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ABSTRACT Over the years, research in neuroscience-driven marketing has progressively delved into the
conscious and subconscious behaviors of consumers. Existing Electroencephalography (EEG)-based studies
related to consumer preferences toward products are not comprehensive. Due to non-stationarity issues of
EEQG, a significant variance is observed in inter-trial and inter-session EEG signals of a subject, which leads
to challenges in building a universal consumer preference model across diverse subjects, sessions, and tasks.
Transfer learning mitigates this challenge by utilizing data or knowledge from similar subjects, sessions,
or tasks to improve the learning process for a new subject, session, or task, thereby enhancing overall
model performance. Moreover, high-dimensional EEG features often lead to poor classification results.
Therefore, selecting meaningful or refined features is of utmost importance for classification. Therefore,
we propose a robust EEG-based neuromarketing framework combining deep transfer learning, spatial
attention models, and deep neural networks. The proposed framework predicts the consumer choices (in
terms of “likes” and “‘dislikes’’) for e-commerce products. Initially, the knowledge distillation is performed
from the pre-trained network to the proposed model, and the model is trained on the connectivity features of
EEG. Next, the attention-based features are extracted from high-level connectivity features using the spatial
attention model (Convolutional Block Attention Module: CBAM). CBAM extracts the attention feature maps
along channel and spatial dimensions for adaptive feature refinement. The refined features improve the
classification accuracy. Finally, the attention-based features are passed to the 2D CNN-based deep learning
model to evaluate consumer choices. The proposed model achieves 95.60% classification accuracy with the
experimental dataset. The proposed model achieves a significant improvement of 2.60% over the existing
neuromarketing-based studies.

INDEX TERMS Consumer behavior, deep transfer learning, EEG, neuromarketing, spatial attention.

I. INTRODUCTION

The emerging field of neuromarketing is gaining trac-
tion and legitimacy as it integrates neuroscience with
consumer psychology, marketing, economics, and decision
sciences. In a brief period, consumer neuroscience has
successfully established a solid research connection between
brain sciences and applied business-related research [1].
It is an emerging research field that aims to capture the
response of the human brain to commercials, brands, and
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marketing stimuli.According to Hubert and Kenning [2],
neuroeconomics employs methods originally used in brain
research regarding economic problems. Neuromarketing or
consumer neuroscience is a sub-area of neuroeconomics
that tries to find a solution in the marketing domain.
Different physiological measures such as functional mag-
netic resonance imaging (fMRI) [3], electroencephalography
(EEG) [4], magnetoencephalography (MEG) have been
used in neuromarketing-based studies, which are related to
purchasing preference towards various products, brands [5].
Physiological measure-based studies are useful in various
fields of consumer behavior domains, such as formulation
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of policies related to pricing [6], product [5] and brand
research [7]. Instead of just asking consumers’ preferences,
this technology helps to gain access to hidden information
about the consumer experience. This ultimately leads to
improved product design and increased sales [8]. EEG is a
widely used physiological measure in the marketing domain
due to its inexpensive experimental setup and high temporal
resolution. EEG has been used in different applications such
as epileptic seizure detection [9], user verification [10], emo-
tion recognition [11], cognitive workload estimation [12],
recommendation system [4], and preference prediction [13].
In an EEG-based neuromarketing study, the brain signal of a
consumer is captured while observing a product or watching
an advertisement. For example, mutual information-based
EEG analysis identified the significant change in the spectral
activity while the consumers indicated their preferences. The
like/dislike preferences have been identified during watching
the products [14]. The intersection of machine learning and
deep learning applied to EEG signals has emerged as a
compelling research focus, showcasing a burgeoning interest
in exploring their combined potential. For example, a 2D
convolutional neural network (CNN)-based deep learning
model has been used to estimate the customer choice
from the product and movie rating dataset [15]. They have
achieved a maximum accuracy of 74.57% with the movie
rating dataset. Golnar-Nik et al. [16] have implemented a
like/dislike prediction framework using EEG band power
and SVM classifier with an accuracy of more than 87%.
They have identified that centro-parietal locations (Fp1, Cp3,
Cpz) of the brain can effectively distinguish the preference
classes. Due to the dynamic and non-stationary nature of
EEG, a large variance has been observed in inter-trial and
inter-session signals of a subject. Therefore, building a robust
EEG-based Brain-Computer Interface (BCI) system across
different subjects is of utmost demand [17].

Transfer learning (TL) can overcome this issue by
utilizing the knowledge or data from similar or relevant
subjects/sessions/tasks to facilitate learning for a new
subject/session/task [18]. In deep transfer learning (DTL),
an efficient deep neural network performs the knowledge
transfer between the source and destination domain. The
objective of DTL is to extract high-level abstract features
from the source dataset and re-engineer those features in the
new dataset to enhance the model performance [19]. A mul-
tisource transfer learning framework has been developed for
the emotion recognition task [20] to remove the subject-wise
signal variation from the same task. He and Wu [21] have
developed a label alignment approach to identify different
labels of the target domain from the source domain in a cross-
task TL-based MI experiment. Xu et al. [22] have developed
an efficient DTL model for motor imagery classification
using VGG-16 with an average accuracy of 74.2% for all
subjects. Tan et al. [23] implemented an EEG-based DTL
model using VGG-16, VGG-19, ResNet, and AlexNet for
music imagery classification. Duan et al. [24] addressed

13478

the challenge of cross-subject EEG classification using
meta-learning on constrained transfer learning (MLCL).
This study offered an effective solution for personalized
EEG classification while minimizing the need for extensive
subject-specific data collection. This study achieved an
accuracy of 78.6% with the SEED dataset. Xu et al. [22]
developed deep transfer CNN framework using VGG-16
for Motor Imagery (MI)-based Brain-Computer Interface
(BCI) application. Their study achieved 74.2% classification
accuracy, outperforming the existing EEG-based MI studies
and offering a promising approach for practical BCI appli-
cations. Bird et al. [25] developed EEG and EMG-based
transfer learning using Multilayer-layered perception (MLP)
and CNN. During the CNN/MLP model training, they
used random weight distribution of EMG and EEG and
weight transfer learning between EMG and EEG to find
the best model. They have achieved maximum classification
accuracy of 97.18% with a CNN-based transfer learning
model (with weight transfer). Zhang et al. [26] proposed
an innovative method for alcoholism diagnosis using EEG
signals, addressing the unreliability of patient information
with 95.33% accuracy. Aldayel et al. [27] illustrated the
impact of employing DTL in the realm of EEG-based
emotion recognition and EEG-based preference detection.
These models predicted consumer preferences from EEG
signals by utilizing the DEAP dataset with 93% accuracy. The
identification of class-specific regions from the high-level
abstract features (returned from DTL) is important for
better classification. The attention mechanism has been
effectively used to focus the region of interest of an
image [28]. Woo et al. [29] have developed a lightweight
visual attention module called Convolutional Block Attention
Module (CBAM). In CBAM, the spatial and channel-level
attention maps have been merged with the input feature map
to produce a final refined feature map. Spatial attention maps
have been effectively implemented in image captioning [30],
question answering [31].

However, implementing the attention mechanism in
EEG-based tasks or neuromarketing applications has
not yet been discovered; therefore, building a robust
neuromarketing-based model to identify customer choice
towards the products is of utmost demand. Moreover,
most existing TL-based studies [18], [28] focused only on
cross-subject/sessions, but cross-task-based TL task remains
mostly unexplored. This is the primary motivation behind
this study. In this paper, we implement cross-task-based TL,
where knowledge from the image classification task has been
utilized for the prediction of customer choice. In this study,
we transform the knowledge from the source dataset (i.e.,
imagenet) to the destination dataset (EEG-choice prediction).
Initially, we extract the connectivity features from the EEG
signal, and the adjacency matrix’s image of those features
is passed to the pre-trained network (VGG 16). Next, the
transformed features are moved to CBAM. Finally, the
attention-based features (extracted from CBAM) are passed
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FIGURE 1. Proposed neuromarketing framework consisting of Deep
transfer learning, spatial attention, and 2D CNN-based deep learning
model for classification of consumer choice. Initially, connectivity
features are extracted from EEG, and knowledge transfer is performed
from the pre-trained network to the proposed model. Finally, spatial
attention is applied using the CBAM, and attention-based connectivity
features are passed to the 2D CNN model to evaluate consumer choice.

to the 2D CNN model to identify consumer preferences. The
framework of the proposed model is shown in Figure 1. The
novelty of this study is illustrated as follows:

1) There exist no studies that aim to combine EEG and
consumer preferences using a DTL-spatial attention-
based deep learning model.

2) The proposed neuromarketing framework implements
a spatial attention mechanism using CBAM that
enhances the classification performance.

3) The performance of the proposed model has achieved
significant improvement over existing methods of
neuromarketing studies.

The rest of this paper is organized as follows;

The detailed discussion of the proposed work is presented
in section II. Section III represents the experimental results
of the proposed model. A detailed discussion of this study is
mentioned in section IV. Finally, in section V, we conclude
the paper with future research directions.

Il. PROPOSED METHOD
This section consists of three subsections, namely, (a) Data
preprocessing (b) Feature engineering, and (c) Consumer
behaviour classification.

A. DATA PREPROCESSING

In this study, we have used a public neuromarketing
dataset [32]. The dataset consists of EEG signals of
40 subjects (25 male and 15 female) while they were watching
e-commerce products. Fourteen different products, each
with three varieties, have been selected for the experiment.
Therefore, 42 (14 x 3) product images have been used for a
single subject, and 1680 (42 x 40) images have been used for
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all 40 subjects. Each product’s images appeared for 4s in the
experiment, and EEG signals were recorded in parallel. After
showing the image, the user’s preference for the product was
recorded.

EEG measures the electrical activity in the brain, and
the activity is divided into five frequency bands: delta
(1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz),
and Gamma (30-40Hz) [33]. EEG frequency bands(1-40Hz)
provide valuable information about the brain’s functional
states, cognitive processes, and overall neurological health.
As EEG is sensitive to noise, to keep the valuable information
of the brain without high-frequency noise, we have applied a
bandpass filter between 1 to 40 Hz [34]. Next, independent
component analysis (ICA) was used to remove all types of
artifacts (ocular and cardiac artifacts) from EEG. The artifact
removal has been performed using EEGLAB software [35].
The connectivity feature extraction process has been per-
formed using Brainstorm software [36].

B. FEATURE ENGINEERING
Connectivity features provide more discriminative power
than traditional EEG features. Power-based connectivity
features (coherence and correlation) reveal the information
processing between brain regions during the prediction of
customer choice (here, “like”/*dislike’”). Power changes
may indicate positive or negative reactions to specific
design elements, helping to predict customer choice prefer-
ences [37]. Phase information is essential for understanding
the temporal coordination of neural activity. Phase-Locking
Value (PLV) specifically provides insights into the temporal
sequence of cognitive processes, improving product choice
prediction [38].

This section consists of two subsections, namely,
(a) connectivity-based feature extraction and (b) feature
extraction using CBAM.

1) CONNECTIVITY-BASED FEATURE EXTRACTION

The brain connectivity features are widely used in finding
underlying brain patterns during the task [39]. Here, we use
power (coherence and correlation) and phase (Phase locking
value)-based connectivity features for customer choice pre-
diction. A detailed description of each feature is mentioned
in the following subsections.

Power-based connectivity features: The correlation con-
nectivity feature is derived from Pearson’s correlation
coefficient (PCC). The PCC measures the linear dependency
between the two time-series signals ranging from —1 to 1.
A higher value of PCC refers to the positive correlation
among the two time-series signals, whereas a lower value
represents a negative correlation. For the two EEG signals
ei = {el,el,....el} and ex = {e}.ef,.....e]} of the i
and k" electrodes, PCC is computed using (1) [38].

T
L3 (el — el — )
00k

PCC(i, k) =

ey
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where T is the time length of the signals. u and o represent
the mean and standard deviation of the signal, respectively.

Coherence refers to the degree of similarity between
the two signals for the same frequency component. The
magnitude of coherence varies from 0 to 1. The coherence
of the two EEG signals x and y for the frequency component
f is represented using (2) [40].

1S (FI?
Sex(F)Syy(f)

where S, (f) represents the cross-spectral density, Sy (f),
Syy(f) are the auto-spectral density of the frequency
component f .

Phase-based connectivity features: Due to the rhythmic
character of EEG, phase synchronization would bring more
robust connectivity results than time-domain metrics. Phase
synchronization is expressed by the relative phase difference
of two signals, Ag,(t) = |[¢y(t) — ¢x(t)Imod2w. The
instantaneous phase of the signal, ¢,(¢), is obtained after
applying the Hilbert transform to the original signal x(¢)
at time . Among the phase synchronization metrics, Phase
Locking Value (PLV) describes the variability of the relative
phase using (3) [41].

Cohy y(f) = )

N
1 .
PLV(.X,’, x]) = ‘N E e’A¢r(lrz) (3)
n=1

2) FEATURE EXTRACTION USING CBAM

After extracting the robust connectivity features from the
EEG signal, we implement the CBAM [29] mechanism to
compute the attention maps from the input feature descriptor.
The CBAM method consists of two attention modules,
namely the channel attention module and spatial attention
module. The detailed description of each module is discussed
in subsequent paragraphs.

Channel attention module: In the input feature map, each
channel represents as a feature detector; therefore, channel
attention focuses on what is meaningful in the input image.
Initially, average and max pooling operations have been
performed to aggregate spatial information of input features
(F). Then, average-pooled (F gvg) and max-pooled (Fy,,.)
features are passed to a multi-layer perceptron (MLP)-based
shared network to generate the channel attention map (M, €
RE*Ix1) The hidden activation size of the shared network
is RE/rxIx1 where C, r are the channel and reduction ratio,
respectively. The channel attention map can be represented as
follows:

M (F) = 0 (MLP(AvgPool(F)) + MLP(MaxPool(F)))
= o (W1(Wo(Fg,0)) + Wi(Wo(Fy0))) 4)
where, o is the sigmoid function, Wy € RE/7<C and W, e
RE*C/r The weights (Wy and Wp) of MLP are shared for
channel and spatial inputs.

Spatial attention module: In spatial attention, we iden-
tify the inter-spatial relationship of features. This module
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extracted the max-pooled and average-pooled features along
the channel axis and concatenated them to get an efficient
feature descriptor. Then, a convolution layer is applied over
the concatenated feature descriptor to generate the spatial
attention map (Ms(F) € R”*W). The spatial attention map
is computed as follows:

M(F) = o (f***([AvgPool(F); MaxPool(F)]))
= G(fxxx([ngg§ Froc) ©)

where, f*** denotes the convolutional operation with the
filter size of (x X x). Fj0, Froy € R>HXW represents the
2D spatial feature maps.

C. CONSUMER BEHAVIOUR CLASSIFICATION

This section consists of two subsections: (a) deep transfer
learning and (b) spatial attention & deep classification model.
A detailed description of each subsection is mentioned below.

1) DEEP TRANSFER LEARNING

In deep transfer learning (DTL), a robust pre-trained deep
transfer learning network is used to learn a new similar
kind of task. Two models are used in transfer learning for
transferring the effective features across a similar domain:
source pre-trained model and target model. Here, we used the
retraining approach of DTL, where we used the pre-trained
weights (‘imagenet’) to train the DTL. We replace the final
fully connected layer of the pre-trained network with a layer
matching the binary classes (‘like’ and ‘dislike’) of the
experimental dataset. The output of the source pre-trained
network is passed as the input of our target model. Next,
the adversarial cross-validation is performed over the target
model to effectively distinguish the train and test set based
on their feature distribution. The training of the target model
is performed based on the resized connectivity images (as
per the image size of the imagenet dataset) extracted from
the preprocessed EEG data. The adversarial cross-validation
estimates the best-split point of train/test data to evaluate
the proposed deep learning model. In machine learning,
adversarial cross-validation (CV) is effectively used to reduce
overfitting.

2) SPATIAL ATTENTION AND DEEP CLASSIFICATION MODEL
Once the transformed features are obtained from the DTL
model, we perform a spatial attention mechanism over
those features to identify the region of interest within
that feature. The attention-based transformed connectivity
features extracted from the CBAM module are passed to
the deep learning model. The proposed deep learning model
consists of three convolutional layers to classify consumer
choice (Figure 2). The first convolutional layer takes the
feature map of size: 224 x 224 x3 as input and performs the
filter operation with eight filters of size 7 x 7. The normalized
and pooled output of the first convolutional layer is passed
as the inputs to the second convolutional layer that uses
16 filters with size 5 x 5. Similarly, the normalized and pooled
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FIGURE 2. Proposed 2D CNN deep learning model for consumer choice
classification. Transformed attention-based features passed as an input
to the model. The deep learning model consists of three
convolutional-max polling layers followed by fully connected layers.

TABLE 1. Results of proposed model according to different pretrained
networks.

Pretrained Network ~ Trainable layer ~ Acc %(Train/Test)
Resnet 101 Conv 5 97.10/90.88
Resnet 50 Conv 5 95.77/92.23
VGG 16 Block 5 99.23/95.60
VGG 19 Block 5 98.19/93.79
DenseNet 121 Conv 5 95.33/89.90

output of the second convolutional layer is passed to the third
convolutional layer that has 24 filters with a size of 3 x 3. The
output of the third convolutional layer is passed to the flatten
layer to project the image features into a 1D feature vector.
Finally, two fully connected layers consisting of ten neurons
followed by one neuron finished the model configuration. For
normalizing the output, a batch normalization layer is applied
after each CNN layer.

lll. RESULTS AND ANALYSIS

This section divides into five subsections, namely,
(a) Analysis based on different pretrained networks,
(b)Analysis of the CBAM model, (c) Classification analysis
of the proposed deep learning model, (d) Consumer behavior
analysis, and (e) Comparative analysis.

A. ANALYSIS BASED ON DIFFERENT PRETRAINED
NETWORKS

This section identifies the optimal network after analyzing the
results of different pretrained networks (Resnet 101, Resnet
50, VGG 16, VGG 19, DenseNet 121). The analysis is done
based on the same image size (224 x 224) of each pretrained
network while varying the final layer of each network. The
performance analysis of the proposed model using different
pretrained networks is discussed in Table 1. It can be observed
that the proposed model achieves the maximum accuracy of
95.60% while using the VGG 16 as a pretrained network.
Therefore, we use VGG 16 as the final pretrained network for
future analysis. In pretrained networks, deeper layers extract
higher-level features, which are constructed using the lower-
level features of earlier layers [42]. The earlier layers extract
shallower features having higher spatial resolution.

B. ANALYSIS OF THE CBAM MODEL

After extracting the abstract level connectivity features
from the best DTL model (i.e., VGG 16), we extract the
attention-based spatial features using CBAM. The CBAM
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model consists of spatial and channel modules, so the perfor-
mance of the proposed deep learning model can change with
different configurations of CBAM’s modules. In this section,
we perform the analysis based on different configurations
of an individual module (filter sizes, number of filters of
spatial module, and pooling operation of channel attention
module). From Table 2, we can conclude that the CBAM
with sequential configuration (channel-spatial) outperforms
other configurations with a maximum classification accuracy
of 95.60% (marked as bold in Table 2).

C. CLASSIFICATION ANALYSIS OF THE PROPOSED MODEL
This section subdivides into three subsections, namely, Out-
put and performance analysis, Ablation study and Subject-
wise analysis.

1) OUTPUT AND PERFORMANCE ANALYSIS

This section discusses the output and performance analysis
of the proposed deep learning model. A binary cross-entropy
loss function has been used for two-class classification (like
and dislike). The model has been trained with a batch size of
32 for 100 epochs. Adam optimizer, with an initial learning
rate of 0.002, has been used. We combine the data of all
the subjects for classification. The dataset is divided into
training, validation, and testing set with the ratio of 7:1:2. The
proposed model achieves 95.60% classification accuracy. The
classification results of the proposed model for two classes
(like and dislike) is shown in Table 3. The result is produced
based on classification metric such as precision, recall and
fl-score. The most important metric for balanced classifi-
cation results is the fl-score, which combines the optimal
balance of recall and precision to get a better result.

The Receiver operating characteristic (ROC) curve is
generally used in binary classification to evaluate the model
performance. Here, we compare different 2D CNN models
with different configurations and evaluate the performance
of each model using the ROC curve. The ROC curve
of the proposed deep learning model (2D CNN model2)
and other deep learning models are presented in Figure 3.
The Area Under Curve (AUC) region in the ROC curve
defines how the model separates the two classes; therefore,
a higher AUC score leads to better classification results. From
Figure 3, we can conclude that the proposed model covers the
maximum AUC region leading to the highest AUC score over
other deep learning models.

2) ABLATION STUDY
As the proposed model consists of three components, namely
DTL, CBAM and deep 2D CNN model, it is important to
measure the classification performance of individual com-
ponents. In the ablation study, we perform the classification
analysis based on the following three model variants:

Model 1: 2D CNN

Model 2: CBAM + 2D CNN

Model 3: DTL + CBAM + 2D CNN (proposed)
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TABLE 2. Classification analysis of the proposed deep learning model (2D CNN) based on different CBAM configurations.

CBAM configuration Spatial module Channel module Accuracy(%)

(Train/Test)

conv:1, k=7 Max pool 88.33/78.36

conv 10(k=5)-conv 1(k=7) Max pool 90.91/82.86

conv:1, k=7 Avg pool 86.36/76.96

Sequential: Channel-Spatial conv 10(k=5)-conv 1(k=7) Avg pool 93.96/89.69
conv:1, k=7 Avg+Max pool 99.23/95.60

conv 10(k=5)-conv 1(k=7) Avg+Max pool 96.34/91.13

conv:1, k=7 Max pool 89.23/82.56

conv 10 (k=5)-conv 1 (k=7) Max pool 91.66/77.96

conv:1, k=7 Avg pool 91.56/80.44

Sequential: Spatial-Channel conv 10 (k=5)-conv 1 (k=7) Avg pool 88.56/74.69
conv:1, k=7 Avg+Max pool 90.56/70.36

conv 10 (k=5)-conv 1 (k=7) Avg+Max pool 91.56/76.23

conv:1, k=7 Max pool 78.69/69.36

conv 10 (k=5)-conv 1 (k=7) Max pool 90.56/76.16

conv:1, k=7 Avg pool 86.05/71.33

Parallel: Channel+Spatial conv 10 (k=5)-conv 1 (k=7) Avg pool 89.56/76.39
conv:1, k=7 Avg+Max pool 94.05/83.56

conv 10 (k=5)-conv 1 (k=7) Avg+Max pool 96.23/90.55

TABLE 3. Classification analysis of the proposed model.

Class Precision (%)  Recall (%) fl-score (%))
Like 96.20 89.33 92.63
Dislike ~ 85.17 93.04 88.93
ROC curve
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FIGURE 3. Performance analysis of the proposed deep learning model
(2D CNN model2) over other deep learning models using the ROC curve.
Configurations of each 2D CNN model are as follows: model1:
C6-M4-C12-M2-C18-M2-D1, model2: C8-M4-C16-M2-C24-M3-D10-D1,
model3: C24-M2-C48-M2-D20-D1, model4: C16-M4-C32-M4-C48-M2-
C64-M2-D100-D1, and model5: C128-M4-C256-M2-D50-D1. Here, C, M,
and D denote the convolutional, max-pooling, and dense layers. The filter
sizes of the first, second, third, and fourth convolutional layers are 7 x 7,
5 x 5, 3x3, and 3 x3, respectively.

For each case, the classification analysis is performed
based on the best 2D CNN model (model 2 of Figure 3). The
result of the ablation study is presented in Figure 4. It can be
concluded that the proposed model (model 3: the combination
of DTL, CBAM, and 2D CNN) outperforms the other models
with maximum classification accuracy.

3) SUBJECT-WISE ANALYSIS

To evaluate subject-wise evaluation for all products,
we implement the Leave-subject-out experiment, where the
training and testing set contains entirely different subjects.
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FIGURE 4. Result of the ablation study. Model 1: 2D CNN, Model 2:
CBAM + 2D CNN and Model 3 (proposed): DTL + CBAM + 2D CNN.
Maximum accuracy of 95.60% is achieved using the model 3 approach.

Here, the proposed model is trained with 39 subjects and
tested with the remaining one subject (i.e., ‘Subject in
Test set’ in Figure 5). The result of the Leave-subject-out
experiment is shown in Figure 5. The model achieves the
maximum and minimum accuracy of 99.25% and 87.59% for
subject 18 (‘S18’) and subject 34 (‘S34°), respectively.

D. CONSUMER BEHAVIOUR ANALYSIS

This section is divided into three subsections, namely
product-wise analysis, identification of most liked or disliked
products, and impacts of gender on consumer preference.

1) PRODUCT-WISE ANALYSIS

In Figure 6, we execute the proposed model for individual
products rather than all 14 products. Therefore, EEG signals
of each product (with three varieties) are selected for
classification. As the EEG signals (inputs) of different
products are different, the classification accuracy also varies
across products. This experiment proves the generalization
of the proposed model not only for all products but also for
individual ones. It can be observed that the highest (98.88%)
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FIGURE 5. Subject-wise prediction for all products. The analysis is
performed using the Leave-subject-out experiment. The maximum and
minimum accuracy of 99.25% and 87.59% are obtained for subjects ‘S18
and ‘S34 respectively.

v

Accuracy (%)
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FIGURE 6. Product-wise analysis of the proposed model. The maximum
and minimum accuracy is achieved for ‘Tie’ and ‘Shoe’, respectively.

and lowest (88.69%) accuracy are achieved for the product
categories ‘Tie’ and ‘Shoe’, respectively.

2) IDENTIFICATION OF MOST LIKED OR DISLIKED PRODUCT
In an e-commerce application, it is important to identify
the most liked or disliked product, which highlights the
customer feedback in the marketing domain. This section
highlights the selection of the most liked/disliked product
out of 14 products. The experimental dataset consists of
40 subjects with 42 product variations (14 products, each
of three variants/brands) when a subject likes or dislikes an
individual product. We combine the like and dislike choices
for an individual product of all subjects to find out the most
liked and disliked product. The product-wise like/dislike case
is plotted in Figure. 7. It can be observed that ‘socks’ (P11)
and ‘sweater’ (P10) are marked as the most liked and most
disliked products by subjects.

In a neuromarketing study, it is important to highlight the
underlying brain activity for most liked or disliked products
to understand the relationship between consumer behavior
and the activated brain region. In the experimental dataset,
the ERP signal is generated for the most liked (socks) and
disliked (sweater) products by trial-wise averaging of those
products’ signals across all the subjects. The ERP event
timings are 0.5-10 sec. and 10.5-20 sec for the most liked
and most disliked products, respectively. Then, we identify
the activated EEG channels for the most liked and disliked
event from the highly activated region from the specific ERP
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FIGURE 7. Product-wise like/dislike analysis to select the most liked and
disliked product. Note: P1: Shirt, P2: Shoe, P3: School Bag, P4: Tie, P5:
Muffler, P6: Belt, P7: Bracelet, P8: Gloves, P9: Sunglass, P10: Sweater, P11:
Socks, P12: Wall clock, P13: Pen and P14: Wristwatch.

peak (most liked: 6.773 sec. and most disliked: 13.844 sec.).
The brain activation using the topographical plot of the beta
band (best band as per Figure 10) for the most liked and
disliked product is shown in Figure 8. For the most liked case,
maximum activation is observed at frontal channels (AF3,
AF4, F3, F4), whereas for the most disliked case, maximum
activation is observed at frontocentral channels (F4, FC6).

3) IMPACTS OF GENDER ON CONSUMER PREFERENCE

In this section, we identify the gender-wise most liked or
most disliked product. The dataset includes EEG recordings
of 25 male and 15 female subjects. For a product, we compute
all like and dislike choices for all the male and female subjects
and produce the like-dislike ratio (LDR) for that product.
The LDR score (6) calculates the preference of each product.
In Figure 9, gender-wise like and dislike ratios (computed
from LDR score) are calculated for all the products. The
most preferred products (having maximum LDR score)
for male and female subjects are ‘shirt’ and ‘bracelet’,
respectively.

IDR — No. of (likes/dislikes)/product

= 6
No. of (likes + dislikes)/product ©)

E. COMPARATIVE ANALYSIS

This section consists of two subsections, namely, a com-
parison based on EEG bands and comparison with existing
neuromarketing-based studies.

1) COMPARISON BASED ON EEG-BANDS

Here, we compare the performance of the proposed deep
learning model based on different EEG bands (delta, theta,
alpha, beta, and gamma). The connectivity features are
extracted based on different frequency ranges of respective
EEG bands, and the proposed model is analyzed using each
of the band-specific features. The band-wise classification
result of the proposed model is plotted in Figure 10. It has
been observed that the beta band (16-31 Hz) has achieved
maximum accuracy over other EEG bands.
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FIGURE 8. Brain activation (using the topographical plot) for the most liked (socks) and most disliked

(sweater) products. ERP peak timing for each topographical plot is shown at the top of the individual map

for the most liked (0.5-10 sec.) and disliked (10.5-20 sec.) events. In the most liked case, maximum

activation is observed at frontal channels (AF3, AF4, F3, F4), whereas for the most disliked case, maximum
activation is observed at frontocentral channels (F4, FC6). The optimal channels are selected based on the

highest activation-based topographical plot at 6.773 sec. (most liked) and 13.844 sec. (most disliked).
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FIGURE 9. Product-wise like/dislike analysis based on gender. The score of each product is
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2) COMPARISON WITH EXISTING 100
NEUROMARKETING-BASED STUDIES 0236 g

This section highlights the comparative study between the 901 86.39
proposed model and existing neuromarketing-based studies. 9 80,52

The comparison is performed based on methodology and ‘5. 801 225

applied tools. From the comparison study (Table 4), it can 2

be observed that the proposed model achieves a significant g 701

improvement over other neuromarketing-based studies. N

IV. DISCUSSION )

Neuroscience-based marketing has made substantial strides Delta Theta EE GAl'B";; ds Beta Gamma

in understanding consumer behavior over the past decade [48].

This study contributes to the field by proposing a robust
EEG-based neuromarketing framework that combines DTL,
spatial attention methods, and deep neural networks. The
primary aim of this framework is to predict consumer choices
for e-commerce products, offering a nuanced understanding
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FIGURE 10. Comparative analysis between five EEG bands with different
frequency ranges. The comparison is performed based on the band-wise
prediction results of the proposed model.

of preferences through an innovative approach. Transfer
learning emerges as a crucial aspect of this study, addressing
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TABLE 4. Comparison with existing neuromarketing-based studies. The
abbreviations are as follows: Accuracy (Acc), Power spectral density
(PSD), Random Forest (RF), Time-Frequency Analysis (TFA), Fast Fourier
transform (FFT), Deep neural network (DNN), Support Vector Machine
(SVM) and K-nearest neighbors (kNN).

Study Methodology Signals & Marketing el-

ement

Acc(%)

Smith et al. [43] Bayesian fMRI-50 pairs of snacks ~ 68.20
Regression
Telpaz et al. [44] Cardinal analy- EEG-10 productimages  65.00
sis
Yadava et al. [32] HMM classifier =~ EEG-42 productimages ~ 70.33
Aldayel et al. [45] PSD + DNN EEG-42 product images ~ 93.00
Kim et al. [46] FFT + SVM EEG-53 Preferred, Un-  88.54
noticed images
Chew et al. [47] TFA + kNN EEG-60 3D bracelet 80.00
images
Proposed DTL + CBAM  EEG-42 productimages  95.60
+2D CNN

the non-stationarity challenges inherent in EEG experi-
ments [18]. By leveraging data or knowledge from compa-
rable subjects, sessions, or tasks, the proposed framework
enhances its adaptability to diverse scenarios [18]. This
addresses a significant gap in existing EEG-based studies on
consumer preferences, which often struggle to create univer-
sal models due to variations in subjects, sessions, and tasks.
The result of the proposed model with different pre-trained
networks is shown in Table 1. Incorporating a spatial attention
model using CBAM further enhances the performance of
the proposed framework. The CBAM improves classification
accuracy by extracting attention-based features from high-
level connectivity features. CBAM achieves the highest
classification accuracy with sequential mode (channel-
spatial) in Table 2. The experimental results demonstrate
the efficacy of the proposed model, achieving an impressive
95.60% classification accuracy. This noteworthy accom-
plishment represents a significant advancement, surpassing
existing neuromarketing-based studies by 2.60% (refer to
Table 4). As the experimental dataset consists of 42 different
product variants, identifying the most liked (‘socks’) or
disliked product (‘sweater’) can be a relevant and significant
finding (Figure 9) for future research of product-based
neuromarketing applications. We also evaluate the prediction
rate (in terms of accuracy) of the proposed model for
each product (Figure 7). Identifying the most liked/disliked
product overall (for all subjects) and in a gender-wise manner
provides a guideline for marketers to devise segmentation,
targeting, and positioning strategies.

It further aids many marketing-domain-related deci-
sions like pricing, promotional strategy formulation, and
product-catalog design for e-commerce companies. All of
these above-mentioned initiatives ultimately lead to more
customer acquisitions, improved customer retention, and
increased customer loyalty, which are the ultimate goals of
any business unit. Real-time applications of our model in
marketing scenarios are a promising prospect, allowing busi-
nesses to adapt swiftly to immediate consumer preferences.
Ethical considerations in neuromarketing, encompassing the
responsible use of neuroscientific methods in influencing
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consumer choices, also present a compelling area for
investigation.

V. CONCLUSION

We have implemented a robust hybrid framework consisting
of DTL, spatial attention, and a deep learning model to
evaluate consumer behavior while watching a product. The
EEG data were collected while they watched the products,
and their choice (like/dislike) was recorded for that product.
As the proposed model combines three components (DTL,
CBAM, and deep network), therefore we evaluate the
significance of individual components using the ablation
study (Figure 6). We observe that the proposed model (model
3: DTL + CBAM + 2D CNN of ablation study) reaches the
highest classification accuracy of 95.60%, which outperforms
all the existing neuromarketing-based studies (Table 4).

The eye movement of a user while watching the product
is an important factor in product preference. In the near
future, we will combine eye movement with EEG signals to
build a robust multimodal deep-neuromarketing framework
to improve the prediction results. Additionally, building
upon the success of our current research, future directions
in this field are poised to explore more personalized
marketing strategies, aligning with individual consumer
behavior.
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