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ABSTRACT The aging process and chronic diseases can lead to functional decline in older adults,
particularly with significant decreases in balance ability, which greatly increases the risk of falls. Traditional
balance ability assessment methods typically rely on clinical rating scales, which are subjective and prone to
the Hawthorne effect and are difficult to implement for continuous daily assessment. In this paper, we propose
a quantitative risk assessment system for elderly falls based on the fusion of millimeter-wave(mmWave)
radar imaging and trajectory features. Key features such as the center-of-mass trajectory, trajectory offset,
and maximum swing diameter are extracted by improving the fusion clustering algorithm. Then, a model
such as Random Forest (RF) is applied to conduct correlation analysis on the features, ultimately proving a
significant correlation between feature selection and scale scoring. Subsequently, a quantitative assessment
model is established with core algorithms such as Support Vector Regression (SVR), Gradient Boosting
Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine
(LightGBM) to verify the effectiveness of the evaluation. The result indicates that the LightGBM model
achieved the best performance in assessment compared to other models, with a prediction accuracy score of
93.36%. The experiment has demonstrated that the system can effectively capture the features of gait and
evaluate early changes in balance ability decline. The research on this system provides a new technological
approach to daily fall risk warnings.

INDEX TERMS Millimeter-wave radar, trajectory features, elderly fall, quantitative assessment.

I. INTRODUCTION

The aging of the population has become a common social
issue worldwide, and the physical health of older adults
has become an enormous challenge for humankind [1],
[2]. The World Health Organization has proposed that falls
among the elderly seriously threaten their safety, resulting
in over 684,000 deaths globally and nearly 37.3 million
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medical interventions yearly [3]. Timely detection of falls
and provision of medical assistance reduces the probability
of death and is vital for older adults’ physical health and
life safety [4]. Therefore, the concept of intelligent, healthy
aging has emerged to continuously monitor the fall status
of older adults and alert them in time for timely preventive
treatment [5].

The traditional medical health assessment model of falls
in older adults is based on the clinician’s final assessment
of medical outcomes, such as clinical scales, according to an
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outcome-oriented approach, especially in the cause analysis
and improvement refinement after a fall event [6], [7], [8].
However, it is difficult to provide a more scientific approach
to the physical health of older adults by only observing the
outcome of fall events and not focusing on the prior pre-
vention of fall events [9]. Therefore, it is vital to establish
an effective quantitative assessment system for fall risk in
older adults, which provides a standardized training process
through non-contact sensors, objectively records data such as
the center of mass trajectory, speed, and pause time during the
training process, and uses these data to establish a quantitative
assessment model for fall in older adults, which can help the
clinicians to more accurately obtain the trend of change in
the fall risk of the patients, and propose targeted preventive
measures methods, to reduce the probability of fall occur-
rence [10]. In summary, a sound and improved quantitative
fall risk assessment system for intelligent, healthy aging can
reduce clinicians’ workload for early intervention and risk
avoidance [11].

To overcome the above challenges, we propose a quanti-
tative fall risk assessment scheme for older adults based on
mmWave radar from Texas Instruments (TI). Combining clin-
ician scale assessment and mmWave radar tracking dynamic
trajectory means improving the accuracy of mmWave radar
tracking the dynamic trajectory of the human body through
the center of mass trajectory based on Doppler frequency
shift screening. By tracking the time series of the center of
mass, the characteristic parameters of the dynamic balance
ability of human movement are extracted and supplemented
by scoring according to the clinical scale, and the fall risk
assessment model for older adults is established.

The remaining sections of this article are arranged as
follows: Section II reviews the related works. Section III
discusses the principle and feasibility of using frequency-
modulated continuous-wave (FMCW) mmWave radar to
obtain human echo signals. Section IV introduces the princi-
ple and simulation experiment performance of the proposed
method. Section V presents the experiments and feature
extraction. Section VI analyzes the results of the experiment
and the discussion. Section VII discusses the shortcomings of
the current method and future work and research directions.
Finally, Section VIII summarizes this article.

Il. RELATED WORK

The non-contact fall risk assessment based on mmWave
radar has multiple advantages. Firstly, it does not require
physical contact and frequent battery replacement com-
pared to wearable sensors [12], [13], [14], [15]. Secondly,
it has the advantage of not invading privacy compared to
cameras [5]. Thirdly, it has high sensitivity and strong pen-
etrability for moving objects compared to depth sensors
such as Kinect [16]. Fourthly, it has the advantages of low
cost, small size, and high resolution compared to traditional
radar [17]. The most important of the above four benefits
is the non-contact data acquisition advantage. Older adults
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often forget wearable devices, causing assessment interrup-
tions [18]. In addition, wearable sensors may interfere with
normal gait walking in older adults. In conclusion, non-
contact mmWave radar sensors are suitable for application
in remote home monitoring scenarios.

Most falls in older adults are not accidental events but
are induced by various risk factors that catalyze each other.
To predict older adults’ falls, it is vital to incorporate
fall-related risk factors and develop solutions for patients in
a complete manner [9], [19]. Hosseini et al. [20] developed
a multifactorial predictive model for fall risk in hospital-
ized older adults. The model combines real-time vital signs,
motion data, fall history, and muscle strength to identify
individuals at high risk for falls in older adults. For data
collection, a triaxial accelerometer was used to collect older
adults’ motion data, which was combined with vital signs
for monitoring, while a bidirectional classification model
was used to predict fall risk. Model results showed an accu-
racy of 0.98, a sensitivity of 0.96, and a specificity of 1,
achieved in 80 simulated falls and 40 activities of daily
living (ADL). The model demonstrated higher accuracy in
fall risk prediction than the traditional Morse Fall Scale.
Tools to quantify fall risk and assess functional deficits
can target people at increased fall risk and tailor a range
of improvements to deficiencies to reduce fall rates and
decrease fall risk. Greene et al. [21] developed a fall risk
assessment method that combines clinical assessment and
sensor data to provide a more accurate risk assessment
than a single method. 292 community-dwelling older adults
were asked to wear inertial sensors, and data were col-
lected using the TUG test. The dataset was segmented by
ten-fold cross-validation for dataset segmentation, and the
experimental results showed that the combination of clinical
and sensor-based methods produced an accuracy of (.76,
compared to 0.736 for sensor-based assessment alone and
0.688 based on clinical risk factors alone. Mishra et al. [22]
predicted a 6-month fall risk in 92 older adults using geriatric
assessments, GAITRite measurements, and fall history. They
found that the Support Vector Machine (SVM) model had the
best performance, with an AUC of 0.80, sensitivity of 0.82,
specificity of 0.72, and accuracy of 0.75. Zhang et al. [23]
developed a gait parameter-based fall risk assessment model
for community-dwelling older adults. 46 older adults were
asked to wear IMU inertial measurement units on both feet,
and the gait spatial-temporal parameters of the subjects were
acquired through the gait analysis system of Azure Kinect.
The study constructed multiple machine-learning models to
assess the fall risk level in older adults. The experimental
results show that the K-Nearest neighbor (KNN) performed
best among all the models with an accuracy of 0.80 on the
individual test set, an F1 score of 0.67, and an area under the
receiver operating characteristic curve of 0.83. Gait frequency
was the most significant feature associated with fall risk,
followed by body mass index and gait cycle variability. The
findings suggest that the KNN model can provide a quan-
titative and objective evaluation of fall risk for older adults
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living in the community. The assessment is more accurate
when considering gait parameters and disease history.

In the above study, fall risk in older adults was quan-
titatively assessed primarily through wearable devices and
clinical functional tests. However, wearable devices are not
easy to promote in practical applications because they must be
carried around and lead to discomfort easily caused by irreg-
ular wear. There are problems of personal privacy leakage
with non-contact cameras. Therefore, in this study, FMCW
mmWave radar is utilized to extract the walking trajectory
information of the fall risk assessment test for older adults,
and human dynamics parameters are extracted by formula
conversion, which combined clinical scales and dynamic
balance ability characteristic parameters. The above means of
data fusion and analysis will be a potential means of fall risk
prediction for the application of smart homes for older adults
in terms of technology. The research will improve the robust-
ness of the trajectory algorithm, further implement trajectory
imaging techniques for older adults in home situations, and
ultimately use daily senseless continuous assessment as an
alternative to existing scale-based methods for assessing fall
risk.

IIl. OBTAINING HUMAN ECHO SIGNAL BY MMWAVE
RADAR

We utilized the Texas Instruments (TI) IWR6843 mmWave
radar evaluation board with a linear frequency modulation
range of 60-64GHz, consisting of four receive (RX) anten-
nas and three transmit (TX) antennas for collecting point
cloud echo signals. Figure 1 shows the workflow diagram of
acquiring human body echo signals using the mmWave radar.

Processing

== IF Signal

FIGURE 1. mmWave radar workflow diagram.

A. HUMAN ECHO SIGNAL MODELING

The basic architecture of the mmWave radar TX and RX array
is shown in Figure 2, with the spacing of two neighboring TX
antennas ¢, = 5mm and two neighboring RX antennas d, =
2.5mm. Assume that human targets are in the mmWave radar
detection area, corresponding to a total of scattering points /,
where the azimuth of the scattering pointi (i = 1,2,---,1)
is Qi.

Frequency-modulated (FM) pulses are generated in the
signal generator, amplified by a power amplifier (PA), and
transmitted to the outside. The mmWave radar transmits a
linear FM pulse, and the TX signal in a sawtooth FM cycle is

Sr(t) = Ag cos <2nf0t ol + ¢(r)) )
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FIGURE 2. mmWave radar transmit and receive array architecture.

where S7(¢) is the TX signal, Ar is its amplitude, fy is the
starting frequency, ¢(#) is the phase noise, u = B/T, is the
slope, B is the chirp bandwidth, and T, is the ramp period.

The TX signal is transmitted to the outside world through
the antenna. The detected object reflects when the electro-
magnetic wave arrives at a distance of R; from the radar. The
RX signal is obtained as

1
S()=D_ Ar cos (2folt — ta) + Tt — 10+t — ta)

i=1

@

where Sr(?) is the RX signal, A is its amplitude, 745 = 2(R; +
vait)/c = 2R;/c + fait/fo is the instantaneous time delay of
the RX and TX signals, vg; is the velocity of the scattering
point i, f; is the Doppler shift of the scattering point i, and R;
is the distance from the radar to the detected object.

The RX signal is mixed with the TX signal with a mixer,
which calculates the frequency difference between the TX
and RX signals. Two frequency differences are fi = fr + fr
and f> = fr —fg. To reduce the sampling rate, it is known from
the Nyquist sampling theorem that the low-pass (LP) filter
serves to filter out those unrelated frequency components
and the components with the frequency of f] are suppressed,
so that the baseband signal with the frequency of f> enters into
the analog-digital converter (ADC).

Based on the above principle, after mixing and LP filtering
of the TX signal and RX signal, only the differential fre-
quency component f5 is retained. And the IF signal phase can
be obtained as the phase difference between the TX signal
and the RX signal, and the instantaneous phase of IF signal is

oir(t) = @r(t) — @r(1)
= 2 fotai + 27 plait — Tl + Agi(t)  (3)

And the IF signal is obtained as

1
Sir (1) = ST(SR(1) = D Agie PIHOTANO) (4

i=1

where Sjr(¢) is the IF signal, Ag; is its amplitude, f3; is the
frequency difference of the IF signal at the scattering point i,
Gpi(t) = 2mfoty + 1 ,utji is the phase at the scattering point
i, and A¢i(t) = ¢(t) — ¢p(t — t4) is the residual noise at the
target i. Due to the close proximity of the human target to the
radar, the values of residual noise A¢;(¢) and the nutﬁi term
in phase ¢p;(t) are small and negligible.
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Therefore, the IF signal can be rewritten as

I
Sip(t) = Z Agje/ @bit+2mfotai)

i=1

I
— ZARl.ei(27TMtdif+27Tf0tdi) 5)
i=1

Based on formula (5) and ¢#4;, When u determined, the fre-
quency of the IF signal is constant and the IF signal depends
on R; and fy;.

Figure 3 shows the frequency of the three signals as a func-
tion of time. Assuming that M linear FM pulses are generated
over a period of time, then M IF signals can be obtained, and
the number of sampling points during the duration of each
linear FM pulse is N. Each column in the two-dimensional
matrix at the bottom of Figure 3 represents the sampling
points of one frame of the IF signal. The n-th sampling point
in the m-th IF signal can be expressed as

I
Y [n,m] = ZARiei(2ﬂ’#bin+2ﬂmfdiTx) (6)

i=1
where n = 1,2, ..., N is the corresponding marker on the
fast time sampling axis, m = 1,2, ..., M is the correspond-

ing marker on the slow time sampling axis, 7y is the sampling
interval on the Fast Time Axis, also called the ADC sampling
interval, and T is the sampling interval on the Slow Time
Acxis, also called the inter-frame interval (IFI).

B. HUMAN ECHO SIGNAL MODEL ACQUISITION
Compared to traditional pulse radar systems that use periodic
emission of short pulses, mmWave radar can continuously

Frame M -1

Frame M

f Frame 1 Frame2 -

f;n ax

fo

Fast time Axis

v

Slow time Axis

FIGURE 3. mmWave radar signal model.
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emit FM signals and simultaneously measure human tar-
get scattering points’ coordinates and Doppler information.
As shown in Figure 4, the mmWave radar module inte-
grates a radio frequency (RF) front-end, low noise amplifier,
advanced RISC machine (ARM) processor, digital signal
processing (DSP), memory, and other components, which
can satisfy the processing requirements of intermediate fre-
quency sampling buffering, range fast Fourier transformation
(Range-FFT), Doppler fast Fourier transformation (Doppler-
FFT), angle fast Fourier transformation (Angle-FFT), static
clutter filtering, and constant false alarm rate detection
(CFAR). The acquisition of point cloud data is of great
significance for subsequent analysis of human targets.

Range FFT
ADC 2D-FFT Static Clter 2D-CFAR Angle FFT Point Cloud
Samples Filtering Imaging
Velocity
FFT

FIGURE 4. Signal processing flow.

1) TWO-DIMENSIONAL FAST FOURIER TRANSFORM
(2D-FFT)

Based on the radar sampling data matrix ¥ shown in the
formula (6), the IF signal frequency f3; and Doppler shift f;
contain each scattering point’s distance and Doppler infor-
mation. Each column of the radar sampling data matrix Y is
processed with N-point FFT to find the distance information
of the target, and each row is processed with M-point FFT to
find the Doppler information of the target [24]. The process-
ing flow is shown in Figure 5.

Frame M

1 Frame 1 Frame2 -

FIGURE 5. 2D-FFT processing flow.

2) STATIC CLUTTER FILTERING

After performing 2D-FFT, it is necessary to perform 3D point
cloud imaging of the moving targets. Since the distance from
a stationary target to the radar antenna is constant, the time
delay of the stationary target on each received pulse is also
constant. To remove the static target’s point cloud, the mean
value needs to be calculated for each distance unit and each
antenna and then subtracted from the data to remove the
zero-Doppler targets. The above process is known as the
phasor-mean cancellation algorithm.
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3) CONSTANT FALSE ALARM DETECTION

In crowded environments, the acquisition of human echo
signals usually includes various factors such as target infor-
mation, background noise, and clutter interference. To effec-
tively detect human targets, the CFAR algorithm is employed
to filter out clutter scattering points. Subsequently, the CFAR
algorithm for distance and Doppler dimension frequency shift
of the radar sampling data matrix Y. The CFAR algorithm is
shown in Figure 6.

Doppler

Detecting Unit
. Protection Unit

Reference Unit

Range

FIGURE 6. CFAR algorithm.

4) PHASE METHOD OF ANGLE MEASUREMENT

For the same scattering point i(i = 1,2,...,1), its angle
can be estimated through the phase difference of the echo
signals received by two RX antennas [25]. Assuming that the
difference in the signal path between two adjacent receiving
antennas is AR;, the phase difference of the RX signal at the
time ¢ for the i scattering point can be expressed as

2 ARi (7)
A

As shown in Figure 2, the difference in the signal path
between two neighboring RX antennas can be approximated
as follows

Agi(t) =

AR,‘ = dr sin 91' (8)

Based on formulas (7) and (8), the Angle-FFT extracts the
phase information between antennas by simultaneously sam-
pling the signals from multiple RX antennas and utilizing the
slight phase differences between the RX signals. Therefore,
the azimuth angle 6; of the scattering point i can be expressed

as
. [ AAgi)
L 1
0i = sin ( 2nd, ) ©)

Hence, the 3D coordinates of the scattering point i can be
expressed as
Xx; = R; cos (6;) sin(¢;)
yi = R; cos(6;) cos(¢;) (10)
Zi = R;sin (6;)
where x;, y;, and z; represent the coordinate position of the

point i in the 3D space. Therefore, the point cloud data con-
taining the position and Doppler information of the scattering
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points can be represented by the dataset Py as follows
Po :{(xi, yiv ziJai) 1= 1,2, ..., 1} (1D

IV. PROPOSED METHOD

Based on the above discussion, the method of using mmWave
radar for fall risk assessment in older adults generally follows
the following steps:

(1) First, the human target position localization is per-
formed based on the radar point cloud data to obtain the
position coordinates and Doppler information of all the
human body echo signal’s point clouds in a single frame state.
Second, the spherical coordinate system of the radar point
cloud coordinates is transformed into a Cartesian coordinate
system. Then, the Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) based on Doppler frequency
shift extracts the center-of-mass position of the human body
in each frame of the point cloud data.

(2) Based on the extended Kalman filter (EKF), the center-
of-mass position in each frame is tracked to achieve dynamic
trajectory tracking and prediction of the human body.

(3) By tracking the center-of-mass time series, feature
parameters of the dynamic balance ability of the human body
are extracted. A fall risk assessment model for older adults is
established based on clinical scale scores.

The proposed quantitative assessment system framework
is shown in Figure 7. For step (1), the human target posi-
tion detection algorithm, a Doppler frequency shift-based
DBSCAN clustering algorithm, is proposed to improve the
accuracy of mmWave radar trajectory tracking by clustering
the point cloud information in each frame state of mmWave
radar point cloud. For step (2), the research proposes an
EKF-based human dynamic trajectory prediction algorithm
to improve the error generated in the measurement process
and realize the tracking of human targets. Finally, for step
(3), based on the dynamic trajectory of the mmWave radar,
dynamic balance ability feature parameters of the human
body are extracted. The accuracy of the quantitative fall risk
assessment system is validated by establishing clinical scale
scores.

A. DBSCAN CLUSTERING BASED ON DOPPLER
FREQUENCY SHIFT

In human dynamic trajectory measurement application sce-
narios, micro-Doppler effects caused by human breathing,
heartbeat, and small-arm swings produce point cloud data
with small Doppler frequency shifts. This research pro-
poses a Doppler frequency shift-based clustering method
that removes points with small frequency shifts by setting
an appropriate Doppler threshold to reduce micro-motion
interference on the clustering results, except for the overall
translational motion of the human torso.

Clustering methods typically cluster closely spaced points
into clusters, with one cluster corresponding to one tar-
get [26]. Due to the small size and irregular shape of the
human target point cloud data set Py, this research uses
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Clinical Scale Score
ML Models Training

Quantitative
Assessment

Trajectory Tracking

FIGURE 7. A framework for a quantitative fall risk assessment system
based on mmWave radar and machine learning algorithms.

the DBSCAN clustering algorithm to extract the center-of-
mass feature points of the object and remove unstable noise
points in the data. DBSCAN has significant advantages over
other clustering algorithms, such as K-means, in the prob-
lem of clustering mmWave radar data. Firstly, DBSCAN
does not require pre-determination of the number of clus-
ters. Secondly, DBSCAN is a density-based spatial clustering
algorithm that can detect clusters of arbitrary shapes. In addi-
tion, DBSCAN can identify unstable noise points in the data.

The core parameters of DBSCAN clustering based on
the Doppler shift include the cluster radius ¢, the minimum
number of points n within the cluster radius, and the Doppler
threshold f;. Based on the point cloud set Py before clustering
in formula (11), the point cloud set P with the Doppler shift
less than the Doppler threshold removed is

P A,y g fa) || > fi=1.2,....0} (12

where fy; is the Doppler shift of the point target j, and J
represents all the scattering points that satisfy [fdj‘ > f;. The
processed point cloud set Py is clustered using the DBSCAN
algorithm to find the cluster centroid as the center-of-mass
feature point of the single-frame human target point cloud.

Figure 8 shows the results of the traditional DBSCAN and
DBSCAN clustering methods based on Doppler frequency
shift filtering for a single frame of human target 3D point
cloud data. While the traditional DBSCAN method results
in invalid target points after clustering, this method filters
out the scattered points with small frequency shifts of human
micro-motion in the case of single-frame targets, making the
DBSCAN clustering more accurate.

B. EKF ALGORITHM BASED ON HUMAN DYNAMIC
TRAJECTORY PREDICTION

With the human body uniform motion model, it is assumed
that the target velocity for this model is constant over the

VOLUME 12, 2024

DBSCAN Doppler Shift DBSCAN

. ©

02 015

(a) (b)

FIGURE 8. Point cloud clustering. (a) Traditional DBSCAN clustering.
(b) DBSCAN clustering based on Doppler frequency shift screening.

measurement interval. During measurement, the mmWave
radar is subject to bias due to the sensor’s performance and
environmental disturbances. For example, a jump in target
position and a target loss occurs when measuring the same
target. To address the above issues, this research uses the
EKEF algorithm to improve the errors arising during the mea-
surement process. The EKF algorithm consists of a recursive,
iterative operation divided into prediction and update steps.

1) PREDICTION STEPS

The target is modeled using a constant acceleration model
in conjunction with the actual motion of the mmWave radar
target. The target object is viewed as a center-of-mass point.
Without considering the size and shape of the center-of-mass
point, the focus is on the target object’s position, velocity,
and acceleration information in mmWave radar Cartesian
coordinates. From this, the feature vectors of the model are
defined as

T
Xe = (p, v, )" = (px, Py, i, vy, ax, ay) (13)

where X is the system feature vector, p; and p, are the
positions of the target in the Cartesian coordinate system in
the X and Y directions (m), v, and v, represent the velocity
of the target’s motion in the X and Y directions(m/s), a, and
ay represent the acceleration of the target in the X and Y
directions(m?/s).

Based on the constant acceleration model to represent the
target motion law, the state transfer matrix A of the constant
acceleration model is obtained as

1 0 At 0 1A 0
0 1 0 Ar 0 A
_|lo 0o 1 0o A 0
4=lo 0 o 1 0 At (19
00 0 0 1 0
00 0 0 0 1

where At is the two detection sampling intervals. In the pre-
diction step of the EKF algorithm, the priori estimated state
vector X~ at the current moment can be obtained from the
posterior estimated state vector X, ,j_l at the previous moment
as

X, =AX," (15)
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The prior estimated covariance matrix P, for the current
moment is derived from the posterior estimated covariance
matrix P,j'_ | for the previous moment as

P =APF AT + 0" (16)

where Q* is the covariance matrix of the process noise.

2) UPDATE STEPS

The measurements in each frame have a corresponding target
orbit to associate. The association process requires a distance
metric calculated from the distance between the measured
and the predicted trajectory’s center of mass. The measure-
ments are assigned to the closest orbit. Each track’s center of
mass of all measurements is calculated as the target position.
Due to the limited angular resolution of the mmWave radar
for boundary detection, the shape of the target is modeled as
a point.

For measurements that are not associated with other tracks,
a new trajectory is initialized for them if the signal-to-noise
ratio of the measurement is sufficiently dense and strong
enough. The corresponding trajectory is deleted for trajectory
not associated with any measurement.

Finally, the EKF update step is used to estimate the state
and covariance of the pedestrian. Due to the nonlinearity
of the measurement model, the relationship between state
and measurement must be approximated by a Taylor series
expansion. The mmWave radar output measures the relative
distance, relative azimuth, and relative velocity of the tar-
get, thus defining the measurement vector u; of the EKF
algorithm as

ug = (r, o, v)" (17)

where y represents the relative distance, ¢ represents the rela-
tive azimuth, and v represents the relative velocity. Therefore,
the state observation mapping relationship H can be defined

as
R

H = | tan" (s /py) (18)
PxVxt+pyvy

P}

From this, the Kalman gain K} for the update step can be
deduced as

Ke = P () [ (@) PecT () +R]  (19)

where C is the first-order partial derivative of the state obser-
vation mapping matrix H, z; is the systematic observation
vector, and R is the systematic observation noise. The system
measurement residuals #; are calculated as follows

e =ux —H (z) (20)

Calculate the posterior state vector Xk+ , covariance P,': as
X =X, + Ktk (21)

P =P, —KC (X;) P} (22)
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where K is the extended Kalman gain matrix for the updated
part of the measurement at the moment k.

For the subsequent human dynamic balance assessment
modeling, the Z-axis is omitted to convert the 3D tracking
results into 2D tracking results. However, an additional height
dimension is introduced in the tracking process, facilitating
the increased number of detected features. Therefore, the
tracking performance is improved compared to the 2D track-
ing model.

C. DEVELOPING A RISK ASSESSMENT MODEL FOR FALLS
IN OLDER ADULTS

The quantitative assessment system for fall risk in older
adults walking at home is shown in Figure 9. During the data
collection phase, we establish a mmWave radar-based system
for collecting walking trajectory data of older adults to obtain
their kinematic parameters. Then, we use a clinically com-
mon dynamic balance ability test scale to score the balance
ability function of older adults during walking and use the
scale score as the label for the dataset. Finally, we extract
eight features from the data and use four machine learning
algorithms to establish a quantitative assessment model for
older adults’ fall risk.

Data Acquisition ML Models Prediction Quantitative Assessment

. SVR
Q i - Data Prep: f'accs III Evaluation
Feature B Model Metrics

Extraction
GBDT

T XGBoost
. : - Clinical =y
. > |7z e > — — v | Model
m ¥ =] ScaleScofe LightGBM = ¥ | Prediction Score

FIGURE 9. Quantitative fall risk assessment model for elderly.

— |

During the data collection phase, the participants perform
the balance ability evaluation task in a laboratory setting.
TI IWR6843 measures various 2D spatial kinematic param-
eters of the participants. The software controlled by the
host computer provides real-time trajectory parameters for
the participants. The collected data are sent to the host
computer-based control software. To avoid the impact of
subjective factors on the clinical score, three different raters
rate the subjects’ dynamic balance ability according to the
clinical assessment scale, and the average of the three scores
is used as the final score.

This research recruits 32 participants to participate in the
experiment. Each participant needs to complete eight tra-
jectory tracking tasks divided into forward and backward
walking to eliminate the influence of walking habits. The
sample size of the experimental dataset is 256. This research
selects the RF algorithm and the Pearson correlation anal-
ysis to determine the feature vector and the SVR, GBDT,
XGBoost, and LightGBM models as supervised regression
prediction algorithms to establish the quantitative assessment
model. The centroid trajectory, trajectory offset, and max-
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imum sway diameter are used as the inputs to the model,
and the best model is obtained by extracting the feature
parameters for prediction. The reasons for selecting the above
four algorithms are that their generalization and nonlinear
mapping abilities are good, and the sample size of this study’s
dataset is small [27].

During the quantitative assessment phase, the participants
complete the evaluation task, and their kinematic data on
balance ability are collected by sensors and transmitted to a
computer. The model’s predicted scores for dynamic balance
ability are obtained by preprocessing the data and training the
model, enabling quantitative assessment of human dynamic
balance ability.

Random forest (RF) is a classification and regression tech-
nique with simple implementation and low computational
overhead, which is suitable for modeling nonlinear data and
correlation analysis of variables. Many scholars have used
random forest methods for feature selection [28].

Gradient boosting decision tree (GBDT) is a decision
tree algorithm constructed based on iterations. It can make
both regression and classification predictions, using the clas-
sification and regression trees (CART) model as a weak
learner, building the new learner in the direction of the gra-
dient decline of the loss function of the previous learner,
and training the model through continuous iteration. In the
iterative process, residuals exist between the predicted and
actual values in each round, and the predictions are made
again in the next round based on the residuals. Finally, all
the predictions are summed up as the conclusion. Therefore,
the additive model of the decision tree of GBDT can be
represented as

M
Fn¥) =D T (x,60,) (23)
m=1

where T (x, 6,,) is the decision tree, 6,, is the decision tree
parameter, and M is the number of trees. According to the
forward step-by-step algorithm, the step model m is

Jn@®) = fin-1(x) + T (x, On) (24)

Setting y; as the actual value of the sample i, f;,,(x;) as the
predicted value of the sample i,and taking the loss function as
the squared loss, the loss function and the minimization loss
function of the parameter 6,, as

1
L O fn () = 5 Ot = fo (x1))? (25)

M
O = argmin > L i fu1 ) + T (x:6,))  (26)
i=1

Several iterations of the regression tree update the above
equation to obtain the final model. LightGBM is an improved
model proposed by Microsoft in 2017 based on the GBDT
framework [29]. It uses a histogram-based segmentation
algorithm instead of the traditional pre-sorted traversal
algorithm, which not only outperforms GBDT in terms
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of training speed and space efficiency but also effectively
prevents overfitting and is more suitable for training data.

V. EXPERIMENTS AND FEATURE EXTRACTION

A. EXPERIMENTAL SETUP

The IWR6843 is used for data acquisition, which has a carrier
frequency of 60GHz-64GHz, equipped with four RX anten-
nas and three TX antennas, and the parameters are set as
shown in Table 1. IWR6843 supports a 120° view angle in
both horizontal and vertical directions. Due to the experi-
mental scene top-hung radar evaluation board, the maximum
measurement distance is 6m. The sampling frequency is gen-
erally selected above 2000 KSPS, where KSPS (kilo sample
per second) is the sampling frequency unit, indicating the
number of species sampled per second.

TABLE 1. Radar parameters.

Parameter Value
Start Frequency 61.2GHz
ADC Start time 17us
Ramp End time 50us
Frequency Slope 55.27MHz/ps
ADC Samples 64
Band Width 1768.66MHz
ADC Sampling time 32us
Frame Periodicity 120 ms
ADC Sampling Frequency 2000KSPS

The experiment is conducted in a closed room with experi-
mental equipment including a TI IWR6843 mmWave radar
evaluation board (hanging height 2.8m), a computer with
MATLAB R2021b (CPU R7-5800H 3.2GHz 16GBRAM),
and an intelligent tracking trolley. The experimental scenario
is shown in Figure 12(a).

B. EXPERIMENTAL PROTOCOL DESIGN
On the one hand, to verify the accuracy of the mmWave
radar model proposes in this paper to measure the behav-
ioral trajectory of the participants. As in Figure 10(b), a
4mx4m square experimental environment is built in the labo-
ratory, and the intelligent-tracking trolley is required to follow
the route planned on the ground. The difference between
the measured trajectory of the radar and the ground-truth
trajectory is analyzed by comparing the trajectory of the
intelligent-tracking trolley recorded by the mmWave radar.
On the other hand, a clinical experiment protocol is designed
to validate the quantitative fall risk assessment system pro-
posed in this paper. Participants are recruited to participate
in the experiment. The actual scenario of the participating
tests is shown in Fig.10(c). The position of the behavioral
trajectories of the participants measured by the mmWave
radar in the quantitative assessment experiment is shown in
Fig.10(d).

In the quantitative fall risk assessment experiment, partic-
ipants walk through the experimental scenario in numerical
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TABLE 2. Feature parameters that characterize the motor function.

Feature Parameters

Definition

Task execution time T

Centroid trajectory length L

Defined as the duration of each task.
Defined as the total length of the center-of-mass curve over the test time, reflecting the
speed of center-of-mass sway.
Defined as the average center-of-mass wobble in the Y-direction, reflecting the center-of-

Trajectory offset D
Maximum swing diameter R
Envelope area S

Track length per unit area LA

Average velocity V'
Pause duration P

mass position.

Defined as the difference between the maximum and minimum values in the Y-direction,
reflecting the magnitude of the change in position of the center-of-mass over time.
Defined as the area encompassed by the trajectory of the center-of-mass, reflecting the
sway of the body center-of-mass.

Defined as the ratio of total trajectory length to envelope area, reflecting the changing

trend of human posture.

Defined as the average of the velocity during a motion.
Defined as stopping time on the way to perform each task.

order, as in Figure 10(b). Each subject participates in the
experimental procedure in three main stages:

Step 1: First, the participant stands still at the starting posi-
tion for 5 seconds. Second, the participant steps in place and
waited for experimental instructions. Then, the participant is
asked to complete the specified action at the speed of their
normal walking state.

Step 2: The participant walks straight along a planned
trajectory, and data on the participant’s position, velocity, and
acceleration are recorded.

Step 3: The participant walks along a planned trajectory
square, and mmWave radar simultaneously records the actual
trajectory of the participant’s movement.

1) PARTICIPANTS

We recruit several elderly participants with fall risk and
healthy young participants to participate in the quantitative
assessment experiment on fall risk. In the course of the exper-

FIGURE 10. Experimental scenarios. (a) Devices. (b) Walking track route.
(c) Test scenarios. (d) Elderly trajectory experiment.
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iment, in addition to asking the elderly subjects to complete
the above steps in a normal state, we also instruct the elderly
participants and young participants to simulate the abnormal
walking situation to different degrees. Through actual mea-
surement and simulation, we establish 256 sets of sample
data, which served as the data basis for the subsequent analy-
sis of the subjects’ balance ability. The recruitment criteria for
the elderly participants included: a) aged between 65 and 80
years; b) a history of falls; c) healthy elderly individuals with
no history of falls and good gait status; d) elderly individuals
with good mental status and able to communicate normally.

In this research, we select the ‘“‘Falls Risk Assessment
Scale for Older Adults” from Geriatrics and invite raters to
assess the dynamic balance ability of the participants using
the Clinical Assessment Scale. The scale is used to determine
the trend of the human balance and to predict the risk of falls
in older adults.

2) FEATURE EXTRACTION

Studies of motor performance in elderly participants with
balance disorders have identified several metrics to quantify
relevant motor functions in participants. Zhang et al. [30]
chose velocity metrics, trajectory deviation, and normal-
ized path length to characterize motor motion performance.
With reference to the aforementioned relevant studies on
motor performance characterization and the professional
recommendations of clinicians, eight characteristic motor
parameters are selected in this paper. The symbols and defi-
nitions of the specific characteristic parameters are shown in
Table 2.

a. The length of the centroid trajectory is calculated as follows

N-—1
L= Vo -0+ G —w? QD)

i=1

where x;, x;+1 and y;, yiy+1 are the coordinates of two neigh-
boring sampling points, and N is the number of sampling
points of the trajectory.
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b. The trajectory offset is calculated as follows

N
1
D=— AD; 28
N Z |AD;| (28)
i=1
where AD; is the deviation between the real-time trajectory
point and the original trajectory’s corresponding point.
c. The maximum swing diameter is calculated as follows

R = max (AD;) — min (AD)) (29)

where AD; is the maximum trajectory offset, and AD; is the
minimum trajectory offset.
d. The envelope area is calculated as follows

N
S=> (ir1 — yi)\/(xi—H —x)>+ Gir1 —y)> (30)
i=1

e. The track length per unit area is calculated as follows

v 2 2
> Gt =y i — 02 + Qi1 — i)
1A = 2! — (31)
2 \/(Xi+l —x)% + i1 = yi)’

f. The average velocity is calculated as follows

1 N-—1
V= Zl V@i =02 + i -2 (32)

where T is the total time of target motion.

3) MODEL EVALUATION INDEX

The dataset must be divided into training, validation, and test
sets in a specific machine-learning model evaluation ratio.
The test set is utilized to get the final results after the training
is completed to determine the merit of the trained model, but
this situation can lead to overfitting of the model on the test
set.

In this research, we adopt K-Fold Cross Validation, which
can effectively avoid the influence of information leakage on
the model’s hyperparameters. As shown in Figure 11, firstly,
the whole training set is divided into K partitions of the same
size according to formula (33). Secondly, different partitions
are selected for each partition as the test set in turn, and the
remaining K-1 districts are used as the training set. Lastly,
the whole process requires training and testing each of the K
times, and the results of the K tests are averaged to evaluate
the model’s effectiveness.

{ K ~InN a3
N/K > 3d
where K is the size of the cross fold, N is the total number
of samples in the dataset, and d is the number of feature
parameters from Table 2 above.

Ding et al. [28] proposed a prediction model for quantita-
tive evaluation based on a machine learning algorithm in their
study of quantitative evaluation methods for motor function.
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FIGURE 11. Fundamental figure of K-fold cross validation.

Testing-Set

The prediction model score in the quantitative evaluation
method for the motor function is correct if the absolute value
of the difference between the clinician’s scale score and the
model prediction score is less than or equal to three scores.
Therefore, the model prediction is considered accurate if the
absolute value of the difference between the clinician’s scale
score and the score predicted by the model is less than or
equal to one score. This research uses four machine learning
algorithms to assess the human dynamic balance ability quan-
titatively. The accuracy, mean absolute error, mean square
error, and determination coefficient is used to assess the
fitting performance of the model [31].

a. Accuracy is defined as the percentage of the number of
samples with absolute error less than one score of the total
number of samples in the test set, and the formula is as follows

N,
Accuracy = — x 100% (34)
Ny
b. The mean absolute error (MAE) is calculated as follows
| N
MAE = Zl |0 = 50)| (35)
=
c. The mean square error (MSE) is calculated as follows
1Y 2
MSE = = > (vi = 5i) (36)

i=1

d. The determination coefficient (R%) is calculated as
follows

N 2
Z:l()’i_yi)

2 i=

R=1-21—— (37)
Z:l(yi—ﬁ)z

where N; is the number of samples with absolute error less
than one score, N; is the total number of samples in the test
set, y; is the physician scale score, y; is the mean of y;, and y;
is the prediction score of the model.

It is also important to note the limitations of our current
study. The total sample size of the dataset used to build
the evaluation model is 256, and the relatively small sample
size in this study may limit the evaluation performance of
the model. Therefore, more clinical trials will be needed to
collect more data to improve the accuracy of the evaluation
model.
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VI. RESULTS AND DISCUSSION

A. MMWAVE RADAR TRAJECTORY TRACKING
PERFORMANCE ANALYSIS

For the mmWave radar-based dynamic trajectory tracking
algorithm proposes in this study, the intelligent-tracking
trolley travels at a constant speed according to a predeter-
mined track to obtain accurate data. To ensure the accuracy
of the collected data, the intelligent-tracking trolley is driven
at a speed of 1 m/s along a straight trajectory. Figure 12
shows the tracking results of the intelligent-tracking trolley
traveling along a straight line, with the dashed line indicat-
ing the ground-truth trajectory, the solid blue line indicating
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the tracking trajectory before algorithm improvement, and
the solid red line indicating the tracking trajectory after
algorithm improvement. Figure 12(a) shows the tracking
path of the ground-truth trajectory and the tracking trajec-
tories before and after algorithm improvement. In contrast,
Figure 12(b) shows the needle diagram of the tracking tra-
jectories and the ground-truth trajectory before and after
algorithm improvement. Figure 12(c) shows the analysis
of the errors’ cumulative distribution for different schemes
before and after the algorithm improvement.

As shown in Figure 12, when the intelligent-tracking trol-
ley moves along a straight line, the tracking depicts a minor
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tracking error. The average absolute error of the tracking
trajectory for ten experiments before algorithm improvement
is 0.04940m, and after algorithm improvement is 0.02879m,
indicating more accurate tracking results. From Figure 12(c)
above, it can be seen that the algorithm starts to converge
at an error of 0.129m before the algorithm improvement.
In comparison, the algorithm starts to converge at an error
of 0.06m after the algorithm improvement, which shows that
the algorithm improvement has been improved. The mmWave
radar-based target trajectory tracking accurately depicts the
target on a straight trajectory, with the accurate trajectory
and tracking trajectory overlapping and the tracking effect
reaching the expected accuracy. This method can be applied
accurately to track human walking trajectories indoors.

Subsequently, 7 youth people are invited to walk at a
constant speed 4 times in the experimental scene according to
the digital order shown in Figure 10(b), obtaining 28 sets of
straight walking trajectory information and 28 sets of square
walking trajectory information. Figure 13 shows the tracking
results of young people walking straight and square paths.
The dashed line indicates the ground-truth trajectory, the solid
blue line indicates the tracking trajectory before algorithm
improvement, and the solid red line indicates the trajectory
after algorithm improvement.

Figures 13(a)(d) show the tracking path of the ground-truth
trajectory and the tracking trajectories before and after
algorithm improvement. In contrast, Figure 13(b)(e)
shows the tracking trajectories’ needle diagram and the
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ground-truth trajectory before and after algorithm improve-
ment. Figure 13(c)(f) shows the analysis of the cumulative
distribution of errors for different schemes of tracking
trajectories.

Figure 13 shows that 7 young participants walk along a
straight line or a square, and track the depicted trajectories
with minor tracking errors. After algorithm optimization,
the average experimental error decreases from 2.9455m to
0.3948m. As shown in Figure 13(f) above, the algorithm starts
to converge at an error of 0.218m before the algorithm is
improved. In comparison, the algorithm starts to converge
at an error of 0.289m after the algorithm is improved, with
an increase in the average error effect of 9.95%. The above
experiments indicate that the algorithm improvement signifi-
cantly enhances the trajectory tracking and brings it closer to
the real human walking trajectory. The experiment of tracking
young participants’ trajectories confirms the feasibility of
tracking indoor human walking trajectories and suggests that
the indoor tracking of elderly adults” walking trajectories can
reflect their real-time movement trajectories well. Further-
more, recording the elderly participants’ movement trajectory
during walking, such as speed, centroid trajectory length, and
trajectory offset, is of great practical significance.

Finally, in the experiment of quantitative assessment of
fall risk, we invite elderly participants with different severity
levels to participate in the experiment. They are required
to walk in the experimental scenario following the numeri-
cal sequence shown in Figure 10(b). Their square walking
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trajectories with different clinical scale scores are obtained,
as shown in Figure 14.

According to Figure 14, each score’s tracking effect in
assessing fall risk in older adults can be seen. Figure 14(a)
shows the 1-score movement experiment, where elderly par-
ticipants started slowly. Figure 14(b) shows the 2-score
movement experiment, where elderly participants started
slowly and turned once obviously. Figure 14(c) shows the
5-score movement experiment, where elderly participants
started slowly, turned twice obviously, swayed from side to
side in some stages of walking, and stopped twice in the mid-
dle. Figure 14(d) shows the 6-score movement experiment,
where elderly participants with a disability in the left leg
turned twice, walked offline, and stopped once in the middle.
Figure 14(e) shows the 7-score movement experiment, where
elderly participants with a disability in the right leg turned
three times, walked offline, and stopped twice in the middle.
Figure 14(f) shows the 8-score movement experiment, where
elderly participants with a disability in the left leg turned three
times, walked offline, swayed from side to side, and stopped
three times in the middle. Figure 14 shows the elderly partici-
pants’ walking performance, such as not walking straight and
long pauses time during turning, which can be observed.

Figure 15 shows the cumulative distribution of errors for
different scores in the fall risk assessment experiment for
older adults. In the 1-score experiment with lower scores in
the fall assessment experiment for older adults, the local-
ization error starts to converge at 0.236m. In comparison,
in the 8-score experiment with higher scores, the localization
error starts to converge at 0.497m. It can be seen that the
localization error is significantly and positively correlated
with the scores of older adults in different scores. In short,
there is a strong correlation between the effect of trajectory
tracking in fall risk assessment experiments for older adults
and the scale scores of fall risk assessment.
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Therefore, the effectiveness of the algorithm improve-
ment in the early stage of this study is significant. The
improvement in the tracking effect of the mmWave radar is
notable. Applying the elderly participants’ kinematic param-
eters extracted by the mmWave radar to the subsequent
quantitative fall risk assessment is also highly meaningful.

B. QUANTITATIVE ASSESSMENT ANALYSIS OF FALL RISK
IN OLDER ADULTS

To validate the effectiveness of the quantitative risk assess-
ment method for falls in older adults propose in this study.
Pearson correlation analysis is conducted between the motion
characteristics and clinical scale scores, as well as between
model predicted and clinical scale scores. As shown in
Figure 16, the Pearson correlation heatmap shows the correla-
tion strengths between each motion characteristic and clinical
scale score. The darker the figure color, the stronger the pos-
itive correlation. The lighter the figure color, the stronger the
negative correlation. As shown in Figure 16, the correlation
between the task execution time and the scale scores is the
highest at 0.95, followed by two movement features: average
velocity and pause duration. The heatmap shows that the cor-
relation coefficients between the eight motion characteristics
proposed in this research and clinical scale scores are all
greater than 0.6, indicating that each feature characteristic has
a strong correlation and further validating the effectiveness of
these characteristics in quantitative risk assessment of falls in
older adults.

Pearson Correlation of Movement Features and Clinical Scale Scores
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FIGURE 16. Heatmap of Pearson correlation between movement features
and clinical scale scores.

The Pearson correlation analysis results between the model
predicted, and clinical scale scores are shown in Figure 17.
Figure 17(b) shows that the black dots represent the scat-
ter plot of the model predicted and clinical scale scores,
while the blue line represents the fitted curve between
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FIGURE 18. Comparison of the prediction score of the four evaluation models with the doctor’s scale. (a) SVR. (b)GBDT. (c)XGBoost.

(d)LightGBM.

both. The Pearson correlation coefficient between the fea-
tures uses in the RF model and the clinical scale scores
is 0.9926, indicating a linear relationship between the two
evaluation methods and proving the significant correlation
between the feature selection and clinical scale scores in this
study.

The motion feature dataset is used as input to the machine
learning quantitative model, and the data are chunked using
K-fold cross validation. Since the size of the cross-fold K
often receives the influence of various factors, the value of
K is generally taken in the interval of [2] and [10]. According
to formula (33), the total number of samples N of the data set
is 256, thus obtaining K = 5 and d = 8, which is in line with
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the parameter selection of this model. The way of dividing the
dataset into testing set and training set according to a certain
proportion is discarded, thus avoiding the phenomenon of
model overfitting on the test set.

With the model metrics above, the dynamic balance ability
motor parameters are assessed and analyzed by machine
learning to obtain model prediction scores. The predicted
scores of the four assessment models based on machine
learning algorithms (Fold 1) are compared with the clinical
scales as shown in Figure 18. The red scatter plot represents
the clinical scale scores, and the blue fitted curve repre-
sents the quantitative evaluation model scores for predicted
scores.
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TABLE 3. 5-fold cross-validation of accuracy results for four assessment models.

Fold 1 2 4 5 Accuracy
SVR 90.38% 86.27% 80.39% 94.12% 60.78%  82.39%
GBDT | 90.38% 86.27% 96.08% 94.12% 92.16%  91.80%
XGBoost | 92.31% 92.16% 94.12% 94.12% 90.20%  92.58%
LGBM | 94.23% 94.12% 92.16% 94.12% 92.16% 93.36%

In the five-fold cross-validation results of the four evalu-
ation models in Table 3, LightGBM’s evaluation model pre-
dicts the best accuracy performance. As shown in Figure 18
and Table 3, the accuracy, mean absolute error, mean square
error and coefficient of determination of the four evaluation
models are calculated to compare their performance and ver-
ify their effectiveness.

In Table 4, among the four quantitative assessment models
based on machine learning algorithms selected in this study,
the LightGBM model has the highest prediction accuracy
of 93.36%, the smallest mean absolute error of 0.3473, the
smallest mean squared error of 0.2454, and the determination
coefficient of 0.9404. This shows that the quantitative assess-
ment model based on LightGBM has the best performance
in evaluating the human body’s dynamic balance capacity
performance is the best.

TABLE 4. Comparison of evaluation indexes of four evaluation models.

Index SVR GBDT XGBoost LGBM
Accuracy | 82.39%  91.80% 92.58% 93.36%
MAE 0.5741 0.3686 0.3731 0.3473
MSE 0.5250 0.2847 0.2847 0.2454
R’ 0.8736 0.9277 0.9280 0.9404

VII. LIMITATIONS AND FUTURE WORK

This study investigates a quantitative assessment system for
evaluating the risk of falls in older adults using 60GHz
mmWave radar and machine learning algorithms. The results
demonstrate that this system has good predictive performance
and can be applied to non-contact monitoring and evaluation
of elderly falls [13]. However, there are still some limita-
tions to the proposed method. Firstly, mmWave radar can
only track a single object. Multiple mmWave radars can
be combined to improve tracking effectiveness to reliably
track multiple objects or a single object in complex home
environments [32]. Secondly, the sample size of elderly par-
ticipants tested in the experiment is small. More clinical trials
are needed to validate the proposed evaluation model’s per-
formance and improve the model prediction and evaluation
accuracy. Finally, a Kinect motion sensing device can be
used to synchronously capture the skeletal information of the
human body to track body movements, and the combination
of both can achieve higher accuracy to further comprehen-
sively assess the balance ability and even the tendency of falls
in older adults [33].
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In future work, more clinical trials will be conducted to
improve the performance indicators of the evaluation model
and explore a complete elderly health monitoring and eval-
uation system that combines home monitoring with clinical
evaluation. The aim is to promote the intelligent elderly care
mode to thousands of households and develop a monitoring
and evaluation system for elderly people who live alone, real-
izing a “‘Hospital 4+ Family + Elderly” three-in-one smart
elderly care mode.

VIil. CONCLUSION

This paper proposes a quantitative assessment system for
elderly fall risk based on 60GHz mmWave radar imaging
and trajectory feature fusion. The system uses the DBSCAN
clustering algorithm with Doppler frequency shift to obtain
the center-of-mass position of the human target and the
EKF-based human dynamic trajectory prediction algorithm
to achieve target tracking. Through Pearson feature correla-
tion analysis and motion feature selection based on RF model,
the significant correlation between features and clinical scale
scores is determined. Finally, four different machine learning
algorithms are used to predict the human dynamic balance
ability assessment score to achieve a fine-grained quantitative
assessment. Experimental test results show that LightGBM
performs the best among the four evaluation models, with a
prediction accuracy of 93.36%. The system can be used as an
effective means to assist in the daily monitoring of elderly fall
risks at home.
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