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ABSTRACT This paper addresses the tracking control problem for a class of uncertain nonlinear systems
with full state deferred constraints. The constraints considered occur after a period of system operation
rather than from the beginning. An attempt has been made to use a shifting function to realize the purpose
of deferred constraint. Moreover, the difficulty of asymmetric constraint on states comes from the design on
barrier function. Due to this, an unified barrier function is proposed to prevent system states from violating
the constraint range, indirectly. Meanwhile, it effectively removes the restriction condition used in existing
results that the upper and lower bound signs of constraint functions are the same. Consequently, the goals
of tracking a reference signal and state constraints are achieved through the control scheme designed.
Theoretical analysis and simulations are presented to demonstrate the efficacy of the proposed control
strategy.

INDEX TERMS Barrier Lyapunov function, deferred constraints, shifting function.

I. INTRODUCTION
As a fundamental and important problem in the filed of
control, tracking control problem has emerged as an exciting
hot topic because of its widespread applications, such as
robotics [1], [2], [3], autonomous vehicles [4], [5], unmanned
aerial vehicles [7]. Early efforts mainly focused on the
tracking problem of linear system, while most practical plants
can be modeled as nonlinear dynamical systems. For this
reason, many scholars have proposed various methods to
solve these problems, such as backstepping method [8], [9],
sliding mode control [10], adaptive control [12] and so on.
Such results, however, focus on designing state feedback
controller for nonlinear systems, which are dependent on
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the system state. Since the information of system state
is embedded in the controller designed, such a structure
will lead to the controller fail to work properly or even
lead to the system instability once the system state is
unmeasurable. In this case, the unmeasurable state is usually
estimated by designing linear or nonlinear observers. Based
on the framework of designing observer, so far, some
meaningful results on output feedback control [9], [14], [15]
have been reported. For example, in [14], a new output
feedback controller was presented to suppress the influence
of unmeasurable states for switched systems. Furthermore,
in [15], Li et al. extended the result of [14] to address the
optimal tracking problem for large-scale systems.

However, the approaches mentioned above are not prov-
ably effective in controlling constrained systems. Note that
safety requirements, which can be regarded as constraint
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problem, are critical for practical applications. For example,
robot vacuum cleaners may need to no touch furniture when
moving in apartments. Driverless cars need to ensure that
they do not hit the sidewalk when turning at intersections.
If these restrictions are violated, it will lead to inaccurate
control, system instability, and even accidents. Therefore,
from the perspective of maneuverability or safety, it is
meaningful to develop control strategy that can guarantee
the system stability and avoid violating the constraint on
system state or output. At present, a lot of effective control
algorithms on constraint problem have been developed, such
as model predictive control [17], prescribed performance
control [18], barrier Lyapunov method [19], integral barrier
Lyapunov method [20] and so on. The property of barrier
function can be viewed as a significant advantage in terms
of handling constrained problem. For instances, in [19], Tee
et al. firstly proposed a barrier function method to solve
the constraint problem for nonlinear systems with lower
triangular structure. Based on the result of [19], the authors
in [21] creatively applied the output constraint control method
to crane systems. With its advantages, a great number of
results on constraints control based on BLF approach for
nonlinear system have been extensively studied and applied
in practical systems, such as hypersonic hight vehicle [22],
robot joint [24], unmanned vehicle [25]. To relax such a
limitation that the constraint functions are constant, the
authors in [26] developed a new barrier function, which can
handle the case of time-varying [27] constraint as well as
constant ones. Furthermore, the authors extend the result
in [26] to uncertain robotic manipulators. Recently, the
authors in [28] developed a cooperative learning control for
nonlinear systems with time-varying output constraints by
introducing time-varying BLFs.Most of the abovementioned
results put the emphasis on dealing with the case the upper
and lower bound constraint function is different sign, which
may not match the actual application environment. Even
though, the work in [27] designed a general barrier function,
which has no requirements on the upper and lower bounds
of the constrained function, the result can not be applied to
nonlinear system with unmeasurable state.

On the other hand, in [21] and [28], the constraint require-
ments for nonlinear systems are needed at the beginning.
However, in practical applications, the constraint requirement
does not start from the beginning in some situations, and
the system output or state is limited only when the system
works for a certain finite time. A example is that a driverless
vehicle starts from an unconstrained area and travels a certain
distance to enter a constrained area to avoid collisions.
Another example is that a common operation in a robotic
arm, the arm reaches out to grab an object from a container
along a different path. Such all examples can be regard
as the deferred constrained problem. Compared with most
existing constrained control studies in [29], the key difference
and challenge lies in the deferred constraints and unknown
initial conditions. To solve such problems, the authors in [30]
developed a new shifting function for nonlinear systems with

deferred full state constraint. The authors in [31] proposed a
shifting function for nonlinear system with output deferred
constraint. Furthermore, the authors in [32] extend the result
of [31] to stochastic nonlinear multiagent systems. Note
that it is a challenging aspect regarding deferred constraints
function is the design of shifting function. In order to remove
the strict feasibility condition, the authors in [33], proposed
an adaptive full-state-constraint tracking algorithm based
on non-BLF. To relaxes the control gain functions to be
unknown, a new type of time-varying asymmetric integral
barrier Lyapunov function was proposed in [34]. However,
in the above results, the convergence rate of the shifting
function is fixed and cannot be adjusted appropriately due
to the demand. In order to meet the actual needs, how to
design a flexible shifting function is very meaningful. As far
as we know, the problem of deferred constraint for nonlinear
systems with unmeasurable state is still open and unsolved.

Inspired by the observation, in this paper, we present
a method to design output feedback controllers while
considering the deferred constraint on system state, indirectly.
The objective of the present paper is to use backstepping
technique and unified barrier Lyapunov function for solving
the problem of asymmetric deferred state constraints on full
state for uncertain nonlinear systems.

1) The difficulty of asymmetric constraint on states comes
from the design on barrier Function. Due to this, an unified
barrier Function is proposed to prevent system states
from violating the constraint range, indirectly. Meanwhile,
it effectively eliminates the restriction condition for the
upper and lower bounds constraint functions being the same
comparing with [27].
2) Unlike early results on deferred constraints in [27] and

[30], a new shifting function is designed in this paper, which
can adjust the convergence rate of the shifting function by
adjusting its parameter.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a class of nonlinear systems in strict feedback form
as follows:{

χ̇ = Aχ + ψ(y) +8(y)a+ Bσ (y)u
y = Cχ

(1)

where χ = [χ1, · · · , χn]T ∈ Rn is the state vector,
u is the control input, and y is the output of system,

respectively. A =

[
0n−1×1 In−1
01×1 0n−1×1

]
∈ Rn×n is a real

matrix; ψ(y) = [ψ1(y), ψ2(y), · · · , ψn(y)]T ∈ Rn is a known
smooth function; 8(y) = [81(y),82(y), · · · ,8n(y)]T ∈ Rn,
8i(y) = [8i1(y),8i2(y), · · · ,8iq(y)] ∈ R1×q is a known
smooth function, a = [a1, a2, · · · , aq]T ∈ Rq is an unknown
constant vector; B = [0, · · · , 0, bqλ · · · , b0︸ ︷︷ ︸

n−λ

]T ∈ Rn is a

known constant vector, C = [1, 0, · · · , 0] ∈ Rn. Here,
assume that the system states xj are unmeasurable. At the
same time, we expect all states to be strictly within the
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expected range after a period of time, that is, Raj < χj < Raj
holds after t ≥ T , where Raj , Raj are known functions.
Objectives: Firstly, by designing appropriate shifting

functions and barrier function, the nonlinear systems with
more general deferred constraints is transformed into an
equivalent unconstrained system. Then, an effective output
feedback control strategy is designed to ensure that all states
of the system are strictly limited within the specified range,
indirectly. In addition, all other variables in the system are
ensured to be bounded.

In this paper, the authors followed the statement of the
following assumption.
Assumption 1: [30] Let −y

d
(t) ≤ yd (t) ≤ ȳd (t),

where y
d
(t) and ȳd (t) are continuous positive functions and

bounded as H c1 (t) > y
d
(t) and H̄c1 (t) > ȳd (t). Here, the

signals y
d
(t) , yd (t) , ȳd (t) areCn and bounded. Besides, for

j = 1, . . . , n, H cj (t) and H̄cj (t) are C
n−j+1.

A. OBSERVER DESIGN
Since the system states are unmeasurable, the following
observer is introduced to accurately estimate them,

˙̂χj = χ̂j+1 + lj(y− χ̂1) + ψj(y), j = 1, 2, . . . , λ (2)
˙̂χj = χ̂j+1 + lj(y− χ̂1) + ψj(y) + bqjσ (y)u,

j = λ, . . . , n− 1 (3)
˙̂χn = b0σ (y)u+ ln(y− χ̂1) + ψn(y) (4)

where χ̂j denotes the estimation of χj, qj = n − j, j =

λ, · · · , n− 1.
The matrix form of the observer model designed above can

rewritten as

˙̂χ = Aχ̂ + L(y− Cχ̂ ) + ψ(y) + Bσ (y)u (5)

with L = [l1, l2,, · · · , ln]T ∈ Rn being the designed
parameter vector.

Define χ̃ = χ − χ̂ as the observer error. Taking the
difference between ( 1) and (5), this results the following
equation,

˙̃χ = Al χ̃ +8(y)a (6)

where Al = A− LC .
For a given Q = QT > 0, there exists a positive definite

matrix P = PT satisfying

ATl P+ PAl = −Q

Aim for ensuring the stability of the designed observer,
select the Lyapunov candidate function as follows:

V0 =
χ̃TPχ̃

2
(7)

Its derivative with respect to time is

V̇0 =
χ̃T

(
ATl P+ PAl

)
χ̃

2
+ χ̃TP8(y)a (8)

Applying Young’s inequality to the last term in (8), one has

χ̃TP8(y)a ≤
χ̃T χ̃

2
+

∥P∥
2
∥8(y)∥2 ǎ2

2
(9)

where ǎ2 ≥ ∥a∥2 is a bounded constant.
Putting (9) into (8), one gets

V̇0 ≤ −Q̄V0 + P̄ (10)

where Q̄ = Q− I , P̄ =
∥P∥

2
∥8(y)∥2ǎ2

2 .

III. CONTROLLER DESIGN AND STABILITY ANALYSIS
In this section, in order to indirectly ensure that all state
deferred constraints are within the specified range, some
shifting functions are introduced. In addition, to ensure
the system stability, it is required to design adaptive
controllers and the adaptive laws for system (1) based on the
backstepping technology.

Consider a problem of stability for system (1) by
backstepping technology, the coordinate transformation is
firstly defined as follows:

z1 = χ1 − yd (11)

zj = χ̂j − αj−1, j = 2, . . . , λ (12)

where αj−1 is the virtual controller to be designed later.

A. SHIFTING FUNCTION
To achieve the goal of deferred constraint on full state, the
following shifting function is designed,

ϖ (t) =

 e
−

(
tan

(
π(T−t)

2T

))2n
2ϒ2n

1 , 0 ≤ t < T
1, t ≥ T

(13)

where T is a prespecified finite setting time, ϒ1 is a
designed positive constant, which has a great influence on the
convergence rate of the shifting function (13), n represents the
system order.
Remark 1: Motivated by this idea in [30], [31], [33],

and [34], the above prescribed-time shifting function is
designed. By introducing such a function, it is possible for all
states of the system to converge in the desired range in finite
time and the violation of deferred constraint is prevented.
Unlike the shifting functions designed in [30], [31], [33],
and [34], the shifting function designed above can change
the convergence by adjusting the parameter ϒ1, and can be
adjusted appropriately as needed.
Remark 2: The convergence rate of function ϖ (t) on the

interval 0 ≤ t < T is affected by the value of parameter
ϒ1. The smaller the value of parameter ϒ1 is, the faster
the convergence rate of function ϖ (t) is. To observe the
effect of parameterϒ1 on the convergence rate of the shifting
function ϖ (t), the trajectories of shifting functions with
different parameters are provided in Fig.1. Here, the setting
time T = 1.

From Fig.1, it shows that whenϒ1 is the small enough, the
shift function ϖ (t) can quickly converge to 1 in the interval
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FIGURE 1. Trajectories of shifting function ϖ (t) with different parameters.

of 0 ≤ t < T . Next, some properties of shift function ϖ (t)
are given in the following lemma.
Lemma 1: The properties of shifting function ϖ (t) are as

follows:

• Shifting functionϖ (t) is a constant when t ≥ T ;
• Shifting function ϖ (t) increases monotonically when
0 ≤ t < T , and lim

t→T−
ϖ (t) = 1;

• The derivative of ϖ (t) is continuous in the interval t ∈

[0,+∞).

In order to deal with the deferred constraint problem
in two different cases that the upper and lower bounds of
the constraint function are the same sign and the different
sign, the following shifting functions describe all the cases
mentioned above:

ζj(t) = ϖ (t)(zj − δ̄j(t)) = ϖ (t)žj, j = 1, · · · , λ (14)

where δ̄j(t) will be given later.
To solve the problem of asymmetric state constraints, the

barrier function is designed as follows:

z̄j =
𭟋̄j,1𭟋̄j,2ζj

(𭟋̄j,1 − ζj)(𭟋̄j,2 + ζj)
, j = 1, · · · , λ

− 𭟋̄j,2(0) < δj(0) < 𭟋̄j,1(0) (15)

where

𭟋̄j,1(t) =

{
𭟋j,1(t), 𭟋j,1(t)𭟋j,2(t) > 0

𭟋j,1(t) − δj(t), 𭟋j,1(t)𭟋j,2(t) < 0

𭟋̄j,2(t) =

{
𭟋j,2(t), 𭟋j,1(t)𭟋j,2(t) > 0

δj(t) + 𭟋j,2(t), 𭟋j,1(t)𭟋j,2(t) < 0

δ̄j(t) =

{
0, 𭟋j,1(t)𭟋j,2(t) > 0
δj(t), 𭟋j,1(t)𭟋j,2(t) < 0

where 𭟋j,1(t), 𭟋j,2(t) and δj(t) (j = 1, · · · , λ) are known
functions, satisfying −𭟋j,2(t) < δj(t) < 𭟋j,1(t).
Remark 3: Then the derivative of ˙̄zj can be written as

follows:

˙̄zj =
1

(𭟋̄j,1 + ζj)2(𭟋̄j,2 + ζj)2
((𭟋̄j,1𭟋̄j,2ζj)

′

(𭟋̄j,1 − ζj)

× (𭟋̄j,2 + ζj) − 𭟋̄j,1𭟋̄j,2ζ̇j( ˙̄𭟋j1 − ζ̇j)(𭟋̄j,2 + ζj)

− 𭟋̄j,1𭟋̄j,2ζ̇j( ˙̄𭟋j,1 − ζ̇j)(𭟋̄j,2 + ζj))

= 0jζ̇j −3jζ
2
j − Gjζ 3j (16)

where 0j =
𭟋̄2
j,1𭟋̄

2
j,2+𭟋̄j,1𭟋̄j,2ζ

2
j

(𭟋̄j,1+ζj)2(𭟋̄j,2+ζj)2
, 3j =

˙̄𭟋j,1𭟋̄2
j,2−𭟋̄2

j,1
˙̄𭟋j,2

(𭟋̄j,1+ζj)2(𭟋̄j,2+ζj)2
and

Gj =
˙̄𭟋j,1𭟋̄j,2+𭟋̄j,1

˙̄𭟋j,2

(𭟋̄j,1+ζj)2(𭟋̄j,2+ζj)2
for j = 1, · · · , λ.

Let

βj =
(𭟋̄j,1 − ζj)(𭟋̄j,2 + ζj)

𭟋̄j,1𭟋̄j,2
(17)

Then, the following representation becomes valid,

ζj = z̄jβj, j = 1, · · · , λ (18)

B. DESIGN OF CONTROLLER
Step 1: In what follows, the following candidate Lyapunov
function is chosen as

V1 =
1
2
z̄21 +

ãT ã
2r1

(19)

where ã = a− â is an adaptive estimation error.
Furthermore, the derivative of V1 along (16) can be

obtained as

V̇1 = z̄1(01ζ̇1 −31ζ
2
1 − G1ζ

3
1 ) −

ãT ˙̂a
r1

(20)

Substituting (1), (11), (12), (14) and (16) into (20), one has

V̇1 = z̄101(ϖ̇ ž1 +ϖ ž2 +ϖ (χ̃2 + α1 + δ̄2 + ψ1(y) −
˙̄δ1

+ 81(y)a−
31

01
ζ1ž1 − ẏd −

G1

01
ζ 21 ž1)) −

ãT ˙̂a
r1

(21)

Using Young’s inequality, one has

z̄101ϖ̇ ž1 ≤ z̄101ϖ (
b1201ϖ̇ 2ž31

β1
) +

1
4b12

(22)

z̄101ϖχ̃2 ≤ z̄101ϖ (b11z̄101ϖ ) +
χ̃2
2

4b11
(23)

where b1i > 0 (i = 1, 2) are design parameters.
Substituting (22) and (23) into (21) leads to

V̇1 ≤ z̄101ϖ ž2 + z̄101ϖ (
b1201ϖ̇ 2ž31

β1
+ b11z̄101ϖ

+ α1 + δ̄2 + ψ1(y) −
˙̄δ1 +81(y)a− ẏd

−
31

01
ζ1ž1 −

G1

01
ζ 21 ž1) −

ãT ˙̂a
r1

+
χ̃2
2

4b11

+
1

4b12
(24)

Construct the virtual control law α1 as

α1 =
−k1ž1
01β1

−
b1201ϖ̇ 2ž31

β1
− ψ1(y) +

˙̄δ1 −81(y)â

+ ẏd − δ̄2 +
31

01
ζ1ž1 +

G1

01
ζ 21 ž1 − b11z̄101ϖ (25)
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Together with (24) and (25), the above inequality (24) can
be further simplified as

V̇1 ≤ z̄101ϖ ž2 − k1z̄21 +
ãT

r1
(r1π1 − ˙̂a)

+
χ̃2
2

4b11
+

1
4b12

(26)

where π1 = z̄101ϖ81(y).
Step 2: Secondly, one designs the following Lyapunov

function V2 in a similar way,

V2 = V1 +
z̄22
2

(27)

then, the derivative of V2 can be calculated as

V̇2 = V̇1 + z̄2(02(ϖ̇ ž2 +ϖ (χ̂3 + l2χ̃1 + ψ2(y)

− α̇1 −
˙̄δ2)) −32ζ

2
2 − G2ζ

3
2 ) (28)

Substituting (1), (12), (14) and (16) into (28), one has

V̇2 ≤ z̄101ϖ ž2 − k1z̄21 +
ãT1
r1

(r1π1 − ˙̂a1) +
χ̃2
2

4b11

+
1

4b12
+ z̄202(ϖ̇ ž2 +ϖ ž3 +ϖ (δ̄3 + ž3 + α2

+ l2χ̃1 + ψ2(y) −41 −
∂α1

∂y
χ̃2 −

∂α1

∂y
81(y)a

−
∂α1

∂ â1
˙̂a1 −

˙̄δ2 −
32

02
ζ2ž2 −

G2

02
ζ 22 ž2) (29)

where 41 = α̇1 −
∂α1
∂y χ̃2 −

∂α1
∂y 81(y)a−

∂α1
∂ â

˙̂a.
Based on (25), taking the derivative of α1 yields

α̇1 =

1∑
i=0

∂α1

∂y(i)d
y(i+1)
d +

∂α1

∂y
(χ̂2 + χ̃2 + ψ1(y)

+ 81(y)a− ẏd ) +

1∑
i=0

∂α1

∂ϖ (i)ϖ
(i+1)

+
∂α1

∂ â
˙̂a

+
∂α1

∂δ̄2

˙̄δ2 +

1∑
i=0

∂α1

∂δ̄1
δ̄
(i+1)
1 +

1∑
i=0

∂α1

∂𭟋̄(i)
1,1

𭟋̄(i+1)
1,1

+

1∑
i=0

∂α1

∂𭟋̄(i)
1,2

𭟋̄(i+1)
1,2 (30)

The following inequalities hold with Young’s inequality:

−z̄202ϖ
∂α1

∂y
χ̃2 ≤ b21(z̄202ϖ )2(

∂α1

∂y
)2 +

χ̃2
2

4b21
(31)

z̄202ϖ̇ ž2 ≤ z̄202ϖ (
b2202ϖ̇ 2ž32

β2
) +

1
4b22

(32)

z̄101ϖ ž2 ≤ β2b23z̄210
2
1ϖ ž2z̄2 +

1
4b23

(33)

where b2i > 0 (i = 1, 2, 3) are design parameters.

Substituting (30), (31), (32) and (33) into (29), it can be
deduced that

V̇2 ≤ −k1z̄21 +
ãT

r1
(r1π1 − ˙̂a) + z̄202ϖ (ž3 + δ̄3 + α2

+ l2χ̃1 + ψ2(y) −
∂α1

∂ â
˙̂a−41 −

∂α1

∂y
81 (y) a

+
b2202ϖ̇ 2ž32

β2
+ b21z̄202ϖ (

∂α1

∂y
)2 −

˙̄δ2

−
32

02
ζ2ž2 −

G2

02
ζ 22 ž2 +

β2b23z̄210
2
1 ž2

02
)

+

2∑
i=1

χ̃2
2

4bi1
+ D2 (34)

where D2 =
1

4b12
+

3∑
i=2

1
4b2i

.

Design the following virtual controller for the second
subsystem,

α2 =
−k2ž2
02β2

−
β2b24z̄210

2
1 ž2

02
−
b2202ϖ̇ 2ž32

β2
+
∂α1

∂y
81 (y) â

+
∂α1

∂ â
Ea − ψ2(y) − δ̄3 − b21z̄202ϖ (

∂α1

∂y
)2 +

˙̄δ2(t)

+ 41 +
32

02
ζ2ž2 +

G2

02
ζ 22 ž2 +

∂α1

∂ â
π2 (35)

Substituting (35) into (34) results in

V̇2 ≤ z̄202ϖ ž3 −

2∑
i=1

kiz̄2i +
ãT

r1
(r1π2 − ˙̂a)

+ z̄202ϖ
∂α1

∂ â
(Ea − ˙̂a) + D2 (36)

where π2 = π1 − z̄202ϖ
∂α1
∂y 81(y).

Step j (3 ≤ j < λ): Consider the Lyapunov candidate
function in the jth step,

Vj = Vj−1 +
z̄2j
2

(37)

then, the derivative of Vj is computed as below,

V̇j = V̇j−1 + z̄j(0j(ϖ̇ žj +ϖ (zj+1 + αj + ljχ̃1 + ψj(y)

− α̇j−1 −
˙̄δj) −3jζ

2
j − Gjζ 3j )

= V̇j−1 + z̄j0j(ϖ̇ žj +ϖ (zj+1 + αj + ljχ̃1 + ψj(y)

− 4j−1 −
∂αj−1

∂y
χ̃2 −

∂αj−1

∂y
81(y)a−

∂αj−1

∂ â
˙̂a

−
˙̄δj) −

3j

0j
ζ 2j −

Gj
0j
ζ 3j ) (38)

where 4j−1 = α̇j−1 −
∂αj−1
∂y χ̃2 −

∂αj−1
∂y 81 (y) a−

∂αj−1
∂ â

˙̂a.
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Similar to (30), α̇j−1 can be expressed as follows:

α̇j−1 =

j−1∑
i=0

∂αj−1

∂y(i)d
y(i+1)
d +

∂αj−1

∂y
(χ̂2 + χ̃2

+ ψ1(y) +81(y)a− ẏd ) +

j−1∑
i=0

∂αj−1

∂ϖ (i)ϖ
(i+1)

+
∂αj−1

∂a1
ȧ1 +

j−1∑
i=0

∂αj−1

∂δ̄
(i)
1

δ̄
(i+1)
1

+

j−2∑
i=0

∂αj−1

∂δ̄
(i)
2

δ̄
(i+1)
2 + . . .+

∂αj−1

∂δ̄j+1

˙̄δj+1

+

j−1∑
i=0

∂αj−1

∂𭟋̄(i)
1,1

𭟋̄(i+1)
1,1 +

j−1∑
i=0

∂αj−1

∂𭟋̄(i)
1,2

𭟋̄(i+1)
1,2

+

j−2∑
i=0

∂αj−1

∂𭟋̄(i)
2,1

𭟋̄(i+1)
2,1 +

j−2∑
i=0

∂αj−1

∂𭟋̄(i)
2,2

𭟋̄(i+1)
2,2

+ . . .+

1∑
i=0

∂αj−1

∂𭟋̄(i)
j−1,1

𭟋̄(i+1)
j−1,1

+

1∑
i=0

∂αj−1

∂𭟋̄(i)
j−1,2

𭟋̄(i+1)
j−1,2 (39)

The following results are obtained using Young’s
inequality:

−z̄j0jϖ
∂αj−1

∂y
χ̃2 ≤ z̄j0jϖbj1z̄j0jϖ (

∂αj−1

∂y
)2

+
χ̃2
2

4bj1
(40)

z̄j0jϖ̇ žj ≤ z̄j0jϖ (
bj20jϖ̇ 2ž3j

βj
) +

1
4bj2

(41)

z̄j−10j−1ϖ žj ≤ βjbj3z̄2j−10
2
j−1ϖ žjz̄j +

1
4bj3

(42)

where bj1 > 0, bj2 > 0, bj3 > 0 are design parameters.
Substituting (39), (40), (41) and (42) into (38), it is then

derived that

V̇j ≤ −

j−1∑
i=1

kiz̄2i +
ãT

r1
(r1πj − ˙̂a) + z̄j−10j−1ϖ

×
∂αj−2

∂ â
(Ea − ˙̂a) + z̄j0jϖ (žj+1 + δ̄j+1 + αj

+ ljχ̃1 + ψj(y) −
∂αj−1

∂ â
˙̂a+

bj20jϖ̇ 2ž3j
βj

−
∂αj−1

∂y
81 (y) a−4j−1 + (

∂αj−1

∂y
)2

× bj1z̄j0jϖ −
˙̄δj −

3j

0j
ζjžj −

Gj
0j
ζ 2j žj

+
βjbj5z̄2j−10

2
j−1žj

0j
) +

j∑
i=1

χ̃2
2

4bi1
+ Dj (43)

where Dj = Dj−1 +

3∑
i=2

1
4bji

, πj = πj−1 − z̄j0jϖ
∂αj−1
∂y 81 (y) .

According to (43), let construct the virtual controller αj as

αj =
−kjžj
0jβj

−
βjbj4z̄2j−10

2
j−1žj

0j
−
bj20jϖ̇ 2ž3j

βj

+
∂αj−1

∂y
81(y)â+

∂αj−1

∂ â
Ea − δ̄j+1

− ψj(y) +4j−1 − bj1z̄j0jϖ (
∂αj−1

∂y
)2 +

˙̄δj(t))

+
3j

0j
ζjžj +

Gj
0j
ζ 2j žj −

∂αj−1

∂ â
πj (44)

where πj = πj−1 −
∂αj−1
∂y z̄j0jϖ81(y).

Substituting (44) into (43) yields

V̇j ≤ z̄j0jϖ žj+1 −

j∑
i=1

kiz̄2i +
ãT

r1
(r1πj − ˙̂a)

−

j∑
i=2

z̄i0iϖ
∂αi−1

∂ â
( ˙̂a− Ea) + Dj (45)

Using the inductive manner, one can obtain

V̇λ−1 ≤ z̄λ−10λ−1ϖ žλ −

λ−1∑
i=1

kiz̄2i +
ãT

r1
(r1πλ−1 − ˙̂a)

−

λ−1∑
i=2

z̄i0iϖ
∂αi−1

∂ â
( ˙̂a− Ea) + Dλ−1 (46)

Step λ : Select the Lyapunov candidate function as

Vλ = Vλ−1 +
z̄2λ
2

(47)

Similar to the step j, the derivative of (47) is

V̇λ = V̇λ−1 + z̄λ0λ(ϖ̇ žλ +ϖ (χ̂λ+1 + lλχ̃1

+ ψλ(y) + bqλσ (y)u− (α̇λ−1 −
∂αλ−1

∂y
χ̃2

+
∂αj−1

∂y
81(y)a+

∂αj−1

∂ â
˙̂a) −

˙̄δλ) −
3λ

0λ
ζ 2λ

−
Gλ
0λ
ζ 3λ ) (48)

With the help of Young’s inequality, it follows that:

−z̄λ0λϖ
∂αλ−1

∂y
χ̃2 ≤ bλ1(z̄λ0λϖ )2(

∂αλ−1

∂y
)2 +

χ̃2
2

4bλ1
(49)

z̄λ0λϖ̇ žλ ≤ z̄λ0λϖ (
bλ20λϖ̇ 2ž3λ

βλ
) +

1
4bλ2

(50)

z̄λ−10λ−1ϖ žλ ≤ βλbλ3z̄2λ−10
2
λ−1ϖ žλz̄λ +

1
4bλ3

(51)

where bλ1, bλ2, bλ3 are constants designed.
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From (49)− (51), one has

V̇λ≤−

λ−1∑
i=1

kiz̄2i +
ãT

r1
(r1πλ−1 − ˙̂a) + z̄λ−10λ−1ϖ

×
∂αλ−2

∂ â
(Ea − ˙̂a) + z̄λ0λϖ (χ̂λ+1 + lλχ̃1

+ ψλ(y) + bpλσ (y)u+ lλχ̃1 + ψλj(y) −
∂αλ−1

∂ â
˙̂a

− 4λ−1 +
bλ20λϖ̇ 2ž3λ

βλ
− z̄λ0λϖ

∂αλ−1

∂y
81(y)a

+ bλ1z̄λ0λϖ (
∂αλ−1

∂y
)2 −

˙̄δλ −
3λ

0λ
ζλžj −

Gλ
0λ
ζ 2λ žλ

+
βλbλ3z̄2λ−10

2
λ−1žλ

0λ
) +

λ∑
i=1

χ̃2
2

4bi1
+ Dλ (52)

By taking the above inequalities, the following actual
controller is

u =
1

bpλσ (y)
(
−kλžλ
0λβλ

−
βλbλ3z̄2λ−10

2
λ−1žλ

0λ

−
bλ10λϖ̇ 2ž3λ

βλ
− ψλ(y) + z̄λ0λϖ

∂αλ−1

∂y
81(y)a

+ 4λ−1 − bλ1z̄λ0λϖ (
∂αλ−1

∂y
)2 +

∂αλ−1

∂ â
Ea

+
˙̄δλ(t)) +

3λ

0λ
ζλžλ +

Gλ
0λ
ζ 2λ žλ −

∂αλ−1

∂ â
πλ

+

λ−1∑
i=2

r1z̄iτiϖ
∂αi−1

∂ â
bλ3(

∂αλ−1

∂y
)2

× z̄λ0λϖ82
1(y)), (53)

where πλ = πλ−1 −
∂αλ−1
∂y z̄λ0λϖ81(y).

Substituting (53) into (52), the inequality (52) can be
rewritten as

V̇λ ≤ −

λ∑
i=1

kiz̄2i +
ãT1
r1

(r1πλ − ˙̂a)

−

λ∑
i=2

z̄i0iϖ
∂αi−1

∂ â
( ˙̂a− Ea) + Dλ (54)

The adaptive law for â is designed in the following form:

˙̂a = r1πλ (55)

Let Ea = r1πλ, the following inequalities can be derived

V̇λ ≤ −

λ∑
i=1

kiz̄2i −
ãT1 ã1
2

+ Dλ (56)

where Dλ = Dλ−1 +

4∑
i=2

1
4bλi

+
1
2 max ∥ã∥2. Based on (19),

(27), (37) and (47), the inequality (35) can be represented as

V̇λ ≤ −aλVλ + Dλ (57)

where aλ = min {2ki, r1, i = 1, · · · , λ} .

C. STABILITY ANALYSIS
Theorem 1: Assume that Assumptions 1 − 2 are ful-

filled. Considering the strict feedback nonlinear system
(21) with state constraints satisfying the virtual controllers
(25), (35) , (44), the actual controller (53) and the adaptive
law (55) are constructed. By properly selecting the design
parameters L, ϒ1, b11, b12, bji(j = 2, · · · , λ, i = 1, 2, 3),
all variables in the system can be guaranteed to be bounded
and all states do not violate the desired constraints.

Proof: For proving the stability of systems in (21), the
following Lyapunov candidate function is defined as

V = V0 + Vλ (58)

Based on (10) and (57), its derivative is

V̇ (t) ≤ −aV (t)+ D (59)

where a = min{aj, λmin(Q̄), j = 1, · · · , n}, D =

λ∑
j=1

Dλ + P̄.

As described in [35], for a chosen Lyapuniv function V (t),
if the inequality V̇ (t) ≤ −aV (t) + c holds, then, it is easy to
obtain the following inequality:

V (t) ≤ e−atV (0) +
c
a
(1 − e−at ) (60)

with a and c being positive constants.
Note that as t → ∞, we have

V∞ ≤
D
a

(61)

Based on the analysis above, all variables ζj (j = 1, · · · , λ)
are bounded. When t > T , ζj = žj, it can be concluded that
all errors žj (j = 1, . . . , λ) satisfy the expected constraint
requirements, that is −𭟋̄j,2 ≤ žj ≤ 𭟋̄j,1. From ž1 =

χ1 − yd − δ̄1 and H c1 < yd < H̄c1 , we further obtain
H c1 − 𭟋̄1,2 − 𭟋1,2 < χ1 < 𭟋̄1,1 + H̄c1 + 𭟋1,1. Let
𭟋̄1,2 = H c1 − Ra1 + 𭟋1,2 and 𭟋̄1,1 = Ra1 − H̄c1 − 𭟋2,1,
thus, the system output χ1 is enforced to a desired constraint,
that is, Ra1 < χ1 < Ra1 . Since the virtual control signal α1
in (25) is continuous, there exist constants Rb1 , and Rb1 such
that Rb1 ≤ α1 ≤ Rb1 . According to ž2 = χ2 − α1 − δ̄2, and
−𭟋̄2,2 < ž2 < 𭟋̄2,1, we can obtain Rb1−𭟋̄2,2−𭟋2,2 < χ2 <

Rb1+𭟋̄2,1+𭟋2,1. Let 𭟋̄2,2 = Rb1−Ra2 and 𭟋̄2,1 = Ra2−Rb1 ,
thus, Ra2 < χ2 < Ra2 . Similar to the same idea of χ2, one
has Raj < χj < Raj with 𭟋̄j,2 = Rbj−1

− Raj + 𭟋j,2 and
𭟋̄j,1 = Raj − Rbj−1 − 𭟋j,1, j = (3, . . . , n). Thus, we can
get that all state are strictly within the constraint ranges when
t > T , which concludes the proof.

IV. SIMULATION RESULTS
Starting with the previously described problem, we imple-
ment control strategy and allow the simulation to the
following nonlinear system model:

ẋ1 = 0.5 sin(0.2x1) + x2
ẋ2 = x21 + 0.05x1 + (1 + x21u)
y = x1

(62)
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FIGURE 2. Output y and reference signal yd ..

FIGURE 3. Tracking error z1, and constraint functions −𭟋1,2 and −𭟋1,1.

FIGURE 4. Tracking error z2, and constraint functions −𭟋2,2 and 𭟋2,1.

Choose the initial value of system state is x (0) =

[−0.5,−0.03, 0.1, 0, 0.2]. Suppose,the reference signal yd is
defined as yd = 0.5 cos(0.5t). To proceed with the design of
control law and adaptive law, the main parameters are chosen
as b11 = 0.02 b12 = 2 b13 = 1 b15 = 1.5 b21 =

0.02 b22 = 0.01 b25 = 0.01 k1 = 2 k2 = 45 c = 1 l1 =

5 l2 = 12 r = 0.1.
According to Figs.3-7, we can obtain the following

simulation results. Fig.2 shows the trajectories of the output
y and the reference signal yd . It can be seen from this figure
that the system has good tracking performance. Fig.3 and
Fig.4 show the trajectories of errors z1 and z2 as well as their
constraint functions, respectively. It shows that all errors are

FIGURE 5. State x1 and its estimated state x̂1 and constraint functions
Ra1 ,Ra1

.

FIGURE 6. State x2 and its estimated state x̂2 and constraint functions
Ra2 ,Ra2

.

FIGURE 7. The control input u.

strictly within the range of constraints after a period of time.
The responses of state x1, x2, their estimation x̂1, x̂2 and their
constraint functions are given in Fig.5 and Fig.6, respectively.
From them, we can know that the designed observer can
accurately estimate all the system states, and all states do
not exceed the range of constraints. Fig. 7 plots the response
of control input u. Through the above simulation results,
it is verified that the proposed control method can guarantee

11894 VOLUME 12, 2024



L. Guan et al.: Adaptive Output Feedback Control for Uncertain Nonlinear Systems Subject

all errors and states are within their constraint range after a
period of time. Meanwhile, other variables are bounded.

V. CONCLUSION
The paper developed an output feedback control for a
class of nonlinear system with deferred constraints. The
unmeasurable state of the considered system is perfectly
estimated by introducing a linear observer. In order to
make the constraint problem studied more general, a new
coordinate transformation was performed on all errors.
In addition, a new shifting function was introduced for
achieving the control objective of deferred constraint on all
states. Based on the backstepping method and Lyapunov
theory, the whole design process for controller analyzed
in detail. At last, the stability and performance with the
proposed control scheme was affirmed by simulation results.
Although the proposed method is effective for solving full
state constraints, the problem of ‘‘explosion of complexity’’
still exists. In following work, inspired by the ideas in [36]
and [37], wewill try to propose a backstepping designmethod
embedded with time-varying command filters to solve the
consensus problem of multiagent systems.
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