes the total number of data points.

B. MDS ALGORITHM
The Multidimensional Scaling (MDS) algorithm serves
as a powerful tool for data reduction and visualiza-
tion. It effectively converts high-dimensional data into a
lower-dimensional space while preserving the intrinsic dis-
tance relationships among data points. At its essence, MDS
leverages a distance matrix to encapsulate the similarities and
correlations among data points. The dimensionality reduction
process of the MDS algorithm consists of:
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1) CONSTRUCT A DISTANCE MATRIX D
Calculate the distance between data points in the original
space. By calculating the distance between each pair of data
points, a distance matrix can be constructed. The constructed
distance matrix is D = (d(x, y))M×M .

2) COMPUTE THE INNER PRODUCT MATRIX B
The inner product matrix B is computed by centering the
distance matrix. The purpose of centering the distance matrix
is to make the data points symmetric with respect to the
origin. The centered distance matrix A is calculated by:

A = E −
1
N
jjT (4)

where E is a unit matrix of size M × M and j is an
M-dimensional all-1 vector.

The distance matrix D is converted to the inner product
matrix B,which is calculated as follows:

B = −
1
2
AD2A (5)

3) COMPUTE THE LOW-DIMENSIONAL MATRIX C
After obtaining the inner product matrixB, compute its eigen-
values and eigenvectors. The eigenvalues indicate the main
direction of change of the data, and the eigenvectors indicate
the magnitude in the corresponding direction. The matrix B
can be decomposed as:

B = SVST (6)

where V is the diagonal matrix corresponding to the eigen-
values of matrix B and S is the corresponding eigenvector.

The largest k eigenvalues and their corresponding eigen-
vectors are selected as the base of the k-dimensional space
after dimensionality reduction. Calculate the coordinates
after dimensionality reduction: project the original data onto
the selected k-dimensional base to get the coordinates after
dimensionality reduction. The specific calculation formula is:

Z = SV
1
2 (7)

The low-dimensional matrix C can be obtained by extract-
ing the first x column vectors of the matrix Z , of size M×x.

C. ISOLATION FOREST ALGORITHM
The Isolation Forest algorithm, introduced by Liu et al. [46]
at the 8th IEEE International Conference on Data Mining
in 2008, constitutes a machine learning approach for the
detection of anomalies. The fundamental premise of this
algorithm is rooted in the principle that data points exhibiting
higher degrees of clustering should be partitioned more fre-
quently, whereas data points with greater isolation merit less
frequent partitioning. Isolation Forest leverages the count of
segmentations to discern whether a given data point is tightly
grouped (representative of normalcy) or relatively isolation
(indicative of abnormality). The core assumption underly-
ing this algorithm posits that anomalous data points tend to
exhibit a sparser distribution within the feature space when

compared to their normal counterparts. The primary objective
of the Isolation Forest algorithm is the rapid isolation of
anomalous data points in the upper strata of the constructed
tree structure, while normal data points necessitate a greater
number of splits to achieve the same isolation. This objective
is particularly pertinent to the detection of initial deterioration
points in bearing systems.

The algorithm initiates by creating an isolation tree, essen-
tially a binary search tree. This isolation tree’s construction
process unfolds as follows: first, a dimension is randomly
chosen for partitioning, and the space is divided using a ran-
domly determined threshold situated between the minimum
and maximum values of that dimension. Subsequently, points
smaller than the threshold are assigned to the left subtree,
while those larger are assigned to the right subtree. This
partitioning operation is iteratively repeated within each sub-
space until a predetermined maximum tree height is reached,
or until all leaf nodes contain only one data point. Each data
point’s depth within the tree is recorded as a score. Given the
stochastic nature of generating a single isolation tree, multiple
isolation trees are needed to be generated, and their average
depths are calculated. To create diverse isolation trees, each
one can be constructed by randomly sampling a subset Ni
from the training set N . Then, by traversing each isolation
tree within the isolation forest, the path length of a sample x in
each isolation tree is computed, leading to the calculation of
the corresponding anomaly score. Finally, to classify a sample
as anomalous or not, a comparison is made between the
anomaly scores of the samples. The formula for calculating
the anomaly score of sample x is:

s(x, n) = 2−
E(h(x))
c(n) (8)

In the formula: n denotes the number of leaf nodes of the
isolation tree, h(x) denotes the total path from the root node to
the leaf node where sample x is located in the isolation tree,
E(h(x)) denotes the expectation of h(x) in the set of isolation
trees, c(n) denotes the average path length of the isolation
tree.

D. SCINet MODEL
SCINet, called Sample Convolutional Interaction Network,
is a neural network model for time series forecasting. The
model was first proposed in 2021 and has demonstrated its
superior performance on several datasets, as well as its lower
time cost relative to other models. The overall structure of
SCINet is shown in Fig. 1.

Fig. 1(a) shows the basic modules that make up the SCINet
network: the SCI-Block, which downsamples the input fea-
tures and divides them into two subsequences, Fodd and Feven,
which retain most of the information of the original sequence.
The features are then extracted from the two subsequences
using different convolutional kernels respectively. In order to
compensate for the feature loss caused by downsampling, the
two subsequences are used for interactive learning by element
product, and finally two updated sub-features Fodd and Feven
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FIGURE 1. SCINet network structure.

are obtained, which can be expressed as:

F sodd = Fodd ⊙ exp(φ(Feven)),F seven=Feven⊙exp(ϕ(Fodd ))

(9)

F ′
′odd = F sodd ± ρ(Dseven),F

′
even = FSeven ∓ η(F sodd ) (10)

where φ, ϕ, ρ, and η denote four different one-dimensional
convolutional modules, and ⊙ denotes element-by-element
convolution.

Fig. 1(b) shows a SCINet that uses a binary tree to combine
the SCI-Blocks, and for k>1, downsampling and processing
through different SCI-Block blocks is performed to learn
valid features with different temporal resolutions. Previous
information will be accumulated gradually, by which short-
term and long-term temporal dependencies in the time series
can be captured. The information will be combined and added
to the original time series through residual linkage at the
Concat&Realign layer, and finally the prediction output will
be made through the fully connected layer.

Fig. 1(c) shows the SCINet stacked up to form a more
powerful network Stacked SCINet, such that the network can
be used to predict more complex time series, simplifying the
learning of intermediate time features by applying intermedi-
ate supervision.

For training K (K ≥ 1) Stacked SCINets, the loss of the
Kth prediction result can be expressed as:

Lk =
1
τ

τ∑
i=0

||x̂ki − xi|| (11)

The loss for the Kth SCINet depends on whether it is a
single-step prediction or a multi-step prediction.

The single-step prediction of Lk can be expressed as:

Lk =
1

τ − 1

τ−1∑
i=0

||x̂ki − xi|| + λ||x̂kτ − xτ || (12)

where, λ ∈ (0, 1) denotes a balancing hyperparameter,
and adjusting λ improves the prediction performance of the
network.

The multistep prediction of Lk can be expressed as:

Lk =
1

τ − 1

τ−1∑
i=0

||x̂ki − xi|| (13)

The full loss of Stacked SCINet can be expressed as:

L =

K∑
k=1

Lk (14)

III. DETAILED INFORMATION ON THE PROPOSED LIFE
PREDICTION MODEL
A. CONSTRUCTION OF RSK
In order to better reflect the degradation trend of the bearings,
the three features described in Section II were selected in this
study to construct the indices characterizing the degradation
state of the bearings. In the process of bearing degradation,
the root mean square can well represent the overall trend
of bearing degradation. However, it is not obvious enough
in the representation of the local degradation characteristics,
so the kurtosis is introduced to describe the initial wear
phenomenon of the bearing. When the failure is gradually
aggravated, the skewness is again used to capture the local-
ized features at the later stage, so as to more accurately
represent the whole degradation process of rolling bearings.
These three features characterizing the degradation trend are
fused using the MDS algorithm. During the fusion process,
it is necessary to consider how to construct a suitable distance
matrix.

Through the comparison of the effects of Cosine distance,
Euclidean distance, Mahalanobis distance, and Seuclidean
distance (as shown in Fig. 2), it can be observed that both the
Euclidean distance graph and the Seuclidean distance graph
exhibit enhanced monotonicity. It is worth noting that the
Seuclidean distance graph demonstrates fewer random dis-
turbances. Therefore, the final decision is to use Seuclidean
distance to construct the distance matrix. The formula for
Seuclidean distance in n-dimensional space is as follows:

d(x, y) =

√√√√ n∑
i=1

(
xi − yi
si

)2 (15)

where xi (1 ≤ i ≤ M) and yi (1 ≤ i ≤ M) denote the values
of the two data points in the ith dimension and is the standard
deviation in the ith dimension.

The seuclidean is a variant of the eucldean that is used to
resolve scale differences between dimensions. More specifi-
cally, seuclidean distance is equivalent to dividing the values
on each dimension by the standard deviation on that dimen-
sion before calculating the Euclidean distance. This helps to
eliminate the effects of different scales of values in different
dimensions and ensures that the contribution of each dimen-
sion to the distance calculation is relatively balanced.

At this stage, the construction of the health indicator, Root
Mean Square-Skewness-Kurtosis (RSK), is complete.
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FIGURE 2. Comparison of four distances.

FIGURE 3. Distance map after filtering.

B. RSK HEALTH INDICATOR PREPROCESSING
To efficiently mitigate the impact of random noise and high-
frequency components, this study employs a moving average
filter with a 5-step delay window to preprocess HI contami-
nated by noise. The moving-average filter is a widely adopted
signal processing method achieved by computing the mean
value of data points within a fixed window. More precisely,
for each data point, it is aggregated with all other data points
within the window, and the result is divided by the window’s
size to derive the average value, which subsequently replaces
the original data points. Fig. 3 provides a visual representation
of the filtered distance plot.

C. IMPROVED IF-SCINET
After constructing the bearing health indicator RSK and nor-
malizing it, it was then necessary to determine a suitable
initial degradation point in order to determine the time of the
first prediction of the model. The determination of the initial
degradation point is in a way equivalent to bearing anomaly
detection.

1) IMPROVED IF DETERMINATION OF FPT
Existing anomaly detection methods often rely on the mod-
eling of normal data samples to establish their distribution
within the feature space. Consequently, any data falling
outside this established region is classified as an anomaly.

However, a significant drawback of these techniques lies
in their excessive emphasis on modeling normal data, with
relatively less attention given to abnormal data. This imbal-
ance can result in high false positive rates or the failure to
detect anomalies when they occur. The task of identifying
the initial degradation point in bearings fundamentally aligns
with anomaly detection. Therefore, this study employs the
Isolation Forest algorithm for the purpose of detecting the
initial degradation point in bearings.

In traditional isolation forest algorithms, it is necessary to
manually specify a hyperparameter, which is the proportion
of anomalous data in the dataset. This brings a lot of incon-
venience. In order to find the most appropriate proportion
of anomalies, this study introduces the 3σ criterion into the
method, i.e., the probability that the distribution of values is
in the range of (µ − σ, µ + σ ) is 0.68, and the proportion of
anomalies is set as (0, 0.68]. Then, the grid search algorithm
is used to select the optimal value of the anomaly proportion.
So far, the improved IF realizes the adaptive determination
of the initial bearing degradation point. Fig. 4 demonstrates
the comparison of the initial degradation points of the bear-
ings determined by the isolation forest algorithm and the
3σ method. As can be seen in Fig. 4: For Bearing1_3, the
initial degradation point identified is not very different from
the degradation status shown in the corresponding amplitude
diagram. For Bearing2_6, although there are no obvious signs
of degradation in the corresponding amplitude diagram, there
is a more obvious increase in the magnitude of change in the
corresponding health indicators after the initial degradation
point is determined. For bearing 3_3, the initial degradation
point identified is slightly advanced from the amplitude plot,
but within reasonable limits. This may be due to the random
nature of isolation forests when constructing isolation trees.
The improved isolation forest algorithm is able to adaptively
detect the initial degradation points of the bearings, while the
traditional method is less effective. This may be due to the
introduction of a delay factor in the moving average filtering,
which causes the initial degradation point determined by the
traditional method to appear at the stage of bearing failure,
which further illustrates the effectiveness of the proposed
method.

2) IF-SCINET MODEL
After adaptively determining the FPT of RSK using the
improved Isolation Forest algorithm, it needs to be imported
into the SCINet model for prediction. In this paper, we did
not improve the structure of the SCINet model, but instead
used only a grid search to determine the optimal combination
of the number of level tiers for the models SCI-Block and
Stack SCINet, i.e., the model reaches an optimal solution
when level=2 and Stack=1. Fig. 5 illustrates the improved
IF-SCINet model. First, a basic Isolation Forest model is
defined. Next, a 3σ method was used to determine the pro-
portion of anomalies in the data, followed by a grid search
to determine the smallest negative average anomaly score.
Finally, the Isolation Forest model was retrained using the
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FIGURE 4. Comparison chart for determining the first prediction point.

optimal proportion of anomalies to determine the bearing
FPT. After that, the training and prediction phases of the
SCINet model are initiated. The initial step is to downsample
the training data followed by interactive learning to com-
pensate for the loss due to downsampling to capture local
and global features of the time series data. Subsequently,
short-term and long-term dependencies in the time series are
captured by arrangingmultiple SCI-Blocks in a tree structure.
Next, a new sequence re-formed by an inverse parity split-
ting operation is added to the original sequence by residual
joining. After joining via fully connected layers, intermediate
supervision is added to simplify the learning of intermedi-
ate temporal features. Finally, the trained model is used to
predict the output of the test data. In contrast to SCINet,
Stack SCINet introduces intermediate supervision. Interme-
diate supervision helps the model understand the dynamics
of time series data more effectively and improves the ability
to extract important features in the time series. Specifically,
intermediate supervision enables the model to perform more
frequent parameter updates when learning time series data
representations by introducing additional supervisory signals
or targets during the training process. This helps alleviate
the gradient vanishing problem, accelerates the convergence
process of the model, and improves the model’s ability to
capture dynamic changes in the data.

Fig. 6 shows the overall prediction flow of the proposed
method. The overall process consists of feature extraction
of vibration signals and construction of health indicators,
followed by determination of the first prediction time of the
bearing using the improved IF, and finally life prediction
using the SCINet network.

IV. CASE STUDIES
A. EVALUATION INDICATORS
The evaluation metrics used in this study are commonly used
in the field of PHM research areMeanAbsolute Error (MAE),
Normalized Root Mean Square Error (NRMSE) and Mean

FIGURE 5. Improved IF-SCINet modeling.

Absolute Percentage Error (MAPE). The calculation formula
is as follows:

MAE(X , h) =
1
τ

m∑
i=1

∣∣x̂i − xi
∣∣ (16)

NRMSE =

√
1
τ

τ∑
i=0

(x̂i − xi)2

X
(17)
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FIGURE 6. Prediction flow of the proposed method.

MAPE =

√√√√1
τ

τ∑
I=0

|(x̂i − xi)/xi| (18)

where τ denotes the number of test samples, x̂i denotes the
predicted value of the ith sample, xi denotes the true value
of the ith sample, and X denotes the difference between
the maximum and minimum values of the true value of the
sample.

MAE focuses on the absolute value of the prediction error
and MAPE focuses on the percentage of error. NRMSE is
more useful in comparingmodel performance across different
datasets because it normalizes the range of data [47].

B. MODEL HYPERPARAMETERS AND MODEL
COMPARISON SETTINGS
In order to make an assessment of the network performance,
typical time series prediction models LSTM, TCN, GRU,
and the Informer model were used to compare with the
SCINet and IF-SCINet models. Although single-step predic-
tion can obtain higher prediction accuracy, it cannot show
the long-term degradation trend of the bearing. Therefore,
multi-step prediction is used in this study, and the prediction
step sizes are set to 12, 24, 36, and 48, respectively. On the
XJTU-SY dataset, only 12 and 24 steps were selected for
prediction due to the amount of bearing data. A grid search
is performed for all tunable hyperparameters in the network

TABLE 1. Hyperparameter settings for the IF-SCINet model.

FIGURE 7. Pronostia experimental platform.

model to determine the optimal parameters. As shown in
Table 1.

C. DATASET 1
1) INTRODUCTION TO THE DATASET1
To validate the effectiveness of the bearing life prediction
method proposed in this study, the first set of bearing degra-
dation data used the PHM2012 Challenge dataset [48]. This
dataset was obtained by performing accelerated degradation
experiments on bearings on the PRONOSTIA experimental
platform. The structure of the experimental setup is shown in
Fig 7. The setup consists of an asynchronous motor, a bearing
under test, and a variety of sensors. The data provided by
the PRONOSTIA platform corresponds to some extent to
normally degraded bearings, and each degraded bearing con-
tains virtually all types of defects, including balls, rings, and
cages.

The dataset contains data for 3 different operating condi-
tions, with 7, 7 and 3 sub-datasets corresponding to each load.
As shown in Table 2.

2) RUL PREDICTION RESULTS
The comparative results of the model evaluation indicators
are shown in Fig. 8 through 10.
First of all, from Fig. 8 to 10 as a whole, it can be

seen that the prediction performance of the SCINet and
IF-SCINet models is significantly better than that of the other
four typical time series models in most cases, and although
the prediction performance is not the optimal prediction
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FIGURE 8. Multi-step prediction comparison chart (MAE).

TABLE 2. Display of bearing parameters.

performance in some cases, the deviation from the optimal
prediction is not very large. As the number of forecasting
steps increases, the SCINet and IF-SCINet networks still
perform well in most cases, which further illustrates the
superiority of SCINet and IF-SCINet networks in long time
series forecasting. Secondly, it can be seen from Fig. 8 that
the MAE values of both the SCINet model and the IF-SCINet
model increase as the number of prediction steps increases.
However, they are still able to maintain lower MAE values,
i.e., smaller prediction errors, on most bearings compared to
the other four conventional models. The overall decreasing
MAE values of the GRU network model as the number of
prediction steps increases may be attributed to the fact that
the gating mechanism designed in its network model enables
it to capture and memorize the long-term dependencies in the
sequences more efficiently. As can be seen in Fig. 9, from
12-step prediction to 48-step prediction, the SCINet model
and the IF-SCINet model maintain low NRMSE values in
most cases, i.e., the model fits well. For Bearing2_4, SCINet

showed a poor fit, but the improved IF-SCINet showed a
superior model fit. This further illustrates the effectiveness
of the method. From Fig. 10, it can be seen that the SCINet
model and the IF-SCINet model exhibit lower MAPE values,
i.e., show better prediction results, compared with the four
traditional prediction models. And the prediction effect of
IF-SCINet model is better than SCINet model in most cases.

Fig. 11 shows the remaining life prediction plots of Bear-
ing1_3, Bearing2_6 and Bearing3_3 after determining the
first prediction time, and on the whole, it can be seen that
the proposed method is basically able to accurately track
the predicted real RUL of the bearings. for Bearing1_3, the
overall prediction effect is relatively stable, and basically able
to track the real life value. For Bearing2_6 and Bearing3_3,
although there is a slight disturbance at the beginning of the
prediction, it basically fits the real life curve well at the late
stage of prediction.

D. DATASET 2
1) INTRODUCTION TO THE DATASET2
The second set of bearing degradation data utilizes the
XJTUSY dataset [49]. This dataset was collected from accel-
erated life tests of 15 rolling bearings under three operating
conditions. The test platform is shown in Fig. 12. The test rig
provides full-life data for a total of 15 bearings under three
operating conditions with a sampling frequency of 25.6 KHz.

In this paper, we have selected the bearings in the sec-
ond condition for generalizability experiments, as shown in
Table 3.
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FIGURE 9. Multi-step prediction comparison chart (NRMSE).

FIGURE 10. Multi-step prediction comparison chart (MAPE).

2) DETERMINATION OF THE FPT
Fig. 13 shows the determination of bearing 2_4 FPT, from
which it can be seen that although there is no obvious

degradation trend on the amplitude graph, there is a clear
sign of increase on the constructed health indicator after the
determination of FPT, which also further illustrates that the
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FIGURE 11. Partial bearing forecast charts.

TABLE 3. Display of bearing parameters.

proposed way of constructing the health indicator is more
capable of reflecting the degradation characteristics of the
bearing.

3) RESULTS OF MODEL EVALUATION
Fig. 14 exhibits the evaluation effectiveness graphs of the six
models on the XJTU-SY dataset. From the overall view of the

FIGURE 12. Bearing test rig of XJTU-SY.

FIGURE 13. FPT determination for Bearing2_4.

three evaluation index comparison graphs, IF-SCINet shows
superior performance in most cases. From theMAE compari-
son plot, it can be seen that the evaluation performance of the
Informer model varies greatly on different bearings, while the
IF-SCINet model performs more stably, which also indicates
the model’s higher robustness. From the NRMSE plot, it can
be seen that the TCN model and the IF-SCINet show not
much difference in the evaluation results. the GRU network
even shows more superior results on some bearings. From the
MAPE plot, it can be seen that for Bearings 2_3, the original
SCINet model exhibits moderate evaluation results compared
to the other models, but the IF-SCINet model exhibits optimal
results, which further validates the effectiveness of the pro-
posed method. In response to the comparison of the NRMSE
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FIGURE 14. Comparison of multi-step forecasts for the three evaluation indicators.

plots in Fig. 9 and Fig. 14, it can be seen that, except for
the individual bearings, there is not much difference in the
NRMSEs on the two datasets, which further illustrates the
strong generalization of the model.

V. CONCLUSION
In this study, a bearing RUL prediction method based
on IF-SCINet is proposed. Firstly, the root mean square,
skewness and kurtosis features are extracted from the raw
vibration data, the distance matrix is constructed by using
the standardized Euclidean distance, and the health indicators

are obtained bymultidimensional scale transformation. Then,
adaptive determination of FPT is realized by combining iso-
lation forest and 3σ criterion. Finally, the performance of the
prediction model is evaluated by MAE, NRMSE and MAPE
evaluation metrics, and the results show that the IF-SCINet
time series model has better prediction effect.

The following ideas for future research are presented:First
of all, the study of adaptive extraction of features to construct
health indicators is a popular one, but how to be able to
adaptively extract effective features to construct health indi-
cators is still a challenge, and neural network as a black box,

VOLUME 12, 2024 19609



J. Zhang et al.: Remaining Life Prediction of Bearings Based on Improved IF-SCINet

how to make sure that the extracted features are physically
meaningful and have good results is a difficult problem. Sec-
ondly, most of the current studies only provide a prediction
result without a detailed explanation of the uncertainty or
error of that result. Therefore, how to reasonably quantify
the uncertainty of a prediction result is also a question worth
investigating.
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