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ABSTRACT In this paper, an age of information (AoI) oriented data collection scheme is proposed
for wireless sensor networks with energy-constrained unmanned aerial vehicles (UAVs). Different from
traditional approaches that focus on one single UAV, we advocate the activation of multiple candidate UAVs
to improve the AoI performances. However, coordinating multiple UAVs complicates the data collection
strategies of each UAV, rendering AoI minimization a formidable challenge. To address the intractable
formulated optimization problem, we propose a heuristic two-step algorithm based on greedy search for
multiple UAVs. Specifically, we address the coordination of multiple UAVs through a novel algorithm
grounded in graph theory and kernel K-means methods. Concurrently, we devise an energy-constrained
trajectory planning algorithm to optimize data collection for each activated UAV. The numerical results
validate the accuracy of the proposed algorithm, and demonstrate that both average AoI and energy
consumption per UAV can be reduced when more energy-constrained UAVs are involved in the data
collection process for wireless sensor networks.

INDEX TERMS Age of information, graph theory, wireless sensor network, multi-UAV.

I. INTRODUCTION
In recent years, unmanned aerial vehicles (UAVs) aided
wireless sensor networks (WSNs) have attracted much atten-
tion [1]. Equipped with wireless communication platforms,
the UAVs can be employed as mobile base stations or data
collectors to communicate with the ground sensor nodes
(SNs) in a flexible and reliable manner. In UAV-aided
WSNs, most existing works focused on optimizing traditional
performance metrics, such as system throughput, coverage,
and delay [2], [3], [4], [5]. However, these performance
metrics are not suitable for UAV-aided WSNs with mission-
critical applications [6], such as smart factories, city traffic
surveillance, disasters monitoring and so on. In the mission-
critical applications, the systems usually run in real time and
the freshness of data is of great importance. To measure the
data freshness, a new metric age of information (AoI) is
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becoming a popular concept for UAV-aided WSNs, which
characterizes the time interval from the generation of the
latest received information to the current time [7].
In UAV-aided WSNs, the UAV is assigned to collect data

from SNs within their communication ranges, and return to
the data center. AoI of the UAV-aided WSNs is determined
by the time interval between data collection from SNs to
UAVs and data offloading from UAVs to data center. As a
result, the UAVs’ flight trajectories during the execution of
data collection tasks need to be designed carefully.

Considering the limited energy storage at UAVs, it’s very
challenge for one single UAV to complete data collection.
Therefore, the multi-UAV-aided data collection has emerged
to improve the AoI performances in the WSNs. Most
existing works employ optimization methods [8], [9] and/or
deep reinforcement learning (DRL) methods to find the
UAVs’ flight trajectories [10], [11]. However, utilizing the
overlapped area of communication ranges of different SNs is
ignored in AoI minimization. Generally, the UAVs visit all N
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SNs sequentially to fulfill the data collection task. However,
in a dense network, the communication ranges of the SNs
might overlap with each other, and the UAV need not to
visit each SN individually. Instead, L ≤ N hovering points
(HPs) can be selected at which each UAV collects data from
multiple SNs concurrently. However, this scenario introduces
new challenges. Firstly, determining the optimal number of
HPs is crucial; generally, fewer HPs results in reduced AoI.
Secondly, designing the positions of these HPs significantly
impacts AoI performance.

To solve the above challenges, an average AoI minimiza-
tion problem is studied in a multi-UAV-aidedWSN subject to
the energy capacity of each UAV. To utilize the overlapped
area effectively, graph theory and optimization approaches
are introduced in this paper for AoI minimization. The main
contributions can be summarized as follows:

• We propose an AoI-oriented data collection scheme for
WSNs with multiple energy-constrained UAVs. In our
system, UAVs do not directly fly to SNs but rather
navigate to designated hovering points where they
establish communication with all SNs within range.

• We propose a heuristic two-step algorithm to min-
imize the AoI of the proposed scheme. In Step 1,
the hovering points are determined based on graph
theory and optimization methods, and the UAV-SN
association is established via the hovering points based
on the application of kernel K-means. In Step 2, after
establishing the UAV-SN association, the AoI-oriented
trajectories for energy-constrained UAVs are found via
optimization methods.

• We conduct extensive simulations to evaluate the per-
formances of the proposed algorithm. Simulation results
confirm the correctness of our proposed algorithm and
showed that with a finite energy supply, our proposed
data collection scheme can achieve significant AoI
performance gains.

The rest of this paper is organized as follows. Section II
introduces the system model. The multi-UAV aided data
collection problem is formulated in Section III. Then,
we design algorithms to solve the multi-UAV aided data
collection problem in Section IV. Simulation results and
conclusions are presented in Section V and Section VI,
respectively. Throughout this paper, we use |A| to denote the
number of elements in the set A and ∥ · ∥ to represent the
Euclidean distance, respectively.

A. RELATED WORKS
In UAV-aided WSN networks, it is very challenging to find
the UAVs’ flight trajectories during the execution of data
collection tasks. One is to establish the association between
the UAVs and SNs. The other is to find optimal flight
trajectories for the UAVs. To deal with these two challenges,
one avenue of research incorporates optimization methods to
find optimal trajectories for the UAVs. For example, in our
previous work [9], the hovering points of the UAV ware

determined by applying the Affinity Propagation algorithm
and the age-optimal trajectory was found using dynamic
programming without considering energy constraint on the
UAV. In [12], the peak and average AoIs were derived
for the UAV-aided data gathering and dissemination in a
graph, and minimized by optimizing the UAV’s randomized
flight trajectories, respectively. Jia et al. studied the UAV
path planning and data acquisition problem using dynamic
programming methods [13]. In [14], the authors studied the
joint optimization of flight trajectory and time allocation
for AoI-oriented UAV-assisted wireless powered Internet of
Things (IoT) systems, where one UAVwas applied to transfer
energy and collect data from the ground SNs. In [15], the
authors found the path of a UAV that will minimize the
max AoI from any data collected from the field, given the
data generation times and locations of IoT devices. The
problemwasmodeled as a mixed integer convex optimization
problem using graph theory and solved with CVX tools.
Also, a heuristic-based, fast-running, practical solution was
provided. In [8], Zhan et al. delved into the optimization
methods for addressing the multi-UAV-aided data collection
problem. Their work focused on the joint optimization of SN-
UAV associations, UAV trajectory, and wake-up scheduling
of SNs, aimed at minimizing the maximum completion time.

Different from the above works, data collection via
energy-constrained UAVs have been considered in [16],
[17], and [18]. In [16], Li et al. focused on developing
efficient heuristic and approximation algorithms for the data
collection maximization problems in which the hovering
locations with sojourn durations were optimized for an
energy-constrained UAV.Wherein, the hovering region of the
UAVwas partitioned into finite numbers of equal squares and
the square centers were identified as the potential hovering
points of this UAV. And a version of Traveling Salesman
Problem based tour was found for the energy-constrained
UAV. In [17], the authors studied the problem of minimizing
the average peak AoI for a source-destination pair in a
UAV-assisted IoT network, where the UAV’s flight trajectory,
energy allocations and service time durations at the source
and the UAV were jointly optimized. To minimize the total
AoI within a period of time, the authors of [18] proposed to
jointly optimize the UAV’s sensing time, transmission time,
flight trajectory, and task scheduling in a cellular Internet with
UAVs.

In the other lines of works, popular DRL methods, like
deep Q networks (DQN), have been recently introduced
to make real-time decisions on UAVs’ movements and
resource allocation strategies [10], [11]. The authors of [19]
designed the UAV’s online flight trajectory in the DRL
framework to achieve the SNs’ minimum weighted sum of
AoIs. Moreover, in [20], Shokry et al. designed a DRL
algorithm to find the trajectories of the deployed UAVs
and scheduling of status updates to minimize the expected
weighted sum AoI for UAV-assisted vehicular networks.
Although these widely used DRL methods can do real-time
decision-making regarding UAV movement and resource
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FIGURE 1. The multi-UAV-aided data collection model.

allocation strategies, but often necessitate extensive training
periods before practical implementation.

In contrast to these works, we focus on applying graph
theory and optimization approaches to deal with the above
two challenges in multi-UAV-aided data collection scenarios.
Different from our previous work [21] that focuses on the
maximum AoI scenario, this work discusses the average AoI
performances. Besides, the major difference between this
work and [22] lies in the design of UAV-SN association.

II. SYSTEM MODEL
A. NETWORK DESCRIPTION
We consider a multi-UAV-enabled wireless sensor network
consisting of a data center v0, K rotary-wing UAVs and
N ground sensor nodes (SNs). The set of SNs is denoted
by V = {v1, v2, · · · , vN }, where vn is the n-th SN. The
locations of the data center and the SNs are denoted by
pn = (xn, yn) ∈ R2 (n = 0, 1, · · · ,N ) unifiedly.The set of
the K candidate UAVs is denoted by A = {a1, a2, · · · , aK },
where ak is the k-th UAV. Suppose that each UAV ak flies at a
fixed velocity Vk and altitude Hk . Each UAV initially carries
a certain amount of energy, denoted by Emax (Joules). Similar
to the assumptions in [24], each SN has a communication
range denoted by R, and the neighborhood area with radius
r is used to characterize the maximum horizontal distance
between each SN and its receiver in accordance with the
communication range. Considering that different UAVs may
fly at different altitudes, the neighborhood area of SN vn
is denoted by Nn = {p = (x, y)| ∥ p − pn ∥=√
(x − xn)2 + (y− yn)2 ≤ r} (n = 1, · · · ,N ), where r =√
R2 − (maxk Hk )2.
During data collection, each UAV flies to a position within

the communication range of a SN, and hovers to gather
sensing data from the SN. Once the data is acquired, the
UAV proceeds to other SNs before returning to the data
center for data offloading. These strategic positions for UAVs
to receive messages are termed ‘‘hovering points’’ (HPs).
An example of this data collection process is depicted in
Fig. 1, UAV ak starts from the data center, navigating
and hovering successively at HPs uk,1, uk,2, uk,3, uk,4 to
collect data from the SNs, and finally returning to the
data center. Consequently, the trajectory of UAV ak can
be described by uk = [v0, uk,1, uk,2, uk,3, uk,4, v0], where
uk,j denotes the j-th HP in the trajectory of UAV ak . For
simplicity, we use u′

k = [uk,1, uk,2, uk,3, uk,4] to describe
the trajectory of UAV ak . It is noteworthy that the selection

FIGURE 2. Illustration of the HP selection.

of HPs significantly influences UAV flight time, thereby
affecting the AoI performance. Generally, the fewer HPs
are selected, the less the AoI is induced. Moreover, the
UAV flight trajectory should be designed to determine the
optimal sequence for each UAV’s traversal across HPs. This
is because, for each SN, the sooner it is visited by any UAV,
the larger AoI it has. Consequently, the UAV flight trajectory
defines the sequence of HPs to be visited, which should be
optimized to reduce the average AoI of SNs.

B. SN-HP ASSOCIATION AND HP-UAV ASSOCIATION
As can be seen in Fig. 2, UAV a1 can access four SNs
individually via four HPs (namely, u1,1, u1,2, u1,3, u1,4),
denoting a one-to-one association. However, when the
communication ranges of different SNs overlap, a UAV can
efficiently cover this overlapped area, collecting data from
multiple SNs simultaneously. For instance, these four SNs
can be visited by UAV a2 using only two HPs (i.e., u2,1, u2,2
in Fig. 2). Consequently, the selection of HPs, both in terms
of number and locations, should be carefully designed.

Let C = {c1, c2, · · · , cL} denote the set of potential
HPs, where L denotes the number of potential HPs. The
coordinates of HP cl are denoted by sl = (xcl , y

c
l ) ∈ R2 (l =

1, · · · ,L). The subset of HPs visited by UAV ak is denoted as
Ck ⊆ C. Hence, uk,j ∈ Ck denotes the j-th HP in the trajectory
of UAV ak . Moreover, u′

k = [uk,1, uk,2, · · · , uk,|Ck |] denotes
all the HPs in trajectory uk , and therefore u′

k is a permutation
of the set Ck . Let’s take Fig. 2 as an example. The set of
potential HPs is C = {c1, c2, · · · , c6}. In the data collection
scheme based on one-to-one association, the set of selected
HPs is denoted by C1 = {c1, c2, c5, c6}. These HPs are
visited in the order c5, c1, c2, c6. Thus, the trajectory of UAV
a1 can be described as u′

1 = [u1,1 = c5, u1,2 = c1, u1,3 =

c2, u1,4 = c6], and u′

1 is a permutation of C1. Similarly, for the
scheme based on utilizing the overlapped area, u′

2 = [u2,1 =

c4, u2,2 = c3].
Then, we introduce the concept of SN-HP association.

In particular, we use ζn,l to represent the association between
SN vn and HP cl . If ζn,l = 1, it indicates that SN vn can be
visited via HP cl by a single UAV; conversely, if ζn,l = 0,
the association doesn’t exist. For example, consider the SNs
represented as v1, v2, v3, v4 from left to right in Fig. 2. In the
scheme utilizing the overlapped area, the UAV hovers at HP
c4 to communicate with SN 1 and 2, and hovers at HP c3
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to communicate with SN 3 and 4. Consequently, the SN-HP
association can be described as ζ1,4 = 1, ζ2,4 = 1, ζ3,3 =

1, ζ4,3 = 1. Similarly, in the one-to-one association scheme,
we have ζ1,5 = 1, ζ2,1 = 1, ζ3,2 = 1, ζ4,6 = 1.
To describe the activation of the potential UAVs, we intro-

duce the HP-UAV association. In particular, we use ηl,k to
represent the association betweenHP cl andUAV ak . If ηl,k =

1, it means that UAV ak is assigned to visit HP cl , conversely,
if ηl,k = 0, the association doesn’t exist. Consider Fig. 2 as
an example. If the scheme utilizing the overlapped area is
adopted, UAV a2 is assigned to visit v1, v2, v3, v4 through
c4, c3, while UAV a1 might be assigned to visit the rest SNs.
Consequently, we have η4,1 = 1, η3,1 = 1. Similarly, if the
scheme based on one-to-one association is adopted, we have
η5,2 = 1, η1,2 = 1, η2,2 = 1, η6,1 = 1.
In conclusion, to complete data collection, we need to find

the optimal SN-HP association and HP-UAV association, and
then find the optimal trajectory of UAVs. Keeping in mind
that each SN is associated to one HP and each HP is visited
by one single UAV, we have

L∑
l=1

ζn,l = 1, ∀n,
K∑
k=1

ηl,k = 1, ∀l. (1)

The set of SNs covered by HP cl is denoted asVl = {vn|ζn,l =

1, vn ∈ V}. Similarly, the set of SNs collected by UAV ak is
denoted by Ṽk = {vn|

∑
l ζn,lηl,k = 1, vn ∈ V}. Therefore,

the number of SNs visited by the UAVs satisfies

K∑
k=1

L∑
l=1

N∑
n=1

ζn,l · ηl,k = N . (2)

Let ζ and η denote the vectors of variables {ζn,l} and {ηl,k},
respectively.

C. TRANSMISSION MODEL
Similar to the assumptions in [26], the channel gain between
the UAVs and SNs is expressed as

hkn,l =

 β0

[
Dkn,l

]−ϱ

, line-of-sight link,

ζβ0

[
Dkn,l

]−ϱ

, non-line-of-sight link,
(3)

where Dkn,l =

√
∥ pn − sl ∥2 +H2

k is the distance between
SN vn and UAV ak that is hovering over HP cl , β0 denotes the
channel gain at the reference distance of one meter, ϱ is the
path loss exponent, and ζ ∈ (0, 1) is the additional attenuation
factor due to the non-line-of-sight effects.

Based on the generate-at-will policy [25], we assume that
when reaching an HP, the UAV sends a message to all the
associated SNs. Upon receiving the message, the SNs begin
to sample the environment and upload their sensing data
to the UAV by some multiple access scheme. In particular,
assuming that the signaling time is negligible, the hovering
time T kl can be evaluated as the uploading time of the
associated SNs. Moreover, when the simple time division

multiple access scheme is adopted, the hovering time T kl is
expressed as

T kl =

∑
vn∈Vl

Wn

Rkn,l
, (4)

where Wn is the size of one packet at SN vn, and Rkn,l is
the uploading data rate. The UAV always gets successful
reception if each SN transmits at a data rate adapted to the
worse non-line-of-sight channel condition. In this case, the
data rate is calculated as

Rkn,l = B log

1 +

ζβ0

[
Dkn,l

]−ϱ

σ 2 + I k
Ps

 , (5)

where B is the system bandwidth, σ 2 and I k denote the
noise power and interference at the receiver of UAV ak ,
respectively, and Ps is the transmit power at each SN.
Similarly, we can calculate the offloading time when the UAV
flies back and offloads to the data center. Considering the
line-of-sight link between UAV ak and the data center, the
offloading time can be expressed as

T ko =

∑
vn∈Ṽk Wn

B log
(
1 +

β0H
−ϱ
k

σ 2+Io
Pu

) , (6)

where Io denotes the inteference at the receiver of the data
center and Pu represents the transmit power at the UAV.
Suppose that the K UAVs are dispatched separately in time
and space so as to avoid crash and severe interference between
each other. Hence, the interference in (5) and (6) can be
modeled as additive white gaussian noise.

III. PROBLEM FORMULATION
In this section, the performance of the multi-UAV aided data
collection scheme is measured by the SNs’ AoI subject to the
energy capacity of each UAV.

A. AVERAGE AOI OF THE SNS
We denote by X kn (t) the AoI of SN vn whose data is collected
by UAV ak . It can be defined as X kn (t) = (t − tkn,l)

+, where
tkn,l is the instant at which SN vn samples the environment
and packs the sensing data into a data packet, and (x)+ =

max {x, 0}. From [23], if SN vn is covered by the j-th HP in
the trajectory uk , the AoI of this SN can be expressed as

X kn (uk ) = (tk − tkn,l)
+

=

|Ck |∑
l=j

(
T kl + τ kl,(l+1)

)
+ T ko , (7)

where tk is the instant when UAV ak finishes offloading all
the collected data to the data center, T kl is the hovering time
of UAV ak at HP uk,l , and τ kl,(l+1) is the flight time of UAV
ak from HP uk,l to HP uk,(l+1) in the trajectory uk .
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Furthermore, based on (7), the average AoI of the SNs
collected by UAV ak can be computed as

Xk,ave(uk ) =
1

|Ṽk |

|Ck |∑
j=1

φkj

 |Ck |∑
l=j

(
T kl + τ kl,(l+1)

)
+ T ko


=

1

|Ṽk |

|Ck |∑
j=1

j∑
l=1

φkl

(
T kj +

dkj,(j+1)

Vk

)
+ T ko , (8)

where φkj denotes the number of SNs covered by the j-th HP
uk,j in the trajectory uk , and the second equality holds due
to |Ṽk | =

∑|Ck |
l=1φ

k
l . Notice that φkj depends on the SN-HP

association ζ and can be counted as φkj = |Vl | =
∑N

n=1ζn,l
when HP cl is selected as uk,j.

B. ENERGY CONSUMPTION MODEL
For a rotary-wing UAV, the propulsion power consumption
mainly depends on the UAV’s flight velocity and the
acceleration. Similar to the assumptions in [26], we ignore
the power consumed for acceleration or deceleration. This is
because the acceleration or deceleration time is very small in
comparison to flight and data transmission times. As a result,
the propulsion power can be expressed as

P(Vk ) = P0

(
1 +

3V 2
k

U2
tip

)
+ P1

√√√√√1 +
V 4
k

4V 4
0

−
V 2
k

2V 2
0

+
1
2
dρsArV 3

k , (9)

where P0 and P1 are the blade profile and induced powers of
the UAV in the hovering status, respectively, V0 is the mean
rotor induced velocity of the UAV in hovering, Utip is the tip
speed of the rotor blade, ρ is the air density, d , s and Ar are
the fuselage drag ratio, rotor solidity, and the rotor disc area,
respectively.

When UAV ak flies along the trajectory uk to collect data,
the amount of aggregate energy can be calculated as

ek (uk ) = P(Vk )
|Ck |∑
l=0

dkl,(l+1)

Vk
+ P(0) ·

|Ck |∑
l=1

T kl + Pu · T ko ,

(10)

where dk0,1 is the flight distance when UAV ak flies from the
data center to the first HP uk,1, Pu denotes the transmit power
at each SN. P(0) is the power consumption when the UAV
hovers at velocity Vk = 0, i.e., P(0) = P0 + P1. The three
terms in (10) mean the propulsion energy, hovering energy,
and transmission energy, respectively.

C. ENERGY-CONSTRAINED AOI MINIMIZATION PROBLEM
In this work, we attempt to jointly design the UAV-SN
association and the UAVs’ flight trajectories via the HPs to
minimize the SNs’ average AoI subject to the energy capacity
at the UAVs. In particular, the HPs’ positions, the SN-HP and
HP-UAV associations, and the permutation of the HPs visited

Algorithm 1 The Graph Theory Based SN-HP Association
Algorithm
Require: The network topology G = (V, ϵ), including the

location pn and communication radius r of each SN vn;
1: Part I: Selection of Candidate HPs
2: Set the neighborhood area of each SN Nn (vn ∈ V);
3: Find a set of SNs Imk ⊆ V with their neighborhood areas

constructing a maximal independent set;
4: Find a minimum spanning tree Itree in the graph G;
5: Select the intersections of the edges in Itree, and the

boundaries of the neighborhood areas of the SNs in Imk
as candidate HPs, and add them to the set C.

6: Part II: HP pruning
7: Set V ′

= V and C∗
= ∅;

8: repeat
9: Select HP cl that covers a maximum number of SNs,

i.e., cl = argmaxcl∈C
∑

vn∈V ′ bn,l ;
10: Add cl to C∗, i.e., C∗

= C∗
∪ {cl};

11: Find the SNs in the set V ′

satisfying bn,l = 1, and set
ζ ∗
n,l = 1 accordingly;

12: Remove the SNs covered by HP cl from V ′

;
13: until V ′

= ∅

Ensure: The set of HPs with their coordinates {sl}(cl ∈ C∗)
and the SN-HP association ζ ∗.

by each UAV should be found. Let s = [s1, s2, · · · , sL] and
u = [u1, u2, · · · , uK ] denote the vectors of the HPs’ locations
and the UAVs’ trajectories, respectively. To find the optimal
multi-UAV-aided data collection solution, we formulate an
optimization problem as follows:

min
s,ζ,η,u

Xave =
1
N

K∑
k=1

 |Ck |∑
j=1

j∑
l=1

φkl

(
T kj +

dkj,(j+1)

Vk

)
+ T ko


s.t.


ek (uk ) ⩽ Emax , ∀k, (a)
(1), (2), (b)
sl ∈ R2, ζn,l, ηl,k ∈ {0, 1}, u′

k ∈ σ (Ck ). (c)

(11)

where uk = [v0, u′
k , v0] is determined by the permutation of

HPs u′
k , and σ (Ck ) is the set including all the permutations of

the set Ck . Constraint (11.a) means that the amount of energy
consumed by each UAV cannot exceed its energy storage.
Constraints (11.b) points out the limitation on the SN-HP and
HP-UAV associations, and (11.c) specifies the ranges of the
variables.

Note that, the variables in Problem (11) are coupled, and
the variables sl ∈ R2 are continuous while the other variables
are discrete. As a result, Problem (11) is a mixed-integer
programming problem and is generally intractable.

IV. ALGORITHM DESIGN
The formidable nature of Problem (11) necessitates the
adoption of sub-optimal algorithms. It’s important to note that
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FIGURE 3. Illustrate how to find candidate HPs: (a) Set a neighborhood area for each SN; (b) Construct a maximal independent
set of neighborhood areas of the SNs in Imk = {v1, v3, v5}; (c) Find a minimum spanning tree Itree consisting of the six SNs
{v1, · · · , v6} and five edges drawn by red lines; (d) Select the intersections of the edges in Itree and boundaries of the SNs in
Imk as candidate HPs, i.e., {c1, c2, c3, c4, c5}.

the pursuit of an optimal UAV-SN association (comprising
both SN-HP and HP-UAV associations) carries a heavy com-
putational burden. To achieve a better balance between the
computation complexity and the performances improvement,
we present a novel algorithm based on a combination of graph
theory and kernel K-means clustering. This optimization
results in a refined UAV-SN association solution, which
simplifies Problem (11) into an age-optimized trajectory
design problem.

A. UAV-SN ASSOCIATION VIA GRAPH THEORY AND
KERNEL K-MEANS CLUSTERING
Initially, our focus is on optimizing the SN-HP association.
It is essential to recognize that by selecting a smaller number
of potential HPs for data collection, we can reduce the
UAVs’ flight time, thus ensuring the freshness of the SNs’
information while avoiding unnecessary energy expenditure.
Consequently, we choose the optimized solution for SN-HP
association that minimizes the activation of HPs as the
solution to Problem (11).
Specifically, our approach involves identifying a set of

potential HPs through graph theory. Subsequently, we refine
this set by selecting a subset of these candidates to ensure
comprehensive coverage of all N SNs, establishing the
corresponding SN-HP association.

(1) We first construct a maximal independent set (MIS) of
the SNs’ neighborhood areas (Line 3). Specifically, the sets
of unmarked and marked SNs are initialized as Iun = V and
Imk = ∅, respectively. One SN vn is randomly selected from
the set Iun, and is marked and added to the set Imk . Then, the
SNs with their neighborhood areasNj (vj ∈ Iun) overlapping
with the neighborhood area Nn are deleted from the set Iun.
This procedure is repeated till the set Iun becomes empty.
The neighborhood areas of the SNs in Imk are disjoint and
constitute a maximal independent set [27], as plotted in bold
in Fig. 3(b).

(2) Next, we find a minimum spanning tree (MST) Itree in
the graphG = (V, ϵ) (Line 4). Using classic algorithms, such
as Prim’s algorithm, we can found anMST Itree that connects
the N SNs with N − 1 edges [27]. An exemplar MST Itree is
plotted in Fig. 3(c), where the vertices represent the SNs and
the edges in Itree are drawn in red lines.

(3) Last, we select the intersections of the edges in Itree
and the neighborhood boundaries of the marked SNs in Imk
as candidate HPs (Line 5), as shown in Fig. 3(d).
By applying the above three steps, we find a set of

candidate HPs, and the relationship between the candidate
HPs and the SNs is determined. As shown in Fig. 3, each
SN could be covered by several candidate HPs. For example,
SN v2 can be visited from either c2 or c3, and all the six SNs
can be covered by candidate HPs {c1, c3, c4, c5} or {c1, c2,
c4, c5}. However, it is enough for one UAV to collect data
from each SN at one HP. Hence, it is possible to prune out
some of the candidate HPs to save energy and flight time for
the UAVs.
The number of candidate HPs is denoted by Lc. Let bn,l

be a binary indicator specifying whether SN vn is covered by
the candidate HP cl . We have bn,l = 1, if candidate HP cl
is in the neighborhood area of SN vn. Otherwise, bn,l = 0.
To minimize the number of HPs while providing coverage
to all the SNs, we formulate a linear integer programming
problem as follows:

min
ζn,l ,Cl

Lc∑
l=1

Cl

s.t.


Lc∑
l=1

ζn,lbn,l = 1, ∀n, (a)

ζn,l ≤ Cl, ∀n, l, (b)
ζn,l,Cl ∈ {0, 1}, ∀n, l, (c)

(12)

where Cl is a binary variable indicating whether HP cl
is activated. The first constraint (12.a) means each SN is
associated with one single HP. The second constraint (12.b)
makes sure that each HP cl is able to provide coverage
for some SN vn only when it is activated, i.e., Cl = 1.
The third constraint (12.c) points out the binary variables
{ζn,l} and {Cl}. By solving the problem (12), we obtain the
optimal variables {C∗

l } and {ζ ∗
n,l}. Then, the candidate HPs

with C∗
l = 0 are removed. Thus, L =

∑Lc
l=1 C

∗
l HPs are

determined. The optimal SN-HP association ζ ∗
= [ζ ∗

n,l] is
achieved accordingly.
However, it is not easy to solve the integer programming

problem (12) when the number of SNs and that of candidate
HPs are very large. Taking into account that one SN is
associated to one single HP, we would like to select the
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activated HPs from the candidates greedily (Line 5-Line 11).
Initially, we set V ′

= V and C∗
= ∅. The HP covering

a maximum number of SNs is selected from the set of
candidates, i.e., cl = argmaxcl∈C

∑
vn∈V ′ bn,l . By checking

the SNs in the set V ′, i.e., bn,l = 1 (vn ∈ V ′), we find the SNs
covered by this HP, and set the SN-HP association variable as
ζ ∗
n,l = 1 for these SNs. Then, the HP is removed from the set
of candidates C and its associated SNs are removed from the
set V ′, respectively. This procedure repeats till all the SNs are
checked, i.e., V ′

= ∅. The above procedures are summarized
in Algorithm 1, where the number of the selected HPs,
and the SN-HP association can be optimized. By applying
Algorithm 1, we get L activated HPs with their coordinates,
and the SN-HP association. The computational complexity of
Algorithm 1 is about O(N 2), since each step in HP selection
and pruning requires at mostN 2 scalar operations. Hence, this
algorithm is appropriate when the number of SNs N is quite
large.

Secondly, a kernel K-means [28] based algorithm is
designed to find the optimized HP-UAV association. The
main idea of kernel K-means is to map the input space to
a higher-dimensional feature space using a nonlinear kernel
function, and partition them by linear separators in the kernel
space [28]. Let mk denote the center of the k-th cluster in the
feature space. The cluster center mk is the best representative
of each cluster in the feature space, and can be calculated as

mk =

∑
cl∈Ck

8(sl) + 8(p0)

|Ck | + 1
, (13)

where 8(·) denote the nonlinear function. From [28], the
objective function of kernel K-means is defined as

J (ηl,k ) =

K∑
k=1

(
L∑
l=1

ηl,kD2
l,k + D2

0,k

)
, (14)

where Dl,k =∥ 8(sl) − mk ∥ is the distance between HP cl
and the cluster center mk in the feature space, and D0,k =∥

8(p0) −mk ∥ is the distance between mk and the data center
v0 in the feature space. By substituting the kernel function
κ(si, sj), we can further express the square of the distance as

D2
l,k =∥ 8(sl) − mk ∥

2
= κ(sl, sl) − 2κ(sl, shk ) + κ(shk , s

h
k ),

(15)

where shk is the coordinate of the center in the k-th cluster.
Among the popular examples, polynomial and Gaussian
kernel functions are widely applied.

The objective is to minimize the function J (ηl,k ) by
optimizing the HP-UAV association ηl,k gradually. In the first
iterationwith i = 0, the set of HPs C∗ is randomly divided into
K clusters and each cluster center mk (i) is calculated by (13).
Then, each HP is assigned to one of the clusters according to
the nearest neighbor principle, i.e.,

ηl,k (i) =

{
1, if Dl,k ≤ Dl,j, ∀k ̸= j
0, otherwise.

(16)

Algorithm 2 The Kernel K-Means Based HP-UAV Associa-
tion Algorithm for K UAVs
Require: The number of UAVs K , the set of HPs C∗, the

coordinates of the HPs {sl}, the coordinate of the data
center p0, and kernel function κ(·, ·).

1: Pick up K HPs from the set C∗ randomly and set them as
the initial cluster centers {shk (0)};

2: Set the iteration index i = 0, and calculate the cluster
centers in the feature space mk (i) = 8(shk (i));

3: repeat
4: Assign the association variable ηl,k (i) by (16);
5: Update the cluster centers in the kernel space mk (i)

by (13);
6: Increase the iteration index by one: i = i+ 1;
7: until The K cluster centers do not change.

Ensure: The HP-UAV association variable η∗
l,k and the

clustering result C∗
k .

In this way, the clustering result Ck (i) = {cl ∈

C∗
|ηl,k (i) = 1} is found, and the new cluster centers

{mk (i + 1)} are calculated. This iterative procedure con-
tinues till the cluster centers do not change any more.
The kernel K-means clustering based HP-UAV association
algorithm is presented in detail in Algorithm 2. Notice
that Algorithm 2 needs 2(N + 1)K extra operations to
calculate the distances between the (N + 1) nodes and the
K cluster centers in the 2-dimensional space. The overall
complexity of Algorithm 2 is about O((N + 1)K (Titer + 2))
scalar operations, where Titer is the maximum number of
iterations.

B. TRAJECTORY PLANNING FOR ENERGY-CONSTRAINED
UAVS
Note that, by applying Algorithms 1 and 2, we estab-
lish the SN-HP and HP-UAV associations after opti-
mizing HPs. However, the AoI performances are also
affected by the trajectory planning for the UAVs. More-
over, energy capacity of UAVs affects the trajectory
planning. As a result, we would like to find the age-
optimal trajectory for each UAV subject to its energy
capacity Emax .

In particular, the optimization problem (11) is reduced
to the following energy-constrained age-optimal trajectory
planning problem for each activated UAV ak (k = 1, . . . ,K ):

min
uk

Xk,ave(uk ) =
1

|Ṽk |

|C∗
k |∑

j=1

j∑
l=1

φkl

(
T kj +

dkj,(j+1)

Vk

)
+ T ko ,

s.t.

{
ek (uk ) ⩽ Emax ,
u′
k ∈ σ (C∗

k ).
(17)

Let u∗
k,ave denote the optimal solution to the problem (17),

which corresponds to the age-optimized trajectory of UAV
ak .
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1) CASE I
When the UAV’s energy capacity is sufficiently large, we do
not need to consider the energy constraint. As discussed in
[21] and [23], the UAV’s ave-AoI-optimal trajectory is a
stage-weighted shortest Hamiltonian path, when no energy
constraint is imposed. And the two age-optimal trajectories
can be found for eachUAVusing dynamic programming (DP)
or other appropriate methods.

The ave-AoI-optimal trajectories of UAV ak without
energy constraint are denoted by uk,ave. Then, we briefly
describe how to find uk,ave using the DPmethod. Let g(cl,Sk )
(cl /∈ Sk⊂C∗

k ) denote the minimum path cost when UAV ak
arrives at HP cl , flies across all the HPs in the set Sk exactly
once and goes back to the data center v0. To find the ave-AoI-
optimal trajectory, we calculate the minimum weighted path
cost g(cl,Sk ) iteratively as:

g(cl,Sk ) =


T kl + τ kl,0 + T ko , Sk = ∅,

min
cj∈Sk

{g(cj,Sk − {cj})+

(1 −
1

|Ṽk |

∑
ci∈Sk

φki )(T
k
l + τ kl,j)}, Sk ̸= ∅,

(18)

where τ kl,0 is the flight time from HP cl to the data center,
and T kl + τ kl,j is the time interval between the arrival at HP
cl and the arrival at HP cj ∈ Sk for UAV ak . Moreover,
1

|Ṽk |
∑

ci∈Sk φki is the ratio of the number of SNs covered by
the set of HPs Sk to the total number of SNs collected by
UAV ak . Accordingly, the average AoI of the SNs collected
by UAV ak is expressed as

Xk,ave(uk,ave) = min
cl∈Ck

g(cl, Ck − {cl}), (19)

where the path cost function is given by (18). Accordingly,
the ave-AoI-optimal trajectory uk,ave is obtained.

2) CASE II
From (10), the UAV’s energy consumption ek (uk ) depends
on the trajectory length when the flight velocity Vk is
fixed. A longer trajectory usually leads to more energy
consumption. As is known to us, the shortest trajectory of
one UAV is the solution to the Traveling Salesman Problem
(TSP), referred to the TSP trajectory denoted by uk,tsp. The
energy consumption spent on the longest TSP trajectory
can be used as an energy threshold calculated as eth =

maxk ek (uk,tsp). When the UAV’s energy capacity Emax is
greater than or equal to the threshold eth, there exists an
age-optimal flight trajectory for each UAV. Specifically,
if the UAV’s energy capacity satisfies eth ≤ Emax ≤

maxk ek (uk,max) or eth ≤ Emax ≤ maxk ek (uk,ave), we always
find an energy-constrained age-optimal trajectory for each
UAV using some intelligent search method like genetic
algorithm [23].

Algorithm 3 The Greedy Search Based Multi-UAV-Assisted
Data Collection Algorithm
Require: The network topology G = (V, ϵ), the number of

UAVs K = 1.
1: Find the SN-HP association via Algorithm 1.
2: Find the HP-UAV association via Algorithm 2.
3: Find the optimal Hamiltonian trajectory uk,hp using DP

or other appropriate methods, and calculate the energy
consumption ek (uk,hp);

4: Calculate the energy consumption of the UAV when
flying along the TSP trajectory eth;

5: if ek (uk,hp) ≤ Emax then
6: u∗

k,ave = uk,ave;
7: else if Emax ≥ eth then
8: Find a trajectory for each UAV by genetic algorithm;
9: else if Emax < eth then
10: No feasible solution exists and jump to line 2 withK =

K + 1;
11: end if
Ensure: The SN-HP and HP-UAV associations, the trajec-

tory of each UAV, and SNs’ average AoI.

3) CASE III
When the UAV’s energy capacity falls below
the energy threshold, such as Emax < eth, it
becomes impossible to identify any feasible trajectory
that complies with the energy constraint. In simpler
terms, the optimal solution to Problem (17) ceases to
exist.

As evident in Case III above, it is often unfeasible to
find solutions when each UAV is energy-constrained, unless
more UAVs are engaged in data collection. Consequently,
we introduce a greedy search method to optimize the
activation of UAVs. Specifically, a new UAV is activated in
response to Case III, and this process iterates until either all
the candidate UAVs are activated or a feasible solution to
Problem (11) exists. In summary, the greedy search based
multi-UAV-assisted data collection algorithm is described in
Algorithm 3.

V. SIMULATION RESULTS
In this section, we present simulation results to demonstrate
the performances of our proposed multi-UAV aided data
collection scheme. Utilizing the widely employed software,
Matlab 2012, we conducted comprehensive simulations. In a
WSN, N = 80 SNs are randomly located in a bounded
area of size 1000m×1000m, and the data center is located
at the origin (0, 0). The coverage radius r of each SN is
defined as 40m unless otherwise specified. The noise-plus-
interference power is set to be −100dbm. Similar to [21]
and [26], the major simulation parameters are presented
in Table 1.
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TABLE 1. Major simulation parameters.

FIGURE 4. The AoI performance vs. the number of UAVs with different
data collection strategies.

A. PERFORMANCE COMPARISON WITH CONVENTIONAL
STRATEGIES
To demonstrate the benefits of our proposed strategy,
we compare our work with the state-of-art strategy proposed
in [22]. In [22], the locations of the HPs and the SN-HP
association are determined based on the affinity propagation
based clustering algorithm, and the HP-UAV association is
conducted through K-means clustering, then the trajectory
planning is designed via an ant colony algorithm. From
Fig. 4, the SNs’ average AoI decreases as the number of
UAVs grows, and our proposed algorithm outperforms the
algorithm in [22]. This is because our proposed scheme
can utilize the overlapped areas effectively with the help of
graph theory and optimization approaches. Besides, when
the SN’s communication ranges are enlarged from 20 meters
to 60 meters, the improvement of our proposed scheme is
more obvious. This is because more overlapped areas can
be utilized when the communication ranges are enlarged to
reduce the number of HPs, thereby striking well balance
between the SNs’ data transmission time and the UAV’s flight
time.

B. THE IMPACT OF THE SN-HP ASSOCIATION
In Fig. 5, we plot the AoI and energy consumption curves
for different SN-HP association schemes. In this experiment,

FIGURE 5. The AoI and energy consumption performances vs. the number
of UAVs with different SN-HP association methods.

we implement Algorithm 1 to find appropriate SN-HP asso-
ciations, divided into two key parts: 1) Selection of candidate
HPs; and 2) HP pruning. For comparison, we introduce the
one-to-one association scheme which selects one single HP
for each SN. To highlight the significance of HP pruning in
the SN-HP association process, we further compare two HP
pruning methods: the greedy HP pruning approach employed
in Algorithm 1 and the exact HP pruning achieved by solving
the ILP problem (11). This comparison is made against
the approach that involves no HP pruning. Subsequently,
the HP-UAV associations and ave-AoI-UAV trajectories are
determined following the procedures outlined in Algorithm 3.
As shown in this figure, the SNs’ average AoI and the energy
consumption per UAV decreases significantly when more
UAVs are dispatched to collect data, since each UAV flies
along a much shorter trajectory. Moreover, from Fig. 5(a) and
Fig. 5(b), our proposed SN-HP association scheme performs
the best, and the one-to-one association scheme achieves the
worst performance in terms of the SNs’ average AoI and
energy consumption per UAV. Hence, it is important to select
as few HPs as possible and establish the SN-HP association
appropriately to save the flight time and energy for each UAV.
Meanwhile, we can see that our proposed scheme achieves
nearly the same AoI and energy consumption performance as
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FIGURE 6. The AoI performance vs. the radius of each SN with different
number of UAVs.

TABLE 2. Kernel functions.

‘‘with HP pruning by ILP (12)’’. The two SN-HP association
schemes with HP pruning perform much better than the
scheme without HP pruning. It means that HP pruning helps
to shorten the flight trajectory of each UAV and is necessary
to improve the system performance.

The SN-HP association is influenced by the coverage
radius of each SN. A larger radius reduces the number of
HPs required to cover all SNs. In Fig. 6, we illustrate the
average AoI of SNs when our proposed scheme is applied
with varying SN coverage radii. As each SN’s radius expands,
more SNs are associatedwith a singleHP, resulting in reduced
flight time for each UAV but increased transmission time
for each SN. Consequently, as a weighted sum of SNs’
transmission time and UAV flight time, the average AoIs
of SNs gradually decrease with increased radii for any K
UAVs, as depicted in Fig. 6. Additionally, we note that
the communication range of each SN notably impacts AoI
performance, particularly when only one UAV is utilized
(K = 1). This discrepancy arises from the significant
reduction in the UAV’s flight trajectory length and flight time
when fewer HPs are involved. This is due to the substantial
reduction in the length of the flight trajectory (or flight time)
of the UAV when fewer HPs are involved. In contrast, the
reduction in trajectory length (or flight time) for each UAV
is not as significant when multiple UAVs are utilized (i.e.,
K > 1).

C. THE IMPACT OF THE HP-UAV ASSOCIATION
In Fig. 7, we compare the kernel K-means method with the
traditional K-means method, when different kernel functions
are applied. In this experiment, Algorithm 2 is employed to
determine HP-UAV associations utilizing kernel K-means.
To facilitate comparison, we introduce three kernel functions:

FIGURE 7. The AoIs performances vs. the number of UAVs with different
clustering methods.

FIGURE 8. The UAV trajectories for N = 80 and K = 4 with different
trajectory planning methods.

Linear, Polynomial, and Radial Basis Function (RBF), with
their respective expressions presented in Table 2. Similar to
Fig. 5, the SNs’ average AoI decreases significantly when
more UAVs are employed regardless of whether K-means
or kernel K-means is applied. From Fig. 7, among the three
kernel functions, the kernel K-means clustering method with
RBF kernel achieves the best AoI performance for any K
(K > 1)UAVs except the single-UAV scenario.WhenK = 1,
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FIGURE 9. The AoI performance and the required number of UAVs vs.
energy capacity with different trajectory planning methods.

there is no need of conducting the HP-UAV association using
the clustering method. One can see that our proposed scheme
achieves a relatively higher average AoI when the polynomial
and linear kernels are applied. And the performance gaps
between the RBF kernel and polynomial and linear kernels
become larger as the number of UAVs K increases. It is also
interesting to see that the simple K-means method performs
quite well, comparable to the kernel K-means method with
RBF kernel.

D. ENERGY-CONSTRAINED TRAJECTORY PLANNING
In Fig. 8, we present the UAV trajectories with different
trajectory planning methods. The term ‘‘AoI-optimal trajec-
tory’’ refers to our proposed scheme that conducts trajectory
planning using Algorithm 3, while ‘‘TSP trajectory’’ utilizes
trajectory planning derived from the Traveling Salesman
Problem solution. In this figure, the randomly distributed SNs
are represented by the triangles and their associated HPs are
marked by the small circles. Compared to the number of SNs,
the number of HPs is significantly reduced by HP selection
and pruning especially in a denser WSN. All the HPs are
evenly classified into K = 4 clusters and each cluster of HPs
is visited by one UAV. By trajectory planning, both the TSP
trajectory and the ave-AoI-optimal trajectory are found for
each UAV as plotted in Fig. 8 (a) and Fig.8 (b).

In Fig. 9, we present the system performance in relation to
the energy capacity of each UAV. It is observed that the SNs’
average AoIs increase monotonically with the increase of the
energy capacity Emax , as shown in Fig. 9(a), respectively.
Meanwhile, less UAVs are required in data collection as the
energy capacity Emax is enlarged, as plotted in Fig. 9(b). This
is due to the fact that each UAV carrying more energy is able
to collect from more SNs distributed in the WSN. Hence,
it spends more time on transmission and flight along a longer
trajectory, which induces a higher average AoI. However,
to keep information freshness, more UAVs should take part
in the data collection task to achieve a smaller AoI. From
Fig. 8 (a) and 8 (b), ‘‘TSP trajectory’’ has a shorter flight
trajectory compared with ‘‘Ave-optimal trajectory’’. While
from Fig. 9(a), ‘‘TSP trajectory’’ has a larger average AoI
than the ‘‘Ave-optimal trajectory’’. This means that a shorter
flight trajectory does not always result in an improved AoI
performance. From Fig. 9(b), the shortest TSP trajectory
consumes the least amount of energy.

VI. CONCLUSION
In this paper, we investigated the AoI-optimal data collection
problem for multi-UAV-enabled WSNs, taking into account
finite energy capacity of each UAV. To improve the AoI
performance, we made efforts to optimize the HPs’ locations,
the SN-HP and HP-UAV associations, and AoI-optimal
trajectory for each UAV so as to balance the data collection
tasks between multiple UAVs. The efficient data collection
problem is decomposed into two key components. Firstly,
we employ graph theory to determine the locations of
HPs and establish the SN-HP associations, and employ
kernel K-means clustering to categorize all HPs into K
clusters. Secondly, we optimize the trajectory for each
UAV within a cluster of HPs to minimize the average
AoI of SNs, all while adhering to energy constraints of
UAVs. Simulation results confirmed the correctness of our
proposed algorithm, and showed that with finite energy
supply, our proposed multi-UAV-enabled data collection
scheme can achieve significant AoI performance gains.While
our adoption of the rotary-wing UAV model is simple,
it provides practical means to evaluate SNs’ average AoI and
UAVs’ energy consumption, facilitating the development of
an efficient multi-UAV-aided fresh data collection scheme.
Future investigations will delve into more sophisticated
multi-UAV-assisted data collection schemes, accounting for
more intricate UAV dynamics and characteristics.
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