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ABSTRACT The efficient operation of cellular networks requires careful tuning of configuration parameters,
such as the transmit power or antenna tilts, to adequately balance interference while providing the necessary
capacity to the connected UEs. As manual tuning of these parameters is typically unfeasible, several
automated coverage and capacity optimization methods have been proposed. However, most existing
solutions are either based on poorly scalable black-box optimization methods or solely consider interference
management, while omitting the potential of congested cells. In this work, we instead propose a differentiable
framework for cellular network optimization, centered around the end-user throughput, that enables
load-aware tuning of network parameters through gradient descent. Hereby, we approach the problem from
a data-driven perspective, and include dedicated model subcomponents derived frommonitoring data, which
enable the calibration to site-specific traffic patterns and KPI measurements. We validate our approach for
joint transmit power optimization in a real-world network layout with ≈ 150 cells in two frequency bands.
In our evaluation, the gradient descent-based optimization reliably reduces the outage ratio for different
levels of demand, while the black-box baseline struggles to explore the large search space. Our results further
reveal substantial differences between the proposed load-aware and commonly used SINR-based objectives,
for which we repeatably obtain unbalanced network configurations with severely congested cells. In contrast,
the proposed end-user throughput objective promotes a balanced network configuration, providing adequate
resources to the connected UEs while also limiting interference.

INDEX TERMS Coverage and capacity optimization, cellular network optimization, gradient descent, radio
planning, load balancing, monitoring data, minimization of drive tests, 4G, 5G, 6G, wireless networks.

I. INTRODUCTION
The efficient operation of cellular networks requires careful
selection and tuning of configuration parameters, in order to
provide the necessary capacity to connected user equipments

The associate editor coordinating the review of this manuscript and
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(UEs), while also adequately balancing interference. For
large network deployments, the manual configuration of
parameters like transmit power or antenna down-tilt is
typically unfeasible, so that several automated coverage
and capacity optimization (CCO) methods have been pro-
posed [1], [2], [3]. Still, the optimization remains challenging,
as the parameters have to be tuned jointly over all cells
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serving the respective area, given that they are inherently
linked, e.g., changing the transmit power impacts the
interference levels for neighboring cells, and potentially
also the number of connected UEs and thus the cell
load (CL) [4]. Hence, the optimization does not only
require efficient methods, scaling well to large network
deployments with the corresponding high number of tunable
parameters, but also mandates a suitable objective function,
representing the end-user performance, while taking all
of these complex dependencies into account. Due to the
challenge of this modeling task, most work in the literature
treats the problem from a completely data-driven perspective,
utilizing black-box optimization methods such as Bayesian
optimization (BO) or reinforcement learning (RL), which
iteratively probe potential configurations without accounting
for the internal structure of the objective function [2], [3].
These approaches promise to omit the, potentially error-prone
propagation modeling task, by operating on crowdsourced
measurements of key performance indicators (KPIs), such as
the reference signal received power (RSRP), the reference
signal received quality (RSRQ) or the reference signal (RS)-
signal to interference and noise ratio (SINR) [4]. These KPIs
characterize the conditions from the UE perspective and can
be obtained frommonitoring sources such as minimization of
drive-tests (MDT), hence providing direct feedback for online
optimization [2], [3].

However, these model-free approaches require extensive
probing of potential network configurations, which can lead
to poor scalability for high dimensional search spaces,
accompanied by a high risk of degrading end-user perfor-
mance during the initial exploration phase [5]. In contrast,
it has been shown in [6], that a suitable model-based
formulation of the SINR-based objective enables the efficient
and scalable optimization of antenna orientations through
gradient descent (GD). Compared to model-free methods, the
GD-based approach proposes suitable update directions in
each step instead of exploring the configuration space through
exhaustive search. While the differentiable formulation in [6]
required certain simplified assumptions, recent work on
differentiable propagation modeling, either through deep
learning [7] or in the form of dedicated differentiable
ray tracing (RT) [8] suggests, that end-to-end gradient
information is becoming more accessible for state-of-the-art
radio simulation methods, potentially forming a complete
ecosystem for GD-based tuning of the network configuration.

Still, we identify certain aspects that require further
analysis to enable a comprehensive framework for GD-
based network optimization. Foremost, this concerns the
optimization target itself, for which we find the commonly
used SINR-based objective unsuitable, as it is unaware of the
possibility of congested cells. In this work, we thus propose a
differentiable framework centered around the shared end-user
throughput, which ensures adequate interference manage-
ment, but is also inherently load-aware. As sketched in Fig. 1,
we further follow a hybrid approach using common model-
based assumptions, while including monitoring data for

FIGURE 1. Our differentiable throughput model is based on standardized
KPIs to allow for calibration to monitoring data. The end-to-end
differentiable formulation enables the scalable and efficient optimization
through GD.

calibration of KPIs and to capture site-specific traffic patterns
and UE characteristics. Through the end-to-end differentiable
formulation, we then obtain suitable update directions for the
network configuration through backpropagation.

A. CONTRIBUTION
We summarize our contribution as follows:
i) We derive a framework for load-aware cellular network
optimization based on GD. In contrast to purely SINR-
based optimization, our scheme centers around the end-
user throughput, and is thus aware of limited resources
shared among the connected UEs. Accordingly, the objective
avoids congested cells and promotes configurations with
a balanced distribution of UEs across the available cells.
Through a straightforward model extension, we can also
incorporate a GD-based scheme that facilitates active load
balancing.
ii) Moreover, we follow a hybrid approach and derive
data-driven mappings from real-world monitoring data,
which form subcomponents of our differentiable framework.
These components address the complex task of modeling user
demand and act as a data-driven abstraction over site-specific
traffic patterns. They further enable the calibration of our
model to distinct UE characteristics and KPI measurements.
iii) We validate the proposed framework by studying
large-scale GD-based transmit power optimization for a
real-world network deployment with ≈ 150 sectors in two
frequency bands. Hereby, we consider BO as a model-free
baseline. Throughout the evaluation, we further charac-
terize the relation between load balancing and network
optimization, showing that both objectives are strongly
connected.

For the interested reader, we also make a tensorflow
[9] implementation of the differentiable throughput model
publicly available.1

B. RELATED WORK
Typically, CCO centers around antenna parameters that
can be controlled remotely, hence offering the possibility
to retune the network configuration after deployment [1].
Specifically the optimal setting of the transmit power and
the antenna downtilt is of interest [2], [3], [5], [10],

1https://squid.nt.tuwien.ac.at/gitlab/leller/differentiable_throughput_
model
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[11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21]. Overall, we can distinguish two strategies, either
approaching the topic from a model-based or a model-free
perspective.

Here, the promise of model-free methods is to directly
include monitoring data into the optimization process, most
notably from MDT, which plays an increasingly important
role in the operation of cellular networks [22], [23]. In [2],
the authors successfully utilize suchMDT data for automated
tuning of the antenna downtilt based on a RL approach.
Similarly, the use of RL variants has further been validated
in [10], [11], and [12], with multi-agent systems gaining
more interest to address the high dimensional action space
required for joint optimization over large areas [13], [14],
[15], [16]. Despite these advances, the required training phase
of such model-free approaches still poses a severe practical
limitation, most notably in terms of sample-efficiency and
risk-aversion, which are ongoing research topics [5], [24].
For network optimization, the sample-efficiency of model-
free approaches is commonly addressed through BO [25],
which has shown similar performance compared to RL in [3],
while substantially reducing the number of required probing
points. For BO, the primary challenge is the scalability to
higher dimension, for which several reformulated variants
have recently been proposed [26], [27]. Also for CCO
optimization, promising results have been reported for a
large number of antenna parameters in [17], [18], and [19].
However, this required combining BO with evolutionary
algorithms in [17] and [18], and an effective reduction of the
search space in [19].
These challenges pose the question of whether a complete

black-box formulation is preferable, given that it omits
the internal structure of well-understood mechanisms in
CCO. Foremost, this concerns the availability of gradients,
which enables the scalable and efficient tuning of antenna
orientations and the transmit power for the model-based
approaches in [6] and [20]. Here, the main challenge is
to obtain an end-to-end differentiable formulation, also
including the propagation model. However, recent work
on deep learning-based propagation modeling [7], [28],
and differentiable RT [8], [29], [30], suggests that a
gradient-based framework for network optimization, using
state of the art propagation modeling, is within reach. Here,
we see the possibility of a hybrid approach, providing
gradients for well-understood mechanisms while accounting
for the possibility of direct feedback from sources like
MDT. In this work, we thus follow the methodology from
[2] and [4] by only relying on standardized KPIs and
utilization metrics that are directly available to operators.
Here, the data-driven perspective is particularly helpful to
obtain throughput estimates, which require an understanding
of UE characteristics and, most importantly, traffic patterns.

In fact, the load aspect is often omitted in CCO, with
methods like [3], [6], [11], [13], [19], and [20] solely
considering interference management. Similarly, this also
applies for the theoretical empty cell throughput, as in

FIGURE 2. Schematic block diagram of the throughput model. As all
components are differentiable with respect to their inputs, we can obtain
the gradient of the end-user throughput with respect to ri,j .

TABLE 1. Summary of notation for the throughput model.

[10], [14], [17], and [18], which omits the possibility of
congestion and is thus inherently load-unaware. However, the
importance of an adequate distribution of UEs among the
available cells is apparent from the design of load balancing
and handover algorithms [31], [32], [33]. Further, it has been
shown in [34] and [35] that the joint optimization of the user
association strategy and the antenna tilt achieves superior
results for energy management tasks. Similar results are also
reported for the model-based approaches in [36], [37], [38],
and [39], where the authors again consider the optimization
of network parameters and UE association jointly. Overall,
this connection is not surprising, as adaptations of the
network configuration inherently change the UE assignment,
potentially also resulting in congestion.While the approaches
in [36], [37], [38], and [39] partially utilize derivatives, they
are inherently model-based and thus not directly comparable
to the hybrid approach considered in our work. For instance,
[36], and also the gradient-free schemes in [34] and [35]
model the network traffic on a flow level, while [37],
[38], [39] similarly require information about the requested
transmission rate per UE. As in [2] and [4], we instead
estimate the throughput solely from metrics that are directly
available to operators. From this real-world data, we derive
the data-driven subcomponents of our model. Showing that
such a hybrid approach can still be optimized through
efficient scalable GD-based methods represents a major
contribution of our work.

The remainder of the paper is organized as follows:
We first introduce the differentiable throughput model
in Sec. II before we discuss the data-driven mappings
derived from monitoring data in Sec. III. Sec. IV then
details the considered large-scale optimization scenario
on a real-world network deployment. We summarize the
evaluation results in Sec. V and further study the difference
between load-aware and unaware optimization in Sec. VI,
by considering a model extension that enables active load
balancing. We finally end with a discussion and conclusion in
Sec. VII and VIII.
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FIGURE 3. The subcomponents of the throughput model enable calibration to site-specific traffic patterns or distinct UE fleets.

II. DIFFERENTIABLE THROUGHPUT MODEL
Our GD-based framework is centered around a differentiable
end-user throughput model that is based on KPI measure-
ments. As such, we consider i ∈ U,U = {1, . . . ,U} UEs
and j ∈ C, C = {1, . . . ,C} cells, such that ri,j denotes
the RSRP of cell j observed by UE i in dBm. We then
target an expression for the end-user throughput ti for UE
i, that is fully differentiable with respect to these RSRP
values ri,j. As sketched in Fig. 2, we build the model from
differentiable components, such that the gradients can be
obtained through backpropagation. Hereby, we use common
model-based assumptions for the cell assignment ai,j, the
RS-SINR si,j and the resulting end-user throughput ti, but
include data-driven mapping for the CL λj, the number of
active UEs αj, and also the spectral efficiency ηi,j.
In the following, we discuss all of these model-based

components, before the data-driven mappings are detailed in
Sec. III. A summary of the used notation for the throughput
model derivation is further provided in Tab. 1.

A. DIFFERENTIABLE SOFT CELL ASSIGNMENT
We first derive a soft, and thus differentiable, formulation of
the cell assignment, by introducing ai,j ∈ (0, 1), denoting the
probability of assignment for UE i to cell j. We compute:

1ri,j = max
j′∈C

(
ri,j′

)
− ri,j, (1)

representing the RSRP offset to the strongest observed cell
per UE, and subsequently apply a softmax function, mapping
each 1ri,j value to an assignment probability:

ai,j = softmax
j′∈C

(
−1ri,j′

)
j . (2)

Accordingly, ai,j is largest for the strongest cell observed
by UE i, but non-zero for cells with smaller ri,j values.
This not only ensures a differentiable formulation, but
also realistically accounts for the uncertainty introduced
by handover effects. Further ai,j fulfills the properties∑C

j=1 ai,j = 1 and
∑U ,C

i,j=1 ai,j = U , such that a differentiable
expression for uj, the number of assigned UEs for cell j can be
obtained as uj =

∑U
i=1 ai,j. As sketched in Fig. 2, uj then acts

as the basis to compute the number of active UEs αj = α
(
uj

)
and the CL λj = λ

(
αj

)
, using the mappings described in

Sec. III. Our model hence incorporates the distribution of the

load among the available cells, based on the RSRP values
ri,j. In Sec. VI, we will also discuss an extension where
we alternatively interpret ai,j as an optimization variable for
fixed ri,j. This optimized cell assignment then characterizes
further improvements when actively balancing the load in the
considered deployment.

B. RS-SINR & SPECTRAL EFFICIENCY
In accordance with ai,j, we compute the RS-SINR for each
possible cell assignment combination of UE i and cell j as

si,j = ri,j − 10 log10

 ∑
j′∈C\j

(
λj′ri,j′|mW

)
+ ζ|mW

 . (3)

In (3), we also account for the CL λj, which scales the
interference terms depending on the current load, while
ri,j|mW and ζ|mW denote the received power and the noise
power in linear scale. Note, that the expression is again differ-
entiable2 with respect to ri,j, and also λj. Hence, gradients are
being passed to those components during backpropagation
in Fig. 2. We then follow the approach from [2], and map
each RS-SINR value si,j to the channel quality indicator
(CQI), and subsequently the spectral efficiency ηi,j, but use
the differentiable mapping ηi,j = η

(
si,j

)
discussed in Sec.

III.

C. END-USER THROUGHPUT & SHARED RESOURCES
In the final step, we then derive the end-user throughput.
Under the assumption of an empty cell, the throughput for
UE i amounts to the expectation of the spectral efficiency
ηi,j = η

(
si,j

)
over the assignment probability ai,j:

t (empty)
i = BRB · NRB ·

C∑
j=1

ai,j · η
(
si,j

)
, (4)

scaled by the total number of available resource blocks
(RBs) NRB and their respective bandwidth BRB. However,
the RBs in (4) have to be shared among the connected UEs
in the respective cell. Accounting for these shared resources
and assuming a round-robin scheme with αj, the number of

2Note, that (3) can be implemented using the numerically stable
logsumexp function. The gradient for the SINR is also derived in [6].
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FIGURE 4. Statistics of raw data samples from the monitoring source,
used to derive data-driven subcomponents.

TABLE 2. Coefficients k(α) for different levels of demand.

parallelly activeUEs per cell, yields the following expression:

ti = BRB · NRB ·

C∑
j=1

ai,j · η
(
si,j

)
1 + α

(
uj

) . (5)

Note, that (5) closely follows the model derived in [4, Cha. 6],
with the plus one term accounting for the fully active UE
under consideration. Further, neither uj ≥ 0 nor αj ≥ 0 will
typically be integers due to the soft formulation, so that we
do not model the immediate scheduling of RBs, but rather
the average behaviour over a longer time frame. Clearly,
(5) differs from the load-unaware empty cell throughput
in (4), as the formulation does not only promote interference
management through si,j and ultimately ηi,j, but also accounts
for limited resources. We will show later in this work, that
a load-aware objective based on (5) does indeed promote
network configurations with an adequate distribution of UEs,
hence avoiding overloaded cells.

III. DATA-DRIVEN ABSTRACTIONS
To enable calibration to specific network deployments, the
throughput expression derived in Sec. II incorporates the
data-driven subcomponents α

(
uj

)
, λ

(
αj

)
and η

(
si,j

)
.

In our case, these mappings, sketched in Fig. 3, are
directly derived from network traces extracted for the
operational LTE network that also acts as the basis for
the optimization use case in Sec. IV. This allows us to
reach the required level of abstraction without incorporating
any possibly faulty model-based assumption for the critical
components characterizing the site-specific traffic patterns.
These components can also easily be recalibrated to other
network configurations, updated UE generations, or different
3GPP releases. The statistics of the raw data used for
characterizing the traffic patterns are summarized in Fig. 4
and stem from an internal base station (BS) tool3 monitoring
the cell utilization. In particular, this monitoring data includes

3The same data source has also been studied in [4, Cha. 6], where the
relation of the parallelly active UEs to the assigned RBs used in (5) is
detailed. Note, that the data source reports 15 min averages for all quantities.

the CL λj, the number of parallelly active UEs αj, and the
number of connected UEs uj. In order to correctly capture
the behavior of the considered real-world network for our
throughput model, we extract the relations between these
individual quantities. As such monitoring data is generally
noisy, we fit our models to the median trend, which describes
clear and consistent relations for the quantities in Fig. 4. From
these relations, we derive the mappings α

(
uj

)
, λ

(
αj

)
and

η
(
si,j

)
:

Active UEs Mapping:We first consider α
(
uj

)
, the number

of connected UEs that are active in parallel during one time
interval — compare [4, Cha. 6]. Here, the monitoring data in
Fig. 3a suggests, that a linear relation of the form

αj = α
(
uj

)
= k (α) · uj (6)

can adequately describe αj for a wide range of the number
of connected UEs uj. Hence, we obtain the coefficients k (α)

summarized in Tab. 2, each characterizing the ratio of active
UEs for a distinct level of demand.4 In the evaluation, we will
consider all three levels, which result in distinct network
configurations under our load-aware objective.
Cell Load Mapping: Similarly, we derive the relation in

Fig. 3b, describing the influence of the number of active UEs
on the CL λ

(
αj

)
, denoting the ratio of assigned RBs [4]. Here,

a linear relation is inappropriate, as the CL is bound to the
interval λj ∈ [0, 1] and saturates with a higher number of
active UEs aj. In principle, several regression methods are
suitable, however, a simple exponential fit closely follows the
trend in Fig. 3b. As such, we obtain

λj = λ
(
αj

)
= w0 ·

(
1 − e−αj/w1

)
, (7)

with the parameterization w0 = 0.93 and w1 = 2.25. Clearly,
this mapping is smooth and differentiable so that the gradients
required for backpropagation in Fig. 2 are available.
Spectral Efficiency Mapping: Using the same principle,

we also derive the data-driven subcomponent characterizing
the spectral efficiency η

(
si,j

)
. Following the approach in [2],

we first derive a mapping from RS-SINR to CQI, before
we obtain the spectral efficiency ηi,j through the tabular
mapping from the 3GPP standard [40, p. 220]. Hereby,
we transform the table into the soft differentiable form
shown in Fig. 3c, by approximating the steps through smooth
sigmoid functions. For the mapping from RS-SINR we then
retrieve an empirical relation from MDT data to capture
average channel conditions and UEs characteristics as in [2].
The procedure is detailed in Appendix A, where we also
discuss necessary preprossessing steps. Clearly, also this
mapping is differentiable and can easily be adapted to
different 3GPP releases or updated UE generations.

With the differentiable throughput model and the
data-driven subcomponents specified, we discuss the appli-
cation to GD-based network optimization in the following.

4In addition to the median, Fig. 3 also includes the 0.75 and 0.25 per-
centiles to represent the cases of high and low demand.
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FIGURE 5. We tune the transmit power pj within a defined interval.
Gradients of ri,j for the latent variable γ̃ are available.

IV. LOAD-AWARE NETWORK OPTIMIZATION
For network optimization, the differentiable throughput
model from Sec. II can, in principle, be applied to a wide
range of antenna parameters, as long as the gradients for the
RSRP ri,j are available, as in [6] and [8]. Throughout this
work, we, however, limit the analysis to the transmit power,
which does not require dedicated propagation modeling,
and instead focus on a detailed validation of the proposed
model. In particular, we want to characterize how the
load-aware objective differs from the commonly used load-
unaware optimization centered around the SINR. Hereby,
we specifically focus on the adequate distribution of UEs
among the available cells. In Sec. VI, we will further discuss
an extension that enables active load balancing for a fixed
network configuration, which allows us to actively reassign
the connected UEs.

In the following, we first define the problem statement in
detail and specify the used loss function. Then, we discuss the
real-world network deployment used for validation.

A. LOSS FUNCTION & EVALUATION METRICS
To differentiate the proposed load-aware optimization from
the load-unaware case, we specify two distinct loss functions,
which use the different throughput variants from Sec. II-C.
In particular, the load-aware variant considers the optimiza-
tion based on the shared end-user throughput from (5).
We formulate the loss as a penalty for the ratio of UEs not
fulfilling a lower throughput threshold t (thresh) yielding:

Loutage (·) =
1
U

U∑
i=1

σ
(
t (thresh) − ti

)
. (8)

Note, that the soft outage formulation through the sigmoid
function σ ensures a differentiable expression. Further, (8)
promotes basic fairness,5 as it does not incentivize providing
excessive rate to a single UE. To allow for a direct comparison
of the two variants, we use the same formulation for the
load-unaware objective, but replace the shared end-user
throughput ti in (8), with 1

1+α(U/C)
· t (empty)
i . Here, t (empty)

i
is the empty cell rate from (4), and the scaling term
in front ensures that both objectives are comparable for
a given threshold t (thresh). Hence, the objective considers
the throughput that can be achieved, when the UEs are
evenly distributed among the available cells. As the constant
scaling term is extrinsic to the optimization, this load-

5Instead of a fixed threshold, basic fairness can also be incorporated
through a logarithmic utility function as discussed in detail in [32]. This
results in diminishing returns for particularly high values of the throughput.

FIGURE 6. Optimization scenario based on real-world deployment, with
≈ 150 cells in two frequency bands with distinct propagation conditions.
The optimization region, indicated in blue, stretches over an area of
≈ 8 km2.

unaware reference objective is still completely unaware of
the possibility of congested cells.

For the evaluation, we further introduce dedicated metrics
to study these two optimization targets in detail. In particular,
we assess the interference management by keeping track of
the evolution of the RS-SINR for a given UE i, which we
compute as the expectation over the cell assignment si =∑C

j=1 ai,j · si,j, similar to (4). Note, that we compute the
expectation over both bands to enable a direct comparison
with the respective throughput values. Moreover, we also
consider a metric of the balanced distribution of UEs among
the available cells, in the form of the Gini coefficient gcoef ∈

[0, 1], which is a common fairness measure [41]. In our case,
the coefficient can be computed as:

gcoef (u) =
1

2UC

C∑
j=1

C∑
j′=1

∣∣uj − uj′
∣∣. (9)

We interpret (9) as a congestion measure, as it describes the
dispersion of the number of connected UEs over all available
cells. In particular, gcoef = 0 represents the case where the
UEs are perfectly distributed among the available cells with
a constant uj = U/C . In contrast, gcoef = 1 resembles the
extreme case, where all U UEs are assigned to a single cell,
while all other cells are empty. For the load-aware objective
function, we thus expect a reduction in the Gini coefficient
during optimization, as a balanced UEs distribution avoids
congested cells.

B. GD-BASED TRANSMIT POWER TUNING
In order to optimize the transmit power through GD,
we consider the scheme sketched in Fig. 5. As such,
we introduce a latent optimization variable γ̃j for each cell
j, and map it to an activation parameter γj through a sigmoid
function resulting in γj = σ

(
γ̃j

)
∈ (0, 1). Subsequently, the

γj parameter controls the transmit power for cell j:

pj = pmin + γj · (pmax − pmin) , (10)

by mapping it to the allowed interval pj ∈ (pmin, pmax).
Subtracting the pathloss then yields the RSRP values ri,j,
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FIGURE 7. Statistics of optimization history over 100 runs for load-aware
GD. Resulting outage ratios Loutage are within narrow intervals and
comparable to global-optimization BO.

which acts as the entry point to the differentiable throughput
model in Fig. 2. For joint transmit power optimization we
thus have to specify the tunable vector γ̃ , consisting of all C
trainable parameters. Hereby we start from a random initial
transmit power configuration with pj drawn uniformly at
random from the allowed interval. Subsequently we optimize
the latent variable vector:

γ̃ (∗)
= argmin Loutage (γ̃ ) , (11)

through the gradient ∇γ̃ of the load-aware loss function.
Likewise, we will also consider the load-unaware objective,
to characterize how the two optimization targets differ.

C. RADIO SIMULATION ENVIRONMENT
To ensure a realistic scenario, we base our evaluation on
the real-world macro-cell LTE deployment shown in Fig. 6,
with C = 147 cells serving an urban area of ≈ 8 km2 in
the city of Vienna, Austria. For all of these cells, the
respective operator provided us with detailed information
about the network configuration parameters, i.e., we have
exact knowledge of the BS position, antenna height, and
the horizontal and vertical antenna orientation. Overall, the
considered network deployment consists of two distinct
carrier frequencies, each with 20 MHz bandwidth. As such,
48 cells transmit at 800 MHz, while the remaining 99 cells
belong to the 1800 MHz band. As apparent in Fig. 6, the
different propagation conditions are accounted for in the
network deployment, with the low attenuation 800MHz band
ensuring basic coverage, while the higher pathloss 1800MHz
carrier offers the necessary capacity in a more densely
deployed configuration. When computing the RS-SINR
following (3), we treat both of these bands separately as they
do not generate interference among each other. However,
we consider them jointly for the cell assignment in (2),
to account for offloading of UEs between carriers which
is critical in real-world operation. In total, we consider
U = 10 000 UEs, uniformly distributed within the Voronoi6

6Note, that we consider interference generated by cells outside of the
Voronoi area, while excluding them for the cell assignment. Thus, all
considered UEs have to be served by the C cells shown in Fig. 6.

FIGURE 8. Statistics of the outage ratio for BO over 100 runs in the
load-aware case with high demand. Compared to GD, the optimization
procedure is drastically prolonged.

TABLE 3. Median outage ratio over 100 runs for load-aware optimization
after 50 steps for GD and 500 steps for BO.

areas shown in Fig. 6. Overall, this amounts to ≈ 70
connected UEs per cell, which is within the range of the
monitoring data in Fig. 4. For all UEs positions, we then
conduct extensive radio simulations using the network
planning tool from [7], directly trained on end-user RSRP
measurements. Hence, our simulations are well validated
for the considered region and make use of a detailed 3D
building model of the environment to capture the relevant
propagation mechanisms in urban areas. To adequately
describe indoor locations, we further introduce an additional
10 dB penetration loss, which is in line with extensive MDT
data analysis in [23]. We further use a constant noise term of
ζ = −120 dBm, and set NRB = 100 with BRB = 180 kHz
according to the LTE standard definition for a 20MHz carrier.

Overall, both in terms of scale and complexity, the
considered deployment is well suited for a realistic evaluation
of the proposed scheme.

V. PERFORMANCE EVALUATION AND RESULTS
Based on the realistic scenario described in Sec. IV-C,
we now evaluate our differentiable network optimization
framework. Here, we first validate the GD-based transmit
power optimization scheme by comparing the proposed
approach to a global-optimization BO baseline. Subse-
quently, we focus on differentiating our load-aware objective
from the load-unaware reference objective. Finally, we will
characterize further achievable improvements by optimally
distributing the UEs through active load balancing. If not
stated otherwise, we will use a fixed constant throughput
threshold of t (thresh) = 10 MBit/s during the evaluation.
Further, we consider a feasible transmit power interval of
pmin = −15 and pmax = 15 dBm for the network
optimization scenario, denoted in power per LTE resource

VOLUME 12, 2024 14553



L. Eller et al.: Differentiable Throughput Model for Load-Aware Cellular Network Optimization

FIGURE 9. Exemplary outage areas for high demand during GD optimization based on the load-aware or load-unaware objective.

element. Throughout this work, we use the well-known
Adam optimizer for the GD variant [42], with the BO
implementation from [43] acting as the baseline.

A. VALIDATION & COMPARISON WITH BO BASELINE
We first focus on the overall validation of the GD-based
minimization of the differentiable load-aware objective
from (8). As described in Sec. IV-B, we generally start from
a random network configuration by drawing pj uniformly
from the feasible transmit power interval. To assess the role
of the initialization for the GD-based scheme, we conduct
100 repeated runs of the optimization procedure, each
starting from a distinct randomly drawn configuration. This
is necessary, as we can, in general, not expect to reach
the global optimum using the GD-based scheme, but rather
target a sufficiently well performing local one. This is in
contrast to the considered BO baseline, which, in principle,
targets a global optimum, but typically struggles with high
dimensional search spaces.

The resulting optimization history7 for GD is shown in
Fig. 7, highlighting the median as well as the 5 and 95 per-
centile of the outage ratioLoutage for the cases of low,medium
and high demand. For all levels of demand, the loss decreases
consistently, reaching the optimized configuration after only
a small number of around ten GD steps. Also the role of the

7Note, that we select a constant step-size of 1 × 10−1 for the Adam
optimizer in the GD variant, and use the default settings for the BO baseline.

TABLE 4. Comparison of metrics at initialization and after load-aware or
unaware optimization for high demand case.

initialization seems manageable, as the confidence intervals
of the optimized outage ratios are sufficiently narrow.

This is in stark contrast to the results for black-box BO.
Here, the optimization history in Fig. 8, again showing the
median, the 5 and 95 percentiles over 100 independent runs,
reports a substantially prolonged optimization phase, accom-
panied by a significant risk of probing poorly performing
configurations. As expected, applying the scheme directly
to operational networks, as often suggested in the literature,
would thus significantly deteriorate end-user performance
in practice. Ultimately, the final outage ratios in Tab. 3
report similar performance for BO and GD, showing that
the differentiable throughput formulation guides the GD
scheme towards reasonably well performing configurations,
which can not be significantly improved upon by further
search-space exploration through BO. As standard BO is
known to struggle for such high-dimensional spaces, we fur-
ther evaluated two state-of-the-art scalable BO variants,
which did, however, not yield significant improvements in
the final outage ratio and the number of function evaluations.
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FIGURE 10. Overview of transmit power setting pj after optimization.
Comparison of load-aware and unaware. Each pixel represents one cell,
with a consistent ordering to enable comparison.

FIGURE 11. Overview of number of connected UEs per cell uj after
optimization. Comparison of load-aware and unaware. Each pixel
represents one cell, with a consistent ordering to enable comparison.

We discuss these results in detail in Appendix B, where we
also characterize the substantial computational complexity
of BO. In contrast, the GD-based scheme is particularly
efficient, both in terms of computational complexity and the
required number of function evaluations, showing that gradi-
ent information is highly valuable for network optimization.

B. LOAD-AWARE VS. UNAWARE OPTIMIZATION
With the overall feasibility of GD-based optimization of the
transmit power validated, we now focus on studying the
parameter settings promoted by the objective in (8) in detail.
In particular, we want to assess how the obtained configura-
tions for load-aware and load-unaware optimizations differ.

To study this aspect, we consider an exemplary opti-
mization procedure for a distinct initialization under high
end-user demand. We visualize the outage areas8 for such
an initial configuration in Figs. 9a and 9e, amounting to
an overall outage ratio of Loutage = 0.46. Clearly, the
throughput threshold is violated throughout the considered
area, most notably at the cell edges indicated by the Voronoi
tessellation. The poor configuration of the network is also
apparent from the metrics in Tab. 4, showing a low median
throughput and SINR. This is accompanied by a relatively
large congestion measure gcoef, suggesting that the current
configuration causes an uneven distribution of UEs among
the cells. The load-aware optimization with GD, then yields

8Note, that we use nearest neighbor interpolation to construct dense outage
maps from sparse UEs positions.

FIGURE 12. Comparison of optimization history over 100 runs for
load-aware and unaware. The exclusive focus on interference reduction
consistently leads to high outage ratios.

a consistent reduction of the throughput violations in Figs. 9b
and 9c, resulting in the substantially lower outage ratio of
Loutage = 0.15 after 50 steps. The corresponding outage map
is shown in Fig. 9d, with the outage areas effectively limited
to the lower right region, where the cell deployment is less
dense — compare Fig. 6. Note, that also the metrics in Tab.
4 are improved during the optimization. As such, we observe
an increase in the median throughput and also the RS-SINR,
accompanied by a substantial reduction of the congestion
measure.

These trends are in stark contrast to the obtained
configuration, when optimizing the transmit power based
on the load-unaware objective from Sec. IV-A. Here, the
optimization history is shown in Figs. 9e to 9h, again starting
from the same initial configuration. Interestingly, minimizing
the load-unaware objective only slightly reduces the outage
ratio from (8). As such, we obtain Loutage = 0.41 for the
configuration shown in Fig. 9h, with considerable throughput
violations throughout the optimization area. While this
behavior seems counter-intuitive at first, it can be explained
by the metrics in Tab. 4, with only a minor increase of the
median throughput from the already low initial value. This is
combined with a substantial increase for the RS-SINR, as is
to be expected for the load-unaware objective, which solely
targets interference management. However, the exclusive
focus on the RS-SINR improvement seems to be partially
conflicting with a balanced UE distribution described by
the congestion measure gcoef. As such, Tab. 4 reports an
increase from the already high congestion measure for the
initialization, showing that only insufficient resources are
available for large parts of the considered UEs.

To further validate this observation, we study the transmit
power configurations obtained for the two objectives. Fig. 10
visualizes the obtained configuration through heatmaps, with
each pixel representing the obtained pj settings for one of
the 147 cells in a consistent order to enable comparison.
Hereby, we split the two bands and report the 99 cells for
the 1800 MHz band separately from the 48 transmitting at
800 MHz. This visualization later allows to directly compare
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FIGURE 13. For a fixed configuration ri,j , we can actively balance the cell
assignment through the latent variable ãi,j .

the transmit power setting pj with the number of connected
UEs uj. For the load-aware case in Fig. 10a, the majority
of cells are close to the upper limit of the feasible transmit
power interval pmax. Again, this is in stark contrast to the
transmit power configuration for the load-unaware variant
in Fig. 10b. Here, the interference reduction objective seems
to promote drastically lower transmit power configurations,
with a substantial number of cells set to pmin. While the
significant reduction of the transmit power in Fig. 10c seems
to be beneficial for interference management, it also results
in a configuration where large parts of the considered area are
served by only a subset of the available cells. By definition,
this poses a high risk of overloaded cells, as the available
resources have to be shared among a higher number of
connected UEs.

To highlight the close relation of the transmit power
setting pj and cell assignment, Fig. 11 depicts the number of
connected UEs uj for all cells, using the same visualization9

as for the transmit power. The comparison of Figs. 11a
and 11b clearly reveals amuchmore balanced cell assignment
for the load-aware optimization, compared to the load-
unaware variant, where we observe a substantial number of
congested cells. Notably, most of these overloaded cells are
transmitting in the 800 MHz band, which is not surprising
when considering the preferable propagation conditions
compared to the higher attenuated 1800 MHz carrier, leading
to increased cell sizes at similar transmit power settings. This
visual inspection is also in line with the results for gcoef
in Tab. 4, which reports drastically different values for the
load-aware and unaware case, and hence acts as an adequate
congestion measure.

Note, that the observations for the exemplary initialization
also hold for repeated runs as visualized in Fig. 12. For
all levels of demand, the difference between the load-aware
and load-unaware objective is substantial, also indicated by
the wide confidence interval for the load-unaware objective.
Overall, we would argue that this effect is relevant for most
urban network deployments that are, in general, interference
limited as a side-effect of the dense deployment required
to serve the high number of UEs. In such a scenario, a
SINR-based objective can trivially reduce the interference,
but also risks deteriorating the end-user performance by
omitting the possibility of congested cells. In contrast, this
trade-off is natively incorporated in the proposed load-aware
optimization based on the end-user throughput expression
from (5).

In the following, we will show that the same objective
can also be used for an extension that enables active

9Note, that we cap uj to a maximum of 300 for better visual inspection in
Fig. 11. Still, the total number of UEs sums up to U for both cases.

FIGURE 14. Outage ratio over GD-steps during active load balancing
(ALB) starting from transmit power configurations optimized through the
load-aware or load-unaware objectives.

TABLE 5. Median outage ratio over 100 runs after active load balancing
(ALB) for the load-aware or unaware configuration.

load balancing within our differentiable framework. This
allows us to study the apparent relation between network
optimization and load balancing more closely.

VI. ACTIVE LOAD BALANCING EXTENSION
The results in Sec. V-B show a direct relation between
transmit power settings and the UE distribution following
the differentiable assignment model incorporated in the
throughput expression from Sec. II-C.While the RSRP-based
assignment is a common assumption that reflects the behavior
of real networks sufficiently well, it can be suboptimal
for edge-cases, where the active reassigning of UEs would
allow for the discharging of highly loaded cells. Hence,
we also consider an active load balancing extension of our
differentiable framework, showing that the same objective
function can also propose optimal assignments to distribute
UEs among the available cells. Here, it will be of particular
interest to studywhether the observations fromSec. V-B hold,
or whether the poor network configurations for the load-
unaware objective can partially be compensated through an
optimized reassignment of the considered UEs.

A. GD-BASED OPTIMAL CELL ASSIGNMENT
When optimizing the network configuration, we determine
the cell assignment directly from the obtained RSRP values
ri,j, following the model in Sec. II-A. However, for a fixed
network configuration and thus fixed values of ri,j, we can
alternatively interpret the cell assignment as the optimization
target. For this, we follow the scheme sketched in Fig. 13 and
introduce a latent variable ãi,j, which directly determines the
assignment probability ai,j through a softmax function:

ai,j = softmax
(
ãi,j

)
. (12)
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FIGURE 15. Exemplary evolution of outage areas for high demand case during active load balancing (ALB) via GD.

This adaptation can trivially be included in our GD-based
framework, by using (12) as a replacement for the RSRP-
based assignment in (2). Note, that for active load balancing,
we have a substantially higher number of U × C trainable
parameters. We collect all of these parameter in a matrix Ã
and then follow a GD-based procedure to obtain:

Ã(∗)
= argmin Loutage

(
Ã; γ̃ (∗)

)
. (13)

As such, we consider active load balancing as a subsequent
step for a fixed, already optimized, transmit power configura-
tion γ̃ (∗). This allows us to quantify further outage reductions
possible by optimally reassigning UEs across available cells.
While several initial values are possible for Ã, we found that
the RSRP-based assignment10 for the considered network
configuration γ̃ (∗) worked sufficiently well in our scenario.
By definition, the optimization in (13) requires the load-
aware objective. However, we consider the extension for
transmit power configurations γ̃ (∗) optimized through both
the load-aware and unaware variant. This way, we can
characterize whether suboptimal configurations can partially
be compensated by the subsequent active load balancing step.

B. ACTIVE LOAD BALANCING EVALUATION
For the evaluation, we start from the optimized transmit
power configurations from Sec. V-A, and subsequently apply
GD-based active load balancing. Here, we again use the

10In particular, we set ãi,j = −1ri,j, such that ai,j is initialized with the
RSRP-based assignment introduced in (2).

TABLE 6. Metrics after subsequent active load balancing (ALB) for the
load-aware and load-unaware configuration.

Adam optimizer,11 but omit the BO baseline, as the high
number of trainable parameters renders it unsuitable for
determining the optimal cell assignment. Hence, we study the
performance improvements compared to the case without the
extension, instead of a global-optimization reference.

The optimization history for active load balancing is
shown in Fig. 14, where we start from the configurations
obtained either through the load-aware or the unaware
transmit power configurations from Sec. V-B. In both cases,
Fig. 14 shows, that the outage ratio can indeed be further
reduced by adequately redistributing the UEs among the
available cells. For both cases, we observe a consistent
decrease of the outage ratio throughout the active load
balancing procedure, indicating that the GD-based scheme
can reliably identify sufficiently well performing assignment
settings. However, Fig. 14 also shows substantial differences
for the two cases, with a substantial gap between the load-
aware and unaware configuration also remaining after active
load balancing. The offset is also apparent from the median

11Note, that we select a slightly higher learning rate of 5×10−1 for active
load balancing, which performed well in our evaluation.
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FIGURE 16. Connected UEs uj after active load balancing (ALB) for the
load-aware and load-unaware configuration. Each pixel represents one
cell, with a consistent ordering to enable comparison.

performance summarized in Tab. 5, where the outage ratio for
load-unaware remains large relative to the load-aware case.
We can again consider the exemplary initialization from

Sec. V-B and study the active load balancing procedure
in more detail. As such, Figs. 15a and 15e show the
outage areas obtained after the load-aware and load-
unaware optimization of the transmit power from Sec. V-B.
Starting from these configurations, the GD-based active load
balancing procedure is applied to the load-aware scenario
in Figs. 15b and 15c, finally resulting in a reduced outage
ratio of Loutage = 0.07 in Fig. 15d. Similarly, the active load
balancing procedure also reduces the throughput violations
for the configuration obtained through the load-unaware
objective shown in Figs. 15e to 15h. After the reassignment,
we then obtain the configuration in Fig. 15h, with an overall
outage ratio of Loutage = 0.21. The reduction of the outage
areas is also apparent from the metrics in Tab. 6. Here,
the increase of the median throughput for the load-unaware
case is mainly caused by a reduction of the congestion
measure by more than 0.1 compared to Tab. 4. As expected,
we also observe a minor decrease in the RS-SINR, as the
active load balancing step partially reassigns UEs to weaker
serving cells in order to mitigate congestion. Apparently, the
offloading is successful, with the visualization of the cell
utilization in Fig. 16 showing a substantially more balanced
UEs assignment. In particular, this applies to the 800 MHz
band where we observed many congested cells before active
load balancing in Sec. V-B. In Fig 16, these cells are now
discharged, with the UEs distributed among cells offering
similar levels of RS-SINR. Still, there remains a large gap
between the congestionmeasure for the load-aware and load-
unaware case also after active load balancing.

We conclude, that the load balancing aspect has to be
incorporated into the optimization, as poor transmit power
configurations can only partially be compensated for by
optimal handover decisions from the network side.

VII. FINAL COMPARISON AND DISCUSSION
Throughout the evaluation, we observed substantial differ-
ences between the transmit power configurations promoted
by the load-aware and unaware objective. For a final direct

FIGURE 17. Overview of change 1 for selected metrics during
optimization, with and without subsequent active load balancing (ALB).
Note, that metrics are reported relative to the median values for the
random initializations.

comparison, Fig. 17 summarizes the optimization history in
the case of high demand for all four considered variants.
In particular, we report the difference in the outage ratio, the
median throughput, the median RS-SINR, and the congestion
measure after optimization, compared to the median values
for the randomly initialized transmit power configuration. For
all these metrics, Fig. 17 shows the median change together
with the 5 and 95 percentiles.

Again, we note that the outage ratio reduction is largest
for the load-aware case and can further be increased through
the subsequent active load balancing step. These trends are
directly related to the improvement in median throughput,
which is significantly lower for the load-unaware objective,
even after the subsequent active load balancing step. All of
this is accompanied by an increase of the RS-SINR, which is
largest for the load-unaware case. In contrast, the load-aware
optimization yields significantly smaller improvements, as it
does not solely focus on interference management, but also
accounts for the risk of congested cells. Accordingly, we also
observe a decrease of the RS-SINR during the subsequent
active load balancing step, as UEs are reassigned to discharge
overloaded cells. Finally, the high outage ratios for the
load-unaware optimization despite the superior RS-SINR
can be explained by the increase of the median congestion
measure, starting from the already high random initialization.
While the congestion can partially be compensated by the
subsequent active load balancing step, the large gap relative
to the load-aware objective remains.

Based on the comparison from Fig. 17, we can thus
conclude that the load-unware optimization of the network
configuration is unsuitable as it consistently leads to
congested cells and hence low end-user throughput. This
congestion is not only caused by the strict RSRP-based
assignment and can only partially be compensated by active
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FIGURE 18. Obtained RS-SINR to CQI mapping from MDT, only
considering UEs from the most common manufacturer.

reassignment of UEs. In contrast, the load-aware formulation
does not suffer from this issue and adequately balances the
interferencewhile avoiding congested cells. For the interested
reader, further analysis is provided in Appendix C, where the
complete UE population is visualized during the optimization
procedure.

VIII. CONCLUSION
In this work, we derived a comprehensive, differentiable
objective function for load-aware cellular network optimiza-
tion that utilizes data-driven components while relying on
model-based formulations for well-understood mechanisms
in mobile communications. This enables direct calibration to
MDT measurements and monitoring data, and still provides
gradient information for efficient and scalable optimization.

In our large-scale evaluation, the proposed GD-based
approach showed faster convergence and a lower risk of
degrading end-user performance compared to the black-
box BO baseline. Similarly, none of the considered
global-optimization methods was able to identify a sub-
stantially better performing transmit power configuration,
indicating that the GD-based approach guides the optimiza-
tion towards well performing minima. We further observed
a clear relation between cellular network optimization
and load balancing, as the commonly used load-unaware
SINR-based objective consistently yielded configurations
with congested cells and thus insufficient throughput for
connected UEs. This highlights the importance of accounting
for limited resources and the respective UE demand instead
of solely targeting interference management. Our results
clearly show that both of these aspects can be combined
in the proposed objective without leaving the differentiable
framework.

Overall, our results suggest a prominent role for GD-
based network optimization, in particular when considering
recent advances for differentiable propagation modeling
that enable the extension to further antenna parameters.
In future work, we will incorporate such models into our
framework while also studying potential side constraints,
e.g., energy consumption. We further target an online
implementation where the model interacts directly with the

FIGURE 19. Comparison of standard BO and the scalable variants. Results
are computed over 100 runs in high demand.

TABLE 7. Comparison of GD and BO variants, showing steps per second
and optimized outage ratios for high demand.

network deployment, receiving more immediate feedback
from monitoring data.

APPENDIX
A. RS-SINR TO CQI MAPPING FROM MDT DATA
The spectral efficiencymapping η

(
si,j

)
used in Fig. 2 consists

of the mapping from RS-SINR to the CQI, from which
the spectral efficiency is computed following the 3GPP
standard [40, p. 220]. As the RS-SINR does not uniquely12

determine the selected CQI [2], [4], we retrieve an empirical
mapping from MDT data, capturing the representative UE
characteristics and average channel conditions. Further, the
RS-SINR is not directly reported in MDT. Hence, we follow
the approach in [2] and retrieve the RS-SINR from the RSRQ.
With the definition of the received signal strength indicator
(RSSI) we compute in linear scale:

RS-SINR =
12 · NRB · RSRP

RSSI − NRB · RSRP · (2 + 10 · λ)

=
12 · NRB · RSRP

NRB·RSRP
RSRQ − NRB · RSRP · (2 + 10 · λ)

=
12 · RSRQ

1 − RSRQ · (2 + 10 · λ)
. (14)

Hence, (14) yields the respective RS-SINR from the RSRQ
by discarding the servings cells contribution to the RSSI.
Note, that the expression is a minor adaptation of [2],
by distinguishing between the load-dependent (ten resource
elements) and the load-independent (two resource elements)
interference contributions. We refer the interested reader
to [4] for a detailed discussion of RSRQ and RS-SINR.

12Due to different channel characteristics a given RS-SINR value can
correspond to different CQIs [4]— see also [44]. The specific relation further
depends on the considered UE [2].
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FIGURE 20. Density plots of the UE population under high demand. We show the RS-SINR and the number of active UEs in the same cell on a per-user
level. The service and outage region refers to a threshold of t (thresh) = 10 MBit/s.

We then apply (14) toMDTmeasurements from the area of
interest and extract the relation for the median CQI over bins
of the RS-SINR. Fig. 18 highlights the obtained relation for
around 50 000 measurements, filtered for the most common
device manufacturer in our dataset. In line with the lab
measurements in [4, p. 73], the observed trend from the MDT
data is approximately linear. For our mapping, we thus fit
a linear model of the form κ̃i,j = w0 · si,j + w1, with κ̃

denoting the CQI index and the fitted parameters given by
w0 = 0.41 and w1 = 7.74. Subsequently, we ensure that the
output adheres to the valid interval by introducing squashing
functions through κi,j = softplus

(
κ̃i,j

)
− softplus

(
κ̃i,j − 15

)
.

Alternatively, the mapping can also be computed over all
device categories. In our case, this resulted in a lower average
CQI, as we found a substantial number of internet-of-things
devices with less advanced hardware.

B. BO VARIANTS & COMPUTATIONAL COMPLEXITY
In Sec. V-A, the standard BO implementation from [43]
shows a substantially prolonged optimization phase com-
pared to the proposed GD-based approach. Still, standard BO
performs surprisingly well given the high dimensional search
space. For a more comprehensive picture of the given loss
function and the BO performance, we additionally evaluate
two state-of-the-art BO variants, which specifically address
the issue of scaling to higher dimensions.

In particular, we consider the TuRBO variant proposed
in [26], which tackles the high dimensionality by fitting
a collection of local models. Additionally, we evaluate the
SAASBO variant from [27], which utilizes surrogate models
defined on sparse axis-aligned subspaces. Both of these

methods showed state-of-the-art performance on different
benchmarking problems. The obtained optimization history13

of TuRBO and SAASBO is shown in Fig. 19, with the
standard BO results from Fig. 8 included for reference. For
both methods, we note a much narrower outage ratio interval
during optimization. This can be explained by the tendency
of SAASBO and TuRBO to limit exploration, which standard
BO often prioritizes over exploitation in high dimensional
spaces [26], [27]. Still, SAASBO is not able to improve
upon the obtained GD and standard BO configuration in
terms of the outage ratio. Similarly, also TuRBO, with much
slower convergence, shows poorer performance after the first
500 steps. In our evaluation, TuRBO does, however, overtake
standard BO and SAASBO, achieving similar performance
as GD after 5 000 function evaluations. We summarize these
results in Tab. 7, where we also report the required steps until
convergence, which differ drastically between the methods.
While the relative performance of the different BO variants
seems counterintuitive at first, it seems that the underlying
assumptions of TuRBO and SAASBO are not directly
applicable to the considered problem.We also suspect that the
tendency of standard BO to extensively explore the domain
boundary (see [27]) might play a certain role. From Fig. 10
we know that sufficiently well performing configurations
can be found in that proximity. Hence, standard BO can
find a relatively well performing starting point for further

13We use the reduced sampling budget configuration for SAASBO as
described in [27]. For TuRBO we only consider TuRBO-1, as TuRBO-M
is unsuitable for such high-dimensional problems [26]. We further select a
batch size of one, which showed faster convergence in our analysis. For both
methods, the optimization starts with 20 randomly drawn samples.
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optimization rather quickly, while TuRBO and SAASBO
struggle to identify this region. All in all, we would argue that
the results in Fig. 19 and Tab. 7 again highlight the challenge
of exploring the high dimensional search space in a black-
box manner. In contrast, the GD approach reliable guides the
optimization towards well performing minima.

For the BO variants, the drastically increased computa-
tional complexity is another limiting factor. Tab. 7 summa-
rizes the iterations per second achievable on a mid-range
gaming PC with a AMD Ryzen 5 3.9 GHz CPU. Hereby,
an iteration refers to a GD step or a function evaluation
for BO, respectively. Clearly, the GD-based approach is
substantially more efficient per iteration as compared to the
BO variants. In practice, the improvement is even larger,
as the GD requires a much smaller number of iterations in the
first place. As it is implemented in tensorflow, we can further
make use of a NVIDIA GeForce RTX 3060GPU, which again
drastically speeds up the optimization. For the BO variants,
we also found that the required computation time varies
from step to step and generally increases throughout the
optimization procedure.14 The results in Tab. 7 thus refer to
the average over the required steps for the respective models.

Note, that in addition to the BO variants in Fig. 19,
we also evaluated other common optimization methods such
as Nelder-Mead and L-BFGS-B from [45]. We omit the
details, as both of them were not able to identify a config-
uration below an outage ratio of 0.35 after 10 000 function
evaluations.

C. VISUALIZATION OF THE UE POPULATION
Throughout the discussion of the exemplary optimization
procedure in Fig. 9 and 15, we consider median values
to characterize the improvement or degradation of the
end-user performance. To obtain a more comprehensive
picture, we can visualize the relation between interference
management and load-balancing on a per-user level. For this,
we rely on the RS-SINR si from Sec. IV-A and additionally
represent the congestion for UE i via the number of UEs in the
same cell, again given by an expectation over the assignment
ui =

∑C
j=1 ai,j · uj. By mapping ui to the number of active

UEs αi = α (ui), we then resolve the two contributing factors
si and αi, which determine the throughput for UE i.

The density plots in Fig. 20, now visualize the optimization
procedure over the complete UE population for the exemplary
initialization considered throughout this work. For reference,
we also include the approximate boundary, which splits
the service and outage region for the throughput threshold
of t (thresh) = 10 MBit/s. Again, Fig. 20 shows the
same trend already discussed throughout this work, with
the load-aware objective in Fig. 20b improving upon the
random initialization in 20a, both in terms of congestion
and interference management. In contrast, the load-unaware
objective in Fig. 20e only improves the RS-SINR, with

14This is especially true for SAASBO, where further optimization after
the plateau at step 250 became more and more unfeasible.

a substantial ratio of UEs still suffering from congestion.
Finally, Fig.20c and 20f shed light on the active load balanc-
ing (ALB) procedure, where reassignment of UEs allows for
the reduction of congestion, such that the throughput target
can be achieved for a higher number of UEs. Again, this is
accompanied by a minor reduction of the RS-SINR, as the
RSRP-based assignment, which generally yields the highest
RS-SINR, is extended by load balancing considerations.
Hence, UEs are reassigned among neighboring cells and
the two frequency layers to reduce congestion, as long as a
sufficient but potentially also lower RS-SINR is ensured.
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