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ABSTRACT Cardiovascular disease is a significant cause of death worldwide, emphasizing the crucial
need for timely detection and diagnosis of heart abnormalities. This study presents a new approach that
utilizes deep learning models to diagnose cardiac issues by analyzing raw phonocardiogram (PCG) signals.
The proposed method introduces a novel technique called custom scalogram-based convolutional recurrent
neural network (CS-CRNN). Diverging from conventional techniques, this model directly handles the raw
PCG signals. These signals undergo a transformation into scalogram images within the initial layer of
the CRNN architecture, without incorporating any learnable parameters. The results obtained from the
CS-CRNN model are compared with traditional feature-based recurrent neural network (RNN) models.
The comparison demonstrates comparable performance in both binary classification (normal and abnormal
categories) and multiclass classification (5 categories). The CS-CRNNmodel directly handles raw PCG data
and employs data augmentation to enhance performance on small datasets. It achieves an accuracy of 99.6%
for binary classification and 98.6% and 99.7% before and after optimization for multiclass classification
on the augmented dataset. The results show that the CS-CRNN model offers comparable performance to
traditional methods, making it a promising tool for diagnosing cardiac abnormalities.

INDEX TERMS Phonocardiogram signals, cardiovascular disease, recurrent neural networks, wavelet
scattering transform, custom scalogram-based CRNN, Bayesian optimization.

I. INTRODUCTION
The progress made in machine learning (ML) algorithms
for signal processing has led to improved detection of
a range of diseases through the analysis of biomedical
signals generated by the human body. These signals serve
as indicators of physiological characteristics of human
organs [1] and can be utilized in a non-invasive manner to
diagnose various diseases with the help of ML algorithms.
One such signal, the phonocardiogram (PCG), represents
the sound produced by the mechanical movements of
cardiac components and has great potential in diagnosing
cardiovascular disease (CVD). Heart disease, also known
as CVD, is the leading cause of death worldwide. The
World Health Organization (WHO) reports that 17.9 million
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deaths annually are caused by cardiovascular diseases, about
32% among all deaths, globally [2]. Early detection of
CVD is critical to initiate timely and appropriate treatment.
During cardiac auscultation, the heart’s sounds must be
observed in order to diagnose particular cardiac diseases [3].
Phonocardiography, a common method used to perform this
procedure, is a diagnostic technique that records and analyzes
the sounds and murmurs of the heart throughout the cardiac
cycle. Differences in the PCG signal’s temporal and spectral
characteristics can be observed between a healthy heart and
an abnormal heart [4]. Furthermore, the type of heart disease
can also affect the phonocardiography-observed sound char-
acteristics of the heart. This study investigates the possibility
of employing ML algorithms to identify different forms
of cardiac diseases via phonocardiography signals. In the
assessment of cardiac health, phonocardiography assumes a
crucial role as it analyzes the acoustic signals produced by the
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heart’s four chambers–the atria and ventricles [5]. Through
this technique, the functioning of these chambers, which
are responsible for the efficient pumping and distribution of
blood, can be closely monitored and evaluated.

The heart comprises four valves, namely the aortic,
pulmonary, mitral, and tricuspid valves [6]. These valves
open and close in rhythm with every heartbeat, facilitating
the flow of blood between the chambers of the heart. The
efficient functioning of the chambers and valves is essential
for a healthy heart and optimal mechanical performance.
Heart valve disease (HVD) is a common type of heart
disease characterized by the malfunctioning of one or more
of the heart valves [7]. HVD is typically classified into
two types: valvular stenosis (VS) and valvular regurgitation
(VR). VS occurs when the valve leaflets become stiff,
reducing their ability to open fully, leading to conditions
like aortic stenosis, pulmonary stenosis, mitral stenosis,
and tricuspid stenosis. On the other hand, VR, also known
as a leaky valve, occurs when the valve fails to close
tightly, resulting in conditions such as aortic regurgitation,
pulmonary regurgitation, mitral regurgitation, and tricuspid
regurgitation. Mitral valve prolapse is a common cause of
mitral regurgitation and involves the valve that connects
the left atrium to the left ventricle. In this condition, the
mitral valve leaflets become floppy and prolapse backward
into the left atrium, allowing blood to flow back from the
lower to the upper chamber. Aortic and mitral valves are
the most commonly affected valves in HVDs. Therefore,
the most common forms of HVDs include aortic stenosis
(AS), mitral stenosis (MS), mitral regurgitation (MR), and
mitral valve prolapse (MVP) [8]. The proper diagnosis and
treatment of HVDs are crucial for maintaining a healthy
heart and preventing complications. A PCG signal is a
graphical presentation of the cardiac rhythm collected using
a stethoscope.

Moreover, early detection and diagnosis of cardiac abnor-
malities is critical for ensuring timely treatment and better
patient outcomes. In many cases, cardiac abnormalities can
be asymptomatic or present with subtle symptoms, which can
make them difficult to diagnose in the early stages. Delayed
diagnosis can lead to serious complications, including heart
failure, arrhythmias, and even sudden cardiac death. Machine
and deep learning approaches, such as convolutional neural
networks (CNNs), and recurrent neural networks (RNNs)
including long short-term memory networks (LSTMs) and
gated recurrent units (GRUs) along with ensemble methods,
offer several advantages for detecting and diagnosing car-
diac abnormalities [9]. These neural network architectures,
particularly LSTMs and GRUs, are well-suited for capturing
temporal dependencies in cardiac data, making them valuable
tools in improving the accuracy of cardiac abnormality
detection and diagnosis.

The details of the article are as follows: Section II
offers a comprehensive literature review of recent state-
of-the-art models used for the detection of HVDs in
the last decade. Section III proposes the methodology,

including the dataset, feature extraction, RNN, and custom
scalogram-based convolution recurrent neural network (CS-
CRNN) models for classification. Bayesian optimization
is introduced in Section IV for model optimization. The
experimental setup and results are presented in Sections V
and VI respectively. Finally, Section VII concludes with
recommendations for future work to improve the proposed
methodology and patient outcomes.

II. RELATED WORK
Several experiments have been done for the detection of
heart valve disorder in the last decade. A detailed review of
the several methods for HVD detection is presented [10].
Transthoracic echocardiography (TTE) is one of the most
often utilized procedures for detecting HVDs [11]. The
TTE is the low-cost and extensive examination duration
method [12]. Even with proper training, medical practitioners
may struggle to assess recorded PCG signals and diagnose
abnormalities. In such circumstances, computer-aided auto-
mated systems always outperform traditional methods [13].
The current automated systems use machine learning tech-
niques to process the recorded PCG signals as inputs and
classify them in different classes of HVDs. The performance
of the signal classification heavily depends on the proper ML
model selection and feature extraction of the signals [14].
A recent book chapter explores the application of IoT
technology in detecting heart valve disorders by employing a
novel amplitude and frequency-modulated signal model [15].
This aims to leverage IoT capabilities for accurate and real-
time monitoring of heart valve health, potentially enhancing
early detection and medical intervention for patients.

For the HVD detection, time-domain (TD), frequency-
domain (FD), and time-frequency (TF) domain techniques
are widely used to extract tempo-spectral features from
PCG signals in literature [15], [16], [17], [18], [19]. The
fast Fourier transform (FFT) [20], [21], short-time Fourier
transform (STFT) [22], and TF decomposition (TFD) [23]
approaches are used for HVD detection by utilizing spectral
features. A time-frequency-domain deep neural network
(TFD-DNN) method is used for automated heart sound
activity detection using PCG signals [24], [25]. Somewavelet
transform techniques [26], [27], [28], [29], [30] are also
used for PCG classification to overcome the limitation of
time-frequency resolution in STFT. Combined features are
also used by some researchers to improve the accuracy
of the classification. Son et al. [31] used the combined
features of mel frequency cepstral coefficients (MFCC) and
discrete wavelet transform (DWT) to classify both normal
and abnormal PCG signals with the help of deep neural
network (DNN).

Recently, another paper introduced a novel DNN, DsaNet,
that can classify PCG signals without requiring complex
feature engineering [32]. To boost its performance, the
authors utilize a distinctive training technique called two-
stage training, which includes randomly cropping the data
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FIGURE 1. Flow chart of advanced diagnostic approach for cardiac abnormalities using traditional multi-scale RNN and CS-CRNN with Bayesian
optimization.

to enhance its diversity. The experimental results, obtained
on the public 2016 PhysioNet/CinC Challenge dataset,
demonstrate that DsaNet outperforms seven other models,
thus affirming its efficiency and effectiveness in solving the
PCG signal classification challenge. In another study, the
researchers investigate the classification of PCG signals into
five categories usingML techniques. They use Hilbert-Huang
transform (HHT) to decompose PCG signals into intrinsic
mode functions (IMFs), extract MFCC features from each
mode, and apply a genetic algorithm as a feature selection
method [33]. They compare the performance of four ML
classifiers and demonstrate that the DNN model achieves the
highest accuracy. Moreover, the latest article introduces a
technique that utilizes high-resolution spectrum generation,
spectrogram conversion, and multi-round training to address
variations in analyzing PCG signals. The experimental results
demonstrate that the proposed technique using a Chirplet
Z-transform-based spectrogram with multiple rounds of
training achieves high accuracy in multiclass classification
while maintaining low computational cost [34]. Furthermore,
the methodology was validated using multiple datasets with
varying signal characteristics.

The proposed customization of the scalogram-based
CRNN is inspired by previous studies that incorporated log
spectrogram layers as the initial layer in their networks [35],
[36], [37]. The main motivation behind this research is
to leverage the benefits observed in those studies and
further enhance the performance and capabilities of the

CS-CRNN model. It offers the flexibility of customizable
scalogram computations directly in the first layer, eliminating
the need for hand-crafted features. By combining these
elements, the CS-CRNN demonstrates enhanced capabilities
in capturing intricate patterns and relationships within the
input data.

Although, recent studies have proposed various techniques
for diagnosing cardiovascular diseases using phonocardio-
graphy. Many of these approaches suffer from limitations
in terms of efficiency and performance, particularly in
classifying binary and multiclass PCG sound signals in
both balanced and imbalanced datasets. As such, there
remains a gap in the development of effective and efficient
models for PCG signal classification. Therefore, the proposed
methodology aims to address the gap of efficiency in the
binary or multiclass classification of PCG sound signals, even
in datasets that are balanced or imbalanced. However, the
proposed methodology for diagnosing cardiac abnormalities
using PCG signals offers several important contributions:

• The article introduces a new approach called CS-CRNN.
Its purpose is to employ deep learning models in the
diagnosis of cardiac issues by analyzing raw PCG
signals.

• The study compares twomethods for diagnosing cardiac
issues: one using traditional wavelet scattering features
and different RNN models, and the other utilizing a
more advanced approach called raw waveform-based
CS-CRNN.
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• The CS-CRNN model directly analyzes raw PCG
signals without extracting features. It converts the
signals into scalogram images at the beginning of the
architecture, which can potentially improve accuracy
and efficiency in diagnosis.

• The CS-CRNN model incorporates non-learnable
parameters in its custom-scalogram layer, reducing the
complexity of the model. This leads to a reduction in
training time as the model deals with a limited number
of features.

• Additionally, Bayesian optimization is employed to
improve the approach’s effectiveness by fine-tuning
the CS-CRNN model’s parameters. This technique
enhances performance in diagnosing cardiac issues,
allowing for more precise analysis of raw PCG signals.

III. PROPOSED SYSTEM OVERVIEW
A novel approach is proposed in the article for diagnosing
cardiac abnormalities using a CS-CRNN and compared
to a wavelet scattering transformed features-based RNN
modeling. The proposed approach involves utilizing wavelet
scattering to transform the raw PCG waveform into multi-
scale features [38], which are then inputted into various
RNN models such as LSTM, BiLSTM, and stacked LSTM.
These models learn the temporal dependencies and classify
the presence of cardiac abnormalities. Compared to feature-
based RNN models, the proposed method significantly
reduces system complexity by directly utilizing raw PCG
waveform data with CS-CRNN, eliminating the need for
manual feature extraction, as depicted in Figure 1. Bayesian
optimization is employed to optimize the RNN and CS-
CRNN models’ performance by iteratively exploring dif-
ferent hyperparameter configurations. By combining the
strengths of custom scalograms and deep learning, this novel
approach shows promise in improving the accuracy and
efficiency of cardiac abnormality detection systems using
PCG signals.

A. DATASET
The dataset used in the study, discussed in [31], consists of
1000 sound files representing 5 classes of heart sound signals:
AS, MR, MS, MVP, and Normal (N) heart sounds. Each class
contains 200 sound files, providing a comprehensive set of
data for analysis. The PCG serves as a valuable diagnostic
tool for recording the sounds produced by the heart. The
signals in this dataset were recorded at a sampling frequency
of 8 KHz, ensuring an accurate representation of the heart
sounds. By analyzing the recorded sounds, specific heart
conditions can be identified. For example, AS is characterized
by a narrowing of the aortic valve, resulting in a distinct
‘‘whooshing’’ sound in the PCG. Similarly, MR is indicated
by a faulty mitral valve, causing a notable ‘‘blowing’’ sound.
MS, on the other hand, manifests as a constricted mitral
valve, producing a characteristic ‘‘clicking’’ sound. MVP
is identified by the backward bulging of the mitral valve,
resulting in a distinct clicking sound. Additionally, the PCG

can record normal heart sounds, which serve as a reference for
a healthy heart. By utilizing the PCG in conjunction with the
dataset, physicians can diagnose heart conditions accurately
and plan appropriate treatment. The PCG, with its ability to
provide detailed insights into the heart’s health and function,
plays a crucial role in the diagnosis and management of
cardiac conditions.

B. WAVELET SCATTERING TRANSFORM
The wavelet scattering transform (WST) is a potent charac-
teristic extraction technique that is particularly valuable in
handling time-series signals such as PCG, electroencephalo-
gram (EEG), and electrocardiogram (ECG) [39]. The WST
decomposes a signal into different frequency components,
capturing features at multiple scales or frequency bands [38].
However, it also includes an extra layer of non-linearity
that allows for the extraction of more robust and distinctive
features from the signal at each scale. However, its true
strength lies in the analysis of complex time-series signals
such as medical data, where it can reveal important insights
about heart and brain activity, among other things.

The WST is composed of two main steps: the wavelet
transform and the scattering transform. The wavelet trans-
form is used to decompose the signal into different frequency
bands, and the scattering transform is used to extract features
from the decomposed signal [40]. In the wavelet transform
step, signals are convolved with a series of band-pass filters,
each of which is centered at a different frequency. The
outcome of this phase is a group of wavelet coefficients,
which portray the distinct frequency constituents of the
signal. Mathematically, the wavelet scattering transform of
the signal can be represented as,

WI [f1, f2, . . . , fn]X =
∣∣. . . ∣∣∣∣X ∗ ψf1

∣∣ ∗ ψf2

∣∣ . . . ψfn ∣∣ ∗ αI

(1)

where, the wavelet scattering transform of n layers is
represented byWI , and the input signal is denoted by X . The
symbol ψfn refers to a dilated wavelet that is centered at the
frequency fn of a bandpass filter. There is also a translation
invariant given by αI , and the convolution operator is denoted
by ∗. In the scattering transform step, the wavelet coefficients
are then convolved with a low-pass filter, which is used to
average the coefficients over a certain time window, as shown
in Figure 2. This step is repeated for different scales and
orientations, resulting in a set of scattering coefficients that
represent the signal at different scales and orientations [41].

The effectiveness of the WST feature-based method in
automatically diagnosing heart conditions is investigated in
this section. The study focuses on extracting features from
PCG signals to train an RNNmodel classifier capable of iden-
tifying various heart conditions. Specifically, the extraction
of first and second-order scattering coefficients from both
normal and abnormal PCG heart sounds is performed in this
feature-based analysis. Wavelet scattering coefficients pro-
vide a comprehensive representation of signal characteristics,
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FIGURE 2. Signal decomposition using wavelet scattering network.

FIGURE 3. Time-domain representations of first-order and second-order filter bank scattering coefficients for abnormal and normal
PCG signals.

with first-order coefficients computed through initial wavelet
transforms, capturing fundamental frequency content across
scales. Subsequently, second-order coefficients, obtained by
applying additional wavelet transforms to the first-order
coefficients, reveal intricate interactions and modulations
among distinct frequency components. The analysis of these
coefficients reveal significant noise distortion present in
the abnormal PCG signals, particularly between 0.1 to
0.4 seconds. This distinctive distortion is visually illustrated
in Figure 3. By utilizing first and second-order features, the
study demonstrates their ability to discriminate abnormal

heart conditions based on the observed noise distortion
patterns in the PCG signals.

C. RECURRENT NEURAL NETWORKS (RNN)
Recurring neural networks are specifically appropriate for
handling time series signals, like PCG, which are employed
in the identification of heart irregularities. Unlike traditional
feedforward neural networks, RNNs have loops in their
architecture that allow them to maintain an internal memory
of previous inputs [42]. This memory enables RNNs to
learn patterns and dependencies in sequential PCG data,
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making them a powerful tool for tasks such as heart sound
segmentation, feature extraction, and classification [43].
By processing PCG signals using RNNs, it is possible to
improve the accuracy and efficiency of cardiac abnormality
diagnosis. Various RNN models were employed, including
LSTM, Bi-LSTM, and stacked LSTM (LSTM+LSTM)
models. These RNN models were selected due to their
effectiveness in processing sequential data and learning
temporal dependencies [44]. By integrating these RNN
models into the analysis, the goal was to improve the
accuracy of cardiac abnormality diagnosis using PCG
signals.

1) LONG SHORT-TERM MEMORY (LSTM)
LSTM, a category of RNN, is an ideal fit for managing time-
series information. It is specifically developed to overcome
the issue of the vanishing gradient that may arise during
the training of conventional RNNs. In traditional RNNs, the
gradient signal can become very small as it is propagated back
through time, leading to slow learning or even the inability to
learn long-term dependencies [9], [45]. LSTMs address this
problem by introducing a gating mechanism that allows them
to selectively remember or forget information from previous
time steps. In the architecture of an LSTM cell, information
flow is regulated by three gates: the input gate, the forget gate,
and the output gate [45]. The input gate manages incoming
information, the forget gate governs outgoing information,
and the output gate manages the information that remains
within the cell. The activation functions of these gates are
sigmoidal, enabling the LSTM to control them and decide
which data to retain or exclude. The LSTM cell also has a
cell state, which serves as the internal memory of the cell.
The cell state can be updated or reset using the input gate and
forget gate, allowing the LSTM to selectively remember or
forget information from previous time steps [46].

2) BIDIRECTIONAL LONG SHORT-TERM MEMORY (Bi-LSTM)
In addition to LSTM, another commonly used RNN archi-
tecture for processing sequential data is the Bi-LSTM
network. Like LSTM, Bi-LSTM includes memory cells and
gates that allow the network to selectively remember or
forget information over time [47]. However, Bi-LSTM also
incorporates a second set of memory cells and gates that
process the input sequence in reverse order, providing a
complementary perspective on the temporal dependencies
in the data [48]. In PCG signal analysis, Bi-LSTM can be
used to capture both forward and backward dependencies
in the signal, which may improve the accuracy of diag-
nosis for certain cardiac abnormalities [49]. The Bi-LSTM
architecture operates by taking in a sequence of PCG signal
samples and processing them in a bi-directional manner,
i.e., both forward and backward. Once the computations are
complete, the outputs of both the forward and backward
layers are merged via concatenation to generate a final
prediction.

3) STACKED LSTM
The stacked LSTM structure is formed by placing multiple
layers of LSTM on top of each other. However, in stacked
LSTM, there are typically two or more LSTM layers,
allowing for the modeling of even more complex and higher-
level representations of the sequence. The idea behind stacked
LSTM is to use multiple layers of LSTM cells to learn
multiple levels of abstraction in the sequence. Each layer in
the stack receives the output from the preceding layer as input,
with each layer focusing on learning a unique abstraction
level. The input sequence is first processed by the initial layer
of LSTM cells.

In a two-layer stacked LSTM network, the output of the
first layer serves as the input to the second layer. The second
layer can learn to build on the representations learned by the
first layer, allowing for the modeling of even more complex
sequences. At each time step in each LSTM layer, several
operations are performed on the input and the previous state
to produce a new hidden state and a new cell state. These
operations include computing the forget gate, input gate,
output gate, and cell state values using a set of learnable
weights, recurrent weights, and biases.

In order to perform a mathematical examination of a
stacked LSTM model with two layers, it is essential to
compute the gradients of the loss function with respect to the
weights and biases of each individual layer. These gradients
can be determined by utilizing the backpropagation through
the time algorithm, which entails repeatedly applying the
chain rule of differentiation. The final sequence prediction
is generated by the output of the last layer of LSTM
cells. It is worth noting that the input to each layer of the
model is derived from the output of the preceding layer,
rather than from the initial input sequence, as depicted
in Figure 4(a).
In stacked LSTM, each layer can have a different number

of hidden units. Typically, the number of hidden units in each
layer is gradually reduced as the stack moves up, allowing for
the network to capture high-level features in the sequence.
One advantage of stacked LSTM is that it allows for the
modeling of very complex sequences, as each layer in the
stack is able to learn different features of the sequence.
Stacked LSTM has been shown to perform well on a wide
range of sequence modeling and prediction tasks, including
natural language processing, speech recognition, and time-
series analysis.

D. CUSTOM SCALOGRAM LAYERED CRNN (CS-CRNN)
The CS-CRNN is an innovative approach that combines the
advantages of convolutional and recurrent neural networks.
Conventional approaches often require the manual engineer-
ing of features, which can be time-consuming. By integrating
the scalogram computation within the network itself, the
CS-CRNN eliminates the need for hand-crafted features,
allowing for a more automated and data-driven approach to
feature extraction.
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FIGURE 4. Architectural differences of feature-based RNN and CS-CRNN in heart sound classification.

1) CUSTOMIZATION OF THE SCALOGRAM LAYER
The scalogram computation involves convolving the input
signal with the wavelet function at various scales and
analyzing the resulting magnitude or power values. This
process provides a time-frequency representation of the
input signal, highlighting the presence of different frequency
components at different time intervals. The scalogram layer,
being a non-learnable transformation, does not possess any
learnable parameters. However, it is important to note that
in the CRNN architecture, as illustrated in Figure 4(b), the
subsequent convolutional and recurrent layers do include
learnable parameters. These parameters are optimized during
the training process, as highlighted in Table 1. By care-
fully choosing suitable wavelet functions, adjusting scale

resolutions, and optimizing other parameters like the number
of scales, overlap ratio, and normalization techniques, the
CS-CRNN model can effectively adapt to the specific
characteristics of the time-frequency representations of PCG
data. Figure 5 depicts the extracted scalograms at the first
layer of CS-CRNN for all five classes of PCG signals.

2) CRNN
The CRNN architecture is a powerful model that combines
the strengths of both convolutional and recurrent neural
networks, making it particularly suitable for sequential
data analysis, such as in the case of PCG signals. The
scalogram, generated by the customized scalogram (CS)
layer, provides a time-frequency representation of the PCG
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FIGURE 5. Five categories of PCG Signals and their corresponding scalograms from the first layer of CRNN.

signal. By applying convolutional filters, the convolutional
layers are able to capture relevant spatial patterns in the
scalogram, enabling the model to identify discriminative
features related to cardiac abnormalities. On the other
hand, the recurrent layers in the CRNN architecture are
responsible for capturing temporal dependencies and long-
term patterns in the PCG signals. In the context of cardiac
abnormality detection, it is important to consider not only
local features but also the temporal dynamics of the signals.

The recurrent layers, typically implemented using LSTM
units, are capable of modeling the sequential nature of
the PCG signals and learning meaningful representations
of long-term dependencies. This enables the CRNN model
to effectively discriminate between normal and abnormal
cardiac patterns, as it can identify patterns that evolve over
time and are indicative of specific cardiac conditions.

As described in Table 1, the CS-CRNN architecture con-
sists of multiple layers, including the CS layer, convolutional
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TABLE 1. Description of layers and learnable parameters in the CS-CRNN
Model.

layers, recurrent layers, fully connected (FC) layers, and the
final softmax and classification layers. Each layer has its
own set of learnable parameters, such as weights, biases,
and dropout rates. These parameters are optimized during
the training process to minimize the classification loss and
improve the model’s ability to detect cardiac abnormalities.

IV. BAYESIAN OPTIMIZATION
Bayesian optimization is a powerful technique used in
deep learning approaches to optimize complex functions
that are expensive to evaluate, such as hyperparameter
optimization.The objective of this article is to identify
the ideal combination of hyperparameters that can deliver
optimal outcomes for detecting cardiac irregularities using
PCG signals. The basic idea of Bayesian optimization is
to use a probabilistic model, such as a Gaussian process
(GP), to estimate the performance of a model as a function
of its hyperparameters. The model is trained on a small
subset of the hyperparameter space and then used to predict
the performance of the model at unexplored points in the
hyperparameter space. After making predictions, an acqui-
sition function is employed to determine the next point
for evaluation. This function balances exploration, which
involves testing new hyperparameters, and exploitation,
which involves trying out the hyperparameters that are
deemed most likely to produce satisfactory results. The
general flow of Bayesian optimization involves several steps:

• Define the objective function: The objective function
is defined as the function to be optimized, which is
usually a metric of interest for a given model and
hyperparameter set. In the proposed study, the objective
function is the accuracy of the RNNmodel in classifying
PCG signals.

• Estimate the objective function: The objective function
is estimated by training the model on a small subset of
the hyperparameter space, which generates a set of data
points that can be used to train a probabilistic model.
In Bayesian optimization, a GP is typically used as a
probabilistic model to estimate the objective function.

• Evaluate the model at unexplored points: The prob-
abilistic model is used to predict the performance of
the model at unexplored points in the hyperparameter
space. The model is evaluated at the point that the
acquisition function suggest optimizing exploration and
exploitation trade-offs.

• Convergence check: The model’s performance is evalu-
ated at multiple points, and a convergence check is done
to determine whether the model has converged or not.

• Update hyperparameters: If the model has not con-
verged, the hyperparameters are updated and the process
continues.

• Select optimal model: The set of hyperparameters that
produces the highest score on the objective function is
chosen after the network has converged, providing the
optimum model for the current classification task.

Additionally, Bayesian optimization is employed to discover
the optimal set of hyperparameters for a specific machine-
learning task. It is efficient and effective in exploring a large
hyperparameter space without having to test all possible
options. By using a probabilistic model to predict the
performance of amodel based on its hyperparameters, it saves
time and resources.

V. EXPERIMENTAL SETUP
The article conducted two experiments to assess the effec-
tiveness of a proposed method. In the first experiment,
a traditional approach was used, where wavelet scattering
features were extracted from the signals. These features were
based on first-order and second-order wavelet coefficients.
RNNmodels were then trained using these extracted features.
Multiple RNN models were trained, and the best-performing
model was selected for further analysis. In the second
experiment, a more advanced technique was employed,
involving the development of a custom model known as the
scalogram layered CRNN model. This model eliminated the
need for a separate feature extraction step. Instead, it directly
processed the original PCG signals, which were transformed
into scalogram images in the first layer of CRNN. Scalogram
images represent the frequency content of the signals over
time. They provide a visual representation of how the signal’s
frequency components change throughout the duration. The
CRNN model utilized the strengths of convolutional layers
to extract spatial features from the scalogram images. This
allows the model to capture important patterns and struc-
tures in the time-frequency domain. Additionally, recurrent
layers in the model were incorporated to capture temporal
dependencies, enabling the network to recognize sequential
patterns and dynamics present in the data.

The aforementioned experiments were further conducted
to diagnose cardiac abnormalities through two distinct
classification tasks: binary classification and multiclass
classification. In the binary classification task, the objective
was to accurately classify heart sounds into two categories,
typically representing normal and abnormal cardiac condi-
tions. Similarly, the multiclass classification task aimed to
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TABLE 2. Train and test split in binary-class and multiclass data without (W/o) and with augmentation.

classify heart sounds into five categories, each representing
different types of cardiac abnormalities or conditions. The
dataset was partitioned into training and testing sets at
an 80:20 ratio for both experiments, and the partitioning
details are presented in Table 2. The dataset for the binary
classification task was imbalanced. The training set consisted
of 640 abnormal heart sounds and 160 normal heart sounds,
whereas the testing set contained 160 abnormal heart sounds
and 40 normal heart sounds. Various feature-based RNN
models, including LSTM, Bi-LSTM, stacked LSTM, and
raw waveform-based CS-CRNN models, were trained and
evaluated using this dataset.

In the multiclass classification task, the dataset was well-
balanced, with equal numbers of heart sounds in each of
the five categories, including AS, MR, MS, MVP, and N.
Moreover, Bayesian optimization was applied to optimize
the hyperparameters of the RNN models to achieve better
performance. Accuracy was the only metric used to evaluate
the multiclass classification models since the dataset was
well-balanced. However, the experiments aimed to develop
accurate heart sound classification models using different
types of RNN and CRNN models, coupled with Bayesian
optimization, for both binary and multiclass classification
tasks. The utilization of innovative CS-CRNN models and
optimization techniques represents a cutting-edge approach
to the diagnosis of cardiac abnormalities.

VI. RESULTS AND DISCUSSIONS
The diagnosis of cardiac abnormalities using PCG signals
involved two experiments, which included binary class
and multiclass classification. The pre-existing datasets that
were used contained five classes of heart sound signals,
and wavelet scattering was employed to extract features.
Subsequently, multi-scale RNN and advanced CS-CRNN
models were trained and optimized using Bayesian optimiza-
tion, showcasing their potential in the diagnosis of cardiac
conditions. The resulting RNN and CS-CRNN models were
found to be highly effective in accurately diagnosing PCG
signals and predicting the presence of specific cardiac
abnormalities. The forthcoming sections provide a detailed
description of the proposed methodology employed for
PCG signal analysis, which encompassed feature-based RNN
and raw waveform-based CRNN models. These models
were rigorously evaluated through binary and multiclass
classification experiments, offering valuable insights into the
utilization of AI in medical diagnosis. It is imperative to

underscore the significance of conducting thorough testing
and validation before deploying these models in real-world
clinical settings, ensuring their reliability and suitability for
practical applications.

A. TRADITIONAL FEATURE EXTRACTION
TheWST is a vital phase in the process of feature extraction in
the proposedmethod for detecting cardiac abnormalities from
PCG signals. This approach employs the Morlet wavelet,
which has a depth of 2 and is structured with two layers. The
first layer consists of eight Morlet wavelets per octave, while
the second layer includes one Morlet wavelet per octave,
represented as quality factors Q = [8 1]. The utilization
of a low-pass scaling function by wavelets results in robust
representations of PCG signals. This, in turn, guarantees
consistency and accuracy in the analysis.

After standardizing the wavelet coefficients, they are
subjected to a logarithmic function to make the data more
suitable for additional processing. This results in a scattering
network, which has 411 paths and 25 scattering timewindows
for each PCG signal. The use of wavelet scattering transforms
extends the mel filter bank representation while preserving
the valuable information contained in the PCG signals. This
reliable feature extraction process enhances the accuracy and
robustness of themethod in diagnosing cardiac abnormalities.

B. RAW WAVEFORM-BASED CUSTOMIZED
SCALOGRAM LAYER
The raw waveform-based CS layer is a novel approach used
in deep learning models for signal analysis, particularly in the
field of medical diagnosis. This layer is specifically designed
to extract meaningful features from raw waveform data, such
as ECG and PCG signals, which are crucial in detecting
and classifying cardiac abnormalities. Unlike traditional
methods that rely on handcrafted features or pre-defined
transformations, the CS layer offers a data-driven approach
by learning and adapting to the unique characteristics of
the input signals. It leverages the concept of the scalogram,
which provides a time-frequency representation of the
signal, allowing for better capturing of both temporal and
spectral information. The CS layer is customized to suit
the specific requirements of the raw waveform data in
cardiac signal analysis. It integrates techniques such as time-
frequency analysis, wavelet transforms, or scalograms to
transform the rawwaveform into amulti-scale representation.
By incorporating multiple scales, the CS layer enables the
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TABLE 3. Comparison of hyper-parameters before and after Bayesian optimization for proposed models.

model to capture both local and global patterns, providing a
more comprehensive understanding of the underlying signal
dynamics.

At each scale, s, the CS layer performs a convolution
operation between the input signal x(t) and a wavelet filter
ψs(t) as represented by the convolution integral:

CSs(t) =

∫
x(u) ∗ ψs(t − u)du (2)

Here, CSs(t) represents the output at scale s and time index t .
The convolution operation captures the local features of the
input signal at the given scale.

To obtain a multi-scale representation, the CS layer
repeats this convolution operation for a range of scales s,
typically spanning multiple octaves. Each scale captures
different frequency bands and provides a different level
of time-frequency resolution. The resulting multi-scale
representation CSs(t) can be further processed by subsequent
layers in the deep learning model for the classification of
cardiac abnormalities. Since the CS layer does not have
any learnable parameters, its purpose is to extract useful
features from the raw waveform signal without altering the
underlying characteristics of the signal. Its ability to capture
both temporal and spectral information at multiple scales
empowers deep learning models to make accurate diagnoses
and predictions, paving the way for advancements in medical
diagnosis and patient care. It has also demonstrated improved
training speed, robustness, and generalization capabilities
compared to traditional feature-based approaches.

C. NEED OF DATA AUGMENTATION
The necessity for data augmentation in the proposed study
stemmed from the inherent limitations of the original dataset.
Initially, the dataset consisted of a relatively small number
of heart sound signals, potentially restricting the CS-CRNN
model’s ability to comprehend the diverse patterns in the PCG
signals. However, this may lead to limited generalization
of the model to unseen variations in heart sound signals,
crucial for real-world applications. Therefore, to assess the
generalization ability of the complex CS-CRNNmodel, audio
augmentation was employed, resulting in an expansion of

the dataset to five times its original size. By introducing
variations through time shift, noise, and pitch shift tech-
niques, a diverse dataset of 5000 signals was generated. Time
shift allowed the simulation of different cardiac cycles, noise
injection replicated real-world interference, and pitch shift
emulated variations in heart sound frequencies. Within the
augmentation process, pitch shift was randomly applied to
the signals throughout, with a probability of 0.5, spanning
from 0 semitone to 1 semitone. Time shift, ranging between
−0.3 seconds and 0.3 seconds, was applied to the signals
with a probability of 1. Furthermore, the signals underwent
noise injection with a probability of 1, resulting in signal-
to-noise ratio (SNR) values varying from −10 dB to
10 dB. This augmentation process led to the creation of an
additional 4000 PCG signals, randomly derived from the
original signals as shown in Table 2. It is worth mentioning
that the experiment was conducted using MATLAB R2022b.

D. TRAINING NETWORK CONFIGURATION
The process of diagnosing heart anomalies using PCG
signals encompasses several crucial steps. This section
outlines the key steps involved in this diagnostic process,
including the utilization of PCG datasets, preprocessing of
stationary signals through segmentation, analysis of signals
by extracting features using wavelet scattering for RNN
modeling, and raw waveform modeling for CS-CRNN.
Additionally, Bayesian optimization is employed to optimize
the training parameters for enhanced performance.

When it comes to selecting the RNN architecture, several
methods can be used including LSTM,Bi-LSTM, and stacked
LSTM. Each of these approaches has its advantages and
disadvantages, and the decision of which to choose will
depend on the requirements and the nature of the PCG
data being analyzed. For instance, LSTMs are recognized
for their capability to grasp long-term dependencies and
thus suit tasks involving sequential data. The stacked
LSTM variations allow for deeper network configurations,
which provide improved performance for complex tasks. Bi-
LSTMs, meanwhile, make use of both forward and backward
sequences, making them appropriate for capturing both past
and future context.
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TABLE 4. Confusion matrices of multi-scale RNN and CS-CRNN models in the classification of abnormal (Ab) and normal (N) PCG heart sound signals.

TABLE 5. Comparative evaluation results of multi-scale RNN and CS-CRNN models in the classification of abnormal and normal (binary-class) PCG heart
sound signals.

The neural networks were trained using the Adam
optimizer with carefully chosen hyperparameters. The initial
learning rate was set to 0.0001, the maximum number of
epochs was 300, and the mini-batch size was 50. To ensure
that the network learned from the full sequence of data, the
sequence length was set to ‘shortest’, and the training data
was shuffled every epoch. In order tominimize computational
overhead, the verbose option was turned off. The training
was conducted on a GPU with the number of hidden units
set to 512. The selection of hyperparameters, both before
and after optimization, aimed to strike a favorable balance
between training time and performance on the PCG sound
signals utilized in this study, as outlined in Table 3.

E. PERFORMANCE ANALYSIS OF THE MODELS IN
BINARY CLASSIFICATION
1) RNN MODELS
In this section, we evaluate the performance of several RNNs
using a feature-based front-end approach for diagnosing
cardiac abnormalities using PCG signals, including LSTM,
Bi-LSTM, and stacked LSTMs. As previously mentioned,
we used an imbalanced dataset with 160 abnormal/unhealthy
signals and 40 normal/healthy PCG sound signals to test
the binary classifier model. During the testing phase, the
LSTMmodel achieved a high level of performance, achieving
a 98% accuracy (Acc), 98.1% sensitivity (Sens), 97.4%
specificity (Spec), 99.3% precision (Pr) and an F1-score
(F1) of 98.6%. However, there were a few instances where
normal sounds were incorrectly classified as abnormal, and
vice versa.

Subsequently, the Bi-LSTM model attained an Acc of
97.5%, Sens of 99.4%, Spec of 90.7% and an F1 of 98.3%.

However, it is worth noting that it misclassified 4 abnormal
sounds as normal, as demonstrated in Table 4. Finally,
stacked RNN models were implemented, which resulted in
a significant improvement in accuracy. On comparison, the
stacked LSTM model demonstrated the highest Acc and
F1, reaching 99.5% and 99.6%, respectively. Additionally,
its Sens and Spec were recorded at 100% and 97.6%,
respectively, as outlined in Table 5. Moreover, by using
stacked RNN models, the network can learn hierarchical
representations of the input data. Each layer can learn to
focus on different aspects of the input, with the lower layers
learning low-level features and the higher layers learning
more abstract representations. This hierarchical approach to
learning helps themodel identify and extract themost relevant
features in the input data, leading to better accuracy in
classification tasks.

2) CS-CRNN MODEL
The raw waveform-based CS-CRNN was evaluated on the
test data of binary classification, revealing that 5 classes
of abnormal sounds were misclassified as normal sounds,
while 2 normal sounds were misclassified as abnormal,
as shown in the confusion matrix of Table 4. As a
result, the model achieved an Acc of 96.5%, Sens of
98.7%, Spec of 95% and F1 score of 97.7%. The slightly
lower accuracy of the raw waveform-based CS-CRNN
compared to feature-based models may be attributed to a
few factors. The engineered features can provide explicit
information about the underlying abnormalities, making it
easier for the model to distinguish between normal and
abnormal sounds. In contrast, the raw waveform-based
approach relies solely on the model to learn and extract
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FIGURE 6. Confusion matrix of LSTM model without augmentation.

FIGURE 7. Confusion matrix of Bi-LSTM model without augmentation.

relevant features from the raw data, which can be more chal-
lenging and may result in slightly more misclassifications.
However, the raw waveform-based CS-CRNN demonstrates
the highest accuracy following augmentation. To assess
potential biases in the model’s performance across different
cases, the training dataset’s imbalance was addressed by
balancing the test dataset. Within the augmented binary-
class dataset, a random selection of 200 abnormal samples

(50 samples from each of the four classes) from the test
data was made. These balanced samples were merged with
the test data representing the normal class. Subsequently,
the performance of this balanced dataset on the pre-
trained CS-CRNN model was evaluated, resulting in an
Acc of 98.8%. In the subsequent section, the evaluation
of the CS-CRNN model involves the use of multiclass
datasets.
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TABLE 6. Evaluation results of multi-scale RNN models in the classification of multiclass PCG heart sound signals with and without Bayesian optimization.

FIGURE 8. Confusion matrix of stacked LSTM model without augmentation.

F. PERFORMANCE ANALYSIS OF THE MODELS IN
MULTICLASS CLASSIFICATION
1) RNN MODELS
The goal of this experiment was to evaluate the performance
of various RNN models in the multiclass classification of
PCG heart sound signals. The datasets were perfectly bal-
anced and, hence, accuracy was considered the performance
metric. The models were trained and tested without the use
of Bayesian Optimization. Table 6 summarizes the results
obtained from this experiment, where the accuracy of each
model is reported.

In the multiclass classification, the LSTM model achieved
an Acc of 94%, with 6% misclassified instances. The mis-
classification is mainly due to the confusion betweenMR and
MVP sound signals, and normal instances aremisclassified as
MR, as shown in Figure 6(a). On the other hand, the Bi-LSTM
model achieved anAcc of 92.5%withmost misclassifications
occurring in the MR, MVP, and normal classes as shown in
Figure 7(a). However, stacked RNNmodels performed better
in multiclass classification, similar to binary classification.
The stacked LSTM model also achieved a similar Acc of

97%, with misclassification mostly due to one instance in
each class being misclassified as another class, except for
normal sound signals as demonstrated in the confusionmatrix
of Figure 8(a).
Furthermore, in Section VI-G, the multiclass experiments

were enhanced by incorporating Bayesian optimization,
aiming to improve the model’s performance specifically in
cases of misclassification.

2) CS-CRNN MODEL
During the performance analysis of the models for multiclass
classification using CS-CRNN, certain misclassifications
were observed, particularly in the MR and MVP classes,
where they were mistakenly classified as MS. Additionally,
two classes fromASwere alsomisclassified asMR andMVP,
resulting in an overall Acc of 94.5% for the raw waveform-
based CS-CRNN model, as shown in Figure 9(a). However,
after augmentation, the CS-CRNNmodel achieved an Acc of
98.6%, reflecting a significant RI of 4.33%. The confusion
matrix for augmented data is presented in Figure 10(a).
These misclassifications can be attributed to various factors,
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FIGURE 9. Confusion matrix of CS-CRNN model without augmentation.

FIGURE 10. Confusion matrix of CS-CRNN model with augmentation.

including the variability in signal characteristics within
classes, overlapping features between different classes,
the complexity and variability of cardiac abnormalities,
potential limitations of the model architecture, and the
adequacy of training data. To address these challenges,
Bayesian optimization was employed to properly tune the
hyperparameters, resulting in improved Acc. The use of
Bayesian optimization ensures that the CS-CRNN model

achieves comparable accuracy to the feature-based RNN
models. Therefore, by refining the model, incorporating
data augmentation techniques, and exploring advanced signal
processing methods, the accuracy of multiclass classification
using raw waveform data can be further improved. Moreover,
the computational complexity of the CS-CRNN method,
in comparison to traditional feature-based RNN models,
highlights an intriguing observation. In the CS-CRNN
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TABLE 7. Comparative analysis of existing models with a proposed model in the diagnosis of cardiac abnormalities using PCG sound signal dataset.

approach, a non-learnable feature learner is integrated as
the initial scalogram layer, directly processing raw data.
This design choice eliminates the necessity for the model
to adapt and learn features during training, resulting in
a reduction in computational complexity. On the other
hand, traditional RNN models, require the learning and
adaptation of features, such as first and second-order wavelet
coefficients during training, potentially leading to increased
computational demands.

G. PERFORMANCE ANALYSIS OF THE MODELS AFTER
BAYESIAN OPTIMIZATION IN MULTICLASS
CLASSIFICATION
After analyzing the performance of RNN models in mul-
ticlass classification, Bayesian optimization was used to
improve their performance. The Bayesian optimization was

applied to all RNN models, including the best-performing
LSTM, Bi-LSTM and stacked LSTM models. Hyperpa-
rameters such as the number of layers, learning rate, and
regularization etc., were detailed in Table 3. The optimized
models were evaluated using the same test dataset and
compared with the non-optimized models. Table 6 shows that
all models achieved a significant improvement in accuracy
after optimization, with stacked LSTM achieving the highest
accuracy of 99% and CS-CRNN achieving an accuracy
of 98.5%. Following augmentation, the accuracy on the
optimized CS-CRNN model demonstrates a notable increase
to 99.7%, as evidenced in Figure 10(b).

Furthermore, the optimized models showed a reduction
in misclassification errors, particularly in the MR and
MVP classes of stacked LSTM and CS-CRNN models,
as demonstrated in the confusion matrices of Figure 8(b) and
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FIGURE 11. Minimum loss function.

Figure 9(b) respectively. These misclassification errors were
reduced by 2% and 4%, respectively.

The Bayesian optimization technique demonstrated its
effectiveness in enhancing the performance of RNN and
CS-RNN models in multiclass classification. Among these
models, the stacked LSTM model achieved the high-
est accuracy, which is nearly comparable to CS-CRNN.
Figure 11 visualizes the minimum classification error of
optimized stacked LSTM and augmented CS-CRNNmodels.
Notably, the optimized stacked LSTM model exhibited a
sudden decrease in the loss function values during training,
indicating significant improvements in parameter updates.
In contrast, CS-CRNN displayed a smooth curve, suggesting
a more gradual convergence process. The minimum observed
objective (MOO) [50] values were calculated for the RNN
and CS-CRNN models. The RNN model achieved a MOO
of 0.015, while the CS-CRNN model had a MOO of
0.009. These values represent the lowest recorded loss
function values during the training process. By utilizing
Bayesian optimization and fine-tuning the hyperparame-
ters, exceptional results were obtained in the multiclass
classification of cardiac abnormalities. The RNN model
achieved an impressive accuracy rate of 99%, while the CS-
CRNN model achieved a noteworthy accuracy of 99.7% on
augmented data. The effectiveness of Bayesian optimization
in optimizing the models and achieving high accuracy levels
was demonstrated in this study. However, one limitation
of the current study lies in the utilization of non-learnable
parameters in the scalogram layer within the CS-CRNN
model. This layer employs fixed transformations that remain
static and do not adapt to the training data, potentially
limiting themodel’s adaptability and transparency. To address
this limitation in future research, one potential approach
is to incorporate learnable parameters into the scalogram
layer. This would optimize the model for feature learning,
potentially enhancing its performance, adaptability to various
data distributions, and overall transparency.

H. COMPARATIVE ANALYSIS OF PROPOSED SYSTEM
WITH EARLIER WORK
This section presents a comparison of a cardiac abnormality
diagnostic model with existing approaches, using the PCG

sound signal dataset. Utilizing the CS-CRNN model with
augmentation, the method demonstrates superior perfor-
mance. In binary classification (800 abnormal, 200 normal),
it achieves 99.6% accuracy and a 99.7% F1-score. The
multiclass classification (AS, MR, MS, MVP, N) reaches an
optimized accuracy of 99.7%, surpassing the 98.6% obtained
by comparison models before optimization. The efficacy of
this approach outperforms prior studies, as summarized in
Table 7.

VII. CONCLUSION AND FUTURE WORK
This article presents a novel CS-CRNN approach for diagnos-
ing cardiac abnormalities using PCG signals. The CS-CRNN
model exhibited strong performance in both binary and
multiclass classification tasks. In binary classification, the
model already demonstrated high accuracy. In the more com-
plex multiclass classification task, through the application
of Bayesian optimization, the CS-CRNN model’s accuracy
was improved, resulting in reduced error rates. The CS-
CRNN model adeptly processes raw PCG data, augmented
for improved performance on smaller datasets. It achieves
remarkable accuracies of 99.6% for binary classification
and 98.6% and 99.7% before and after optimization for
multiclass classification on the augmented dataset. These
findings emphasize the CS-CRNN model’s effectiveness in
enhancing accuracy and its role as a robust and reliable
tool for diagnosing cardiac abnormalities. However, it is
important to acknowledge that one limitation of this study
lies in the utilization of non-learnable parameters within the
scalogram layer, which may impact the model’s adaptability
and transparency. In the future, researchers can explore
the potential advantages of utilizing raw waveform data
in diagnosing cardiac abnormalities, with a specific focus
on the incorporation of learnable parameters of the cus-
tomized deep learning models. Addressing this limitation and
incorporating learnable parameters could further enhance the
model’s adaptability and transparency, ultimately advancing
its potential applications in the field of cardiac diagnostics.
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