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ABSTRACT In this study, we propose an automated system for measuring the size of strawberries and
predicting their weight using AI technology. The system combines computer vision techniques with LiDAR
sensor data to accurately estimate the dimensions of strawberries and infer their weight. By integrating
deep learning models, such as HRNet for keypoint detection, and leveraging the capabilities of LiDAR
sensors, we minimize human intervention and achieve precise size measurement. The relative errors for the
width and height of the strawberries are 3.71% and 5.42%, respectively, with the width exhibiting a lower
error rate. The standard deviation for the width and height of the strawberries are 0.19% and 0.24%, this
indicates that the individual strawberries had very low error rates in terms of their measurements for the width
and height. Weight prediction was performed through regression analysis with width and height estimation.
Experimental results demonstrate that our approach enables accurate weight prediction with a relative error
of 10.3%. This automated technology holds great potential for strawberry harvesting and classification tasks,
facilitating the automation of these processes.

INDEX TERMS Deep learning, strawberry size, LiDAR, point cloud.

I. INTRODUCTION
The increasing global climate change, coupled with a
decrease in agricultural population and aging issues, has
heightened the necessity for the adoption of AI technology
in the agricultural field [1]. As a solution to address the
challenges in global agricultural activities, the development
of smart farming technologies incorporating big data, infor-
mation and communication technology (ICT), and robotic
automation has gained prominence [2], [3]. One of the
necessary steps for agricultural automation technology is
the development of techniques to evaluate the external
quality of fruits and vegetables, enabling accurate harvesting
and sorting based on precise quality standards. Typically,
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the external quality of fruits and vegetables is assessed
considering factors such as size, color, texture, shape, and
visual defects [4].

Strawberries are among the most popular and valuable
fruits in terms of taste and nutritional value, cultivated
and extensively traded not only in the United States and
certain European countries but also in East Asian nations like
South Korea, Japan, and China, despite their cold climate.
Strawberries are generally delicate in texture and require
swift harvesting and sorting processes to prevent quality
degradation caused by rapid overripening. For domestic
production, sales, and exportation of strawberries, growers
need to grade the harvested strawberries before packaging.
The quality of strawberries varies based on criteria such
as ripeness, shape, size, and flavor, traditionally assessed
manually by farmworkers. However, manual grading through
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visual inspection is labor-intensive, time-consuming, and
may not guarantee consistent grading. Moreover, the multi-
stage process involved in manual grading can lead to physical
damage to strawberries and result in economic losses during
exportation. Therefore, computer vision provides a means to
perform these tasks swiftly and automatically [5].

A computer vision-based automated strawberry grading
system can offer a solution to overcome such labor-intensive
and time-consuming processes [6]. However, generating
more convenient and reliable results with higher accuracy
poses a significant challenge for automated grading systems.
Previous studies on strawberry recognition based on com-
puter vision have developed strawberry sorting systems using
machine vision techniques.

Traditional methods for estimating the shape and size
of strawberries have often relied on algorithms based on
morphology, color, thresholding, and geometric approaches.
However, research depending on these geometric or color-
based functions often leads to inaccurate results and is
constrained to approximate measurements from strictly
controlled heights [7]. To address these limitations, our
study leveraged advanced fruit detection algorithms using
deep learning, notably the YOLO (You Only Look Once)
algorithm. YOLO has evolved up to version 8 and has
proven effective not only for fruit detection but also for
accurate identification [8]. Additionally, Tang et al. enhanced
the YOLOv4 small model, detecting fruits under varying
lighting conditions, and displaying substantial robustness
and stability even under significant lighting changes [9].
YOLO v7 has shown superior performance in detecting
Camellia tree fruits in complex field scenes compared to
previous versions [10]. Recent research efforts have merged
state-of-the-art deep learning techniques with conventional
image processing algorithms for real-time fruit detection and
accurate fruit counting in practical field scenarios. Notably,
a study achieved a high accuracy of 93.2% in counting the
total bunches of bananas [11]. Despite the advancements in
fruit detection and recognition technologies, research into
precise size measurements and weight predictions for the
purpose of standardization in harvesting and classification
remains an ongoing challenge. This challenge is especially
apparent for small fruits like strawberries, where accurate size
and weight predictions are essential for classification [12].
This paper proposes a novel method for automating

strawberry size measurement using a mobile device equipped
with both a camera and LiDAR sensor, aiming to enhance
harvesting value. The LiDAR sensor captures point cloud
data representing spatial information of the real world in
three dimensions [13]. Point cloud data consists of points
with distance (referred to as depth) information from the
LIDAR sensor, allowing calculation of distances between
specific points in the scanned space. Moreover, the recent
prevalence of mobile devices with integrated LiDAR sensors
and cameras enables simultaneous scanning of the real world

in both two-dimensional (2D) and three-dimensional (3D)
data.

As shown in Table 1, Research involving the implemen-
tation of geometric and radiometric features in 3D spatial
analysis has been conducted to detect apples, comprehend
the seasonal growth process of apples, and recognize apple
shapes and sizes [14]. Additionally, there have been ongoing
efforts to monitor the growth of strawberries. This research
focuses on obtaining multi-temporal 3D point cloud data
for individual strawberry canopies. This data allows for the
extraction of point counts per entity, height, ground projection
area, and canopy volume profiles [15]. However, the uti-
lization of LIDAR sensors for automated size measurement
is still in its early stages, and its practical applicability is
currently limited.

Recent advancements have led to the ubiquity of mobile
devices equipped with LiDAR sensors and cameras, allowing
the simultaneous scanning of the real world in both 2D and
3D data. Our research successfully utilized this technology
to detect measurement points on strawberries using the
obtained 3D point cloud data and depth data. Addition-
ally, we calculated the distances between these points.
Our approach successfully combines the strengths of deep
learning models and point cloud data to accurately measure
strawberry size to the extent of manual measurements.
Furthermore, we have confirmed that weight prediction,
which serves as the classification criterion based on the
measured size, is feasible within an acceptable margin of
error.

This research proposes the followingmethods to accurately
recognize individual strawberries and automate size and
weight predictions. The approach is as follows:

(1) Easily obtain 2D RGB, 3D depth, and point cloud data
of strawberries through the mobile’s built-in LiDAR sensor
and camera, even under non-stringent conditions.

(2) Utilize deep learning algorithms to rapidly recognize
the four key points of strawberries using the acquired image
information.

(3) Calculate the distances between the four key points,
enabling accurate measurement of strawberry size without
rigid constraints on measurement distances, leveraging 3D
depth and point cloud data.

(4) Predict the weight of strawberries without causing spe-
cial damage or manipulation based on precise strawberry size
measurements. Contribute to the automation of strawberry
classification by aligning results within the error range of
classification criteria.

In the next section, we introduce how our team minimizes
human intervention by leveraging the deep learning algorithm
and advantages of the LiDAR sensor. Additionally, in Sec-
tion III, we provide details about the proposed method, and
in Section IV, we describe the experiments conducted to
verify the accuracy, acceptable error range, and clarity of the
proposed approach.
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TABLE 1. Size measurement techniques and methods in fruits: A comparative analysis of research cases in apples, strawberries.

II. RELATED WORK
In this field, we examine the proposed method and limitations
of previous research and introduce the utilization of computer
vision deep learning techniques and LiDAR sensors as a
solution to overcome these limitations.

A. AUTOMATIC STRAWBERRY SIZE MEASUREMENT AND
WEIGHT ESTIMATION
Traditionally, strawberry size measurement for harvesting
and classification has been conducted visually or by directly
weighing the strawberries using scales. With the advance-
ment of AI technologies, automatic fruit detection and assess-
ment from 2D RGB images have been developed, enabling
the determination of harvesting readiness [16]. However,
studies relying solely on 2D images have limitations as they
cannot preserve physical distance information (e.g., cm, in)
in the real world. Depending only on 2D images necessitates
strict workbench environments due to the conversion of
distances from pixel level to actual measurements, making
it highly impractical. Conventional computer vision (CV)
approaches utilizing morphological, color-based, threshold-
ing, and geometric methods have demonstrated excellent
performance.

The research group (Bato et al. andNagata et al.) developed
a strawberry classification system using machine vision
technology and defined the shape and size of strawberries
for automatic classification based on the t-test method
by calculating strawberry image area and centroid [17],
[18]. A volume intersection method for reconstructing the
three-dimensional shape of strawberries was proposed for
automatic grading and packaging [19]. It provided a square
root mean square error between 0.5mm and 2mm when
compared to actual data measured with a laser scanner. Lim-
ing and Yanchao suggested an image processing algorithm
for estimating strawberry shape and size using the split-line
method, which requires centroid information. Strawberries
were classified into four categories based on their shape
for an automated strawberry grading system. The maturity
grading accuracy was 88.8%, and the shape classification
accuracy was estimated to be over 90% [20]. They also used
elementary geometry to capture four key points for estimating
the diameter and length of individual strawberries. As a result,
the accuracy of strawberry classification was around 94-97%,
the diameter was around 94%, and the length was predicted
with an accuracy of 89-93% [21]. However, the inability
to generalize and susceptibility to noise are weaknesses

of classical computer vision approaches. CV engineers
need to manually design features, which can become
cumbersome and infeasible as the variability of the data
increases [7].
To overcome these limitations, recent research employing

state-of-the-art deep learning (DL) techniques is actively pro-
gressing. State-of-the-art methods employing deep learning
(DL), such as the SOTA Convolutional Neural Networks
(CNN), have demonstrated superiority in tasks such as
segmentation [22] and keypoint detection [23]. The spectral
features of CNNs have also been utilized for strawberry
quality or ripeness detection, and CNN models have proven
to performwell in image-related tasks like classification [24].
Furthermore, Mask R-CNN has been effective for pixel-
level understanding (semantic segmentation) of images and
has been applied to determine strawberry shape [25]. The
Strawberry R-CNNmodel achieved amean average precision
(mAP) of 0.9019 for ripe strawberries and 0.8447 for
unripe strawberries, with an overall mAP of 0.8733 [26].
Additionally, the superiority of the YOLO algorithm as a
tool for automated fruit detection and harvesting continues
to be explored. Even in the context of strawberries, the
use of YOLO algorithms has proven effective, with the
proposal of the DSE-YOLO algorithm [27] to detect various
growth stages, achieving a mean average precision (mAP)
of 86.58. Despite this ongoing progress in automating
strawberry recognition and harvesting through deep learning
(DL) in complex field conditions, research on precise size
measurement and weight prediction for the standardization
of the harvesting and classification processes remains
relatively scarce. Notably, automatic size estimation has
been a focus of various research efforts in recent years,
predominantly applied to larger fruits like apples, mangoes,
oranges, and grapes, with limited application to smaller-
sized strawberries [28]. He et al. developed a low-cost
Multi-View Stereo (MVS) imaging system for strawberry
size measurement, capturing 360◦ data around the target
strawberries. This method derived 3D point clouds from the
samples, which were then analyzed using custom software,
demonstrating a high level of agreement compared to
manual measurements. However, this approach still requires
stringent environmental conditions for strawberry fixation
and necessitates fitting Oriented Bounding Boxes (OBB) to
measure relative size [29]. Estimating strawberry weight is
proportional to size, shape, and density. Utilizing point clouds
and RGB+depth-based state-of-the-art neural networks,

VOLUME 12, 2024 14159



H. Jeong et al.: Automated Technology for Strawberry Size Measurement and Weight Prediction

FIGURE 1. Illustrates the three-step process for strawberry size and weight prediction: (a) Strawberry images and point clouds were collected
simultaneously using a mobile device equipped with a camera and LiDAR sensor. (b) The deep learning-based point detector detected the 2D coordinates
from the photos of the measurement points. (c) Using a single captured image, depth map, and point cloud data, the size was calculated. The points pa in
the depth map are in 2D coordinates (cxa, cya) that correspond to the RGB image, and each point has a distance da from the sensor. Finally, the program
calculates the size dāb with da and db, and the angle rab between two points. (d) Weight prediction was performed based on the calculated size.

we have demonstrated weight estimation with approximately
80% accuracy [30].

In our research, we employed YOLOv6 for strawberry
detection and HRNet (High-Resolution Network) to estimate
keypoints on strawberries. Leveraging the LiDAR sensor
integrated into mobile devices, our approach achieved precise
automatic sizemeasurements without spatial constraints. Fur-
thermore, based on precise size measurements, we confirmed
the possibility of highly accurate weight estimation.

B. DEEP LEARNING-BASED KEYPOINT ESTIMATION
MODEL
To train a deep learning model for detecting measurement
points, numerous strawberry images annotated with pixel-
level coordinates of the measurement points are required.
To achieve this, we captured individual images of 1010 straw-
berries. In these strawberry images, we added coordinates
for four keypoints: the endpoints of the longest equatorial
axis, the height direction, and the strawberry’s own vertices,
regardless of whether the calyx was open or closed.
We used these 4 keypoints to train our deep learning model.
Regarding the keypoint estimation problem, HRNet (High-
Resolution Network) is a state-of-the-art deep neural network
architecture that has proven its effectiveness in human pose
estimation tasks [31]. HRNet offers advantages over previous
architectures [32], [33], [34]. Unlike previous approaches that

used low-level resolution to restore high-level representation,
HRNet connects high-resolution sub-networks in parallel
instead of sequentially, efficiently preserving high-level rep-
resentations. Furthermore, this architecture employs iterative
multi-scale fusion, which maintains both low-level and high-
level representations at similar scales, unlike previous fusion
schemes that simply aggregated the two representations.
The high-resolution representations learned in HRNet are
spatially accurate. Inspired by this approach, our team
adopted anHRNet-based keypoint detectionmodel as the size
adjustment point detector.

C. LIDAR APPLICATION
With the advancement and widespread adoption of LiDAR
devices, various applications and research utilizing LiDAR
technology have emerged in our daily lives [35], [36],
[37]. LiDAR technology has also been employed in the
recognition and size measurement of plant growth and fruit
development [14], [15]. In these studies, LiDAR technology
enables the conversion of distance into spatial information of
the real world. It now allows stable and accuratemeasurement
of distances close to the actual world and provides reliable
data without significant constraints on height differences.
However, there are still some challenges.

(1) Human intervention is required to select points for
distance measurement.
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(2) In mobile devices, slight movements during spatial
scanning can lead to measurement errors.

Considering these issues, we designed an approach to
minimize human errors by automating the following two
procedures. First, the sizing point detector identifies sizing
points without human intervention. Second, to eliminate cal-
culation errors caused by hand movements during strawberry
scanning, we simultaneously captured images and point cloud
data.

III. PROPOSED METHOD
The objective of this study is to demonstrate the accurate
measurement of strawberry width and height using a device
equipped with a camera and LiDAR sensor, based on a single
image and point cloud data. Furthermore, we enable the
prediction of individual strawberry weights based on these
length measurements.

The length measurement can be divided into two steps.
Firstly, individual strawberries are automatically recognized
using a deep learning model and four key points are
identified. Then, the distance between the equatorial and
vertical axis points is calculated based on these four key
points. As step-by-step solutions, our team utilizes the
YOLOv6 [38] deep learning model for strawberry detection
and applies an HRNet-based keypoint estimation model to
find the pixel coordinates of each sizing point in the 2D
image. By aligning the coordinates of the image, depth map,
and point cloud, we accurately measure the length.

First, a mobile device equipped with a camera and
LiDAR sensor is used to capture strawberries with a white
background, categorized by size. As shown in Figure 1a,
a dataset is generated consisting of images, depth maps,
and point cloud data through a single capture. Next, a deep
learning-based point detector, as illustrated in Figure 1b,
detects the positions of measurement points representing
the contour of strawberries in the 2D image. A computer
vision deep learning model is employed as a measurement
point detector to determine the pixel coordinates of multiple
measurement points. Finally, the size is calculated based on
the depth information from the point cloud. The depth map
represents the depth information of each point in the 2D
coordinates, similar to the 2D image. As shown in Figure 1c,
each detected point from the previous step is mapped to a
point in the point cloud, and a distance from the LiDAR
sensor is assigned. Using the actual distance information
between the device and scanned space, the real size can be
determined using depth and inclusion angles. Based on this
size, automatically calculated weight is predicted, aiming
to achieve automation in strawberry harvesting and sorting
tasks.

A. HRNET-BASED SIZING POINT DETECTOR
We applied the HRNet [31] based keypoint estimation model
as our sizing point detector. HRNet demonstrates excellent
overall performance by simultaneously connecting multi-
resolution subnetworks while maintaining high-resolution

representations around the key points in the image [39]. This
feature has been utilized in human pose estimation models
and is also suitable for accurately detecting keypoints in
simpler objects like strawberries.

The structure of our Point Detector is based on HRNet-
W48. W48 represents the width of the subnetworks in the
third stage, relatively larger than another variant of HRNet,
HRNet-W32. The network architecture consists of four
parallel stages of subnetworks, and as a result, the parallel
multi-resolution subnetworks processmaintains the same res-
olution representations across different stages of the network.
All parallel subnetworks iteratively exchange information
with each other, allowing bidirectional information exchange
and ensuring rich representations [31].

In the final stage, the high-resolution output of the last
stage estimates the heatmaps of each keypoint. The loss is
calculated as the Euclidean distance (d2i ) between the ground
truth coordinates (cxi, cyi) and the estimated coordinates
( ˜cxi, ˜cyi) of the keypoints [40].

Mean Squared Error =
1
n

n∑
i=1

d2i

=
1
n

n∑
i=1

√
(cxi − ˜cxi)2 + (cyi − ˜cyi)2

(1)

The loss function utilizes themean squared error as follows
Equation 1, which aims to find the shortest distance between
themeasured coordinates of the 4 keypoints on the strawberry
and the equatorial (width) and vertical axes (height). The
keypoint detection results for the strawberries were as
follows: As trained, our model successfully recognized
2 keypoints along the longest equatorial axis of the strawberry
in the images. Additionally, irrespective of the presence of
the calyx, the model accurately detected the coordinates
of the strawberry’s vertices along the height direction.
In total, the model detected 4 keypoints.

B. PHYSICAL DISTANCE CALCULATION
To calculate the actual size, spatial information correspond-
ing to the detected four keypoints needs to be provided.
For this process, we mapped the depth map captured from
the same viewpoint and angle as the 2D image, as shown
in Figure 1. The depth map contains distance information
recorded by a LiDAR sensor (ToF sensor with 10µmpitch px,
Sony Group Corp) that records the distance between the real
world and the device at each point. In particular, the LiDAR
sensor embedded in the iPad Pro allows for rapid acquisition
of 3D point clouds and, due to its cost-effectiveness
compared to standard surveying equipment, portability, and
convenience in data collection and processing, it can be
easily employed for strawberry data collection [41], [42].
We captured the strawberry image, depth map, and point
cloud simultaneously using an iPad Pro device (11-inch
3rd generation, Apple Inc.) equipped with a camera and
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FIGURE 2. The individual strawberry sizes and weights are manually measured using different methods. The length is measured manually using a
ruler (mm), while the weight is measured individually using a weighing scale (g). The strawberries are classified into three categories based on their
weights. M-size strawberries are classified as those weighing between >12 g to 17 g, L-size strawberries weigh between >17 g to 25 g, and
Extra-L-size strawberries weigh above >25 g. All three categories of strawberries have a minimum length of 25mm along the equatorial axis, meeting
the criteria for the ‘‘Extra’’ class according to USDA standards.

TABLE 2. The dataset consists of a total of 1010 individual strawberries captured based on three weight criteria. The dataset includes 2D RGB images,
depth maps, and point clouds for each strawberry. The equatorial width and height of the strawberries were measured manually using a ruler (mm), while
the weight of each strawberry was individually measured using a weighing scale (g).

LiDAR sensor. The camera and LiDAR sensor capture
simultaneously from the same region and viewpoint, enabling
accurate mapping of the image and depth map without any
errors. In the final step, the target size is calculated using
the distance between the two detected points and the angle
between the two points, as shown in Figure 1(d) [43], [44].
Each point from the LiDAR sensor is projected at equal
angular intervals. Therefore, the angle between two points
is equal to the unit angle multiplied by the point spacing
between the two points [40]. In this case, dāb in Equation 2
is the straight-line distance between the two points, similar to
the manual length measurement method using a ruler.

dāb =

√
(db sin θab)2 + (da − db cos θab)2 (2)

The dāb means distance between point a and point b, da
means distance of point a from a LiDAR sensor, and θab
means angle between point a and point b.

C. WEIGHT ESTIMATION
The weight of the strawberry is proportional to its size,
density, and shape. Since the momentary density of the
strawberry varies depending on its sweetness and moisture
content, it cannot be inferred solely from the image. By uti-
lizing vision technology, accurate weight estimation without
causing damage to individual strawberries can minimize

the reclassification process and reduce the harvesting and
packaging steps. For weight estimation, the calculated
equatorial and vertical lengths obtained from the RGB
data, depth map, and point cloud were used in regression
analysis to estimate the weights through weight coefficient
estimation. The target for weight estimation was around 90%
accuracy, aiming to enable appropriate automatic sorting
without additional manual processing during harvesting [30],
[45], [46]. Actual weight information (g) was obtained for
each of the 1010 individual strawberries, and experiments
were conducted to evaluate how accurately the weight
could be estimated based on the predicted width and height
measurements along the equatorial axis.

IV. NUMERICAL EXPERIMENTS
A. DATASET
For the strawberry size measurement experiment, a total
of 1010 individual strawberry data were directly collected.
Among them, 70% of the data was used to train the
deep learning and point detection models for strawberry
recognition. Afterward, a random 30% (303 samples) of
the entire dataset comprising 1010 individual strawberry
data was used to train the strawberry’s keypoint detection
model. The model was trained to recognize four keypoints
of the strawberry, enabling the prediction of the width and
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height. The computer used for training had the following
specifications: CPU: Intel (R) Core (TM) i7-9800X CPU @
3.80GHz, GPU: Four NVIDIA 1080ti GPUs, and 128GB
of RAM. The training process took approximately 6 hours,
with 580 epochs set for training. A total of 707 images
were used for training and 303 images for validation.
Among these, 3 strawberries exhibited unclear keypoint
recognition, indicating that approximately 1% of keypoints
were not distinctly recognized. Consequently, statistical
values were derived from the remaining 300 data points. For
the purposes of this experiment, the individual strawberry
data was categorized as follows. Post-harvest, strawberries
typically undergo a repacking process based on their size.
The equatorial length (width) and weight are the primary
criteria for classification. According to the 2021 OECD
Strawberry International Standard, strawberries are classified
into ‘‘Extra’’ class, Class I, and Class II, with the size
regulation determined by the maximum diameter of the
equatorial cross-section. The minimum size is specified as
25mm for the ‘‘Extra’’ class and 18mm for Class I and
Class II. Additionally, to ensure the quality of each class,
the number of unsatisfactory strawberries or the weight-
based tolerance range should be maintained within 5%
for the ‘‘Extra’’ class and 10% for Class I and Class II.
Therefore, it is important for strawberries to be packed in
similar quantities within a weight error range of 5–10%.
In our experiment, we utilized the ‘Seolhyang’ variety of
strawberries, and based on the general criteria according to
the individual strawberry weight, we classified them into
three categories (Korea Agricultural Products Distribution
information: Kamis 2019). As shown in Figure 2, the M size
ranges from 12 g to less than 17 g, the L size ranges from
17 g to less than 25 g, and the Extra L size is 25 g or more.
We manually measured the size of each individual strawberry
in the equatorial and vertical directions, and the weight of
each individual strawberry was measured using a digital
scale. For data collection, each strawberry was placed on
white paper, and independent captures were taken using the
iPad Pro (A2228, Apple Inc., China). During data collection,
the strawberries were measured at a height of 10–20 cm
above a white background. the capture angle was adjusted
to ensure consistency between the manually measured length
and the length visible in the captured image. Table 2 provides
information on the collected dataset. The average width of the
1010 strawberries was found to be 34.1mm, with a standard
deviation of 4.44. Similarly, the average height was measured
as 40.4mm, with a standard deviation of 6.14. Furthermore,
the average weight of the strawberries was determined to be
20.8 g, with a standard deviation of 7.8.

B. EXPERIMENT RESULTS
The experimental results for strawberry size are presented
in Table 3, the average relative errors for width and height
size were (a) 3.71% and (b) 5.42% respectively. The average
relative error for weight was (c) 10.3%. The relative error
quantifies the difference between the measured and the actual

FIGURE 3. Out of a total of 1010 collected data points, 70% were used for
training the deep learning model for keypoint recognition, while
approximately 30% (303 samples) of the strawberries were randomly
selected for size prediction. Among these, 3 data points with keypoint
recognition errors were excluded, leaving a representation of the
distribution of 300 measured and predicted values.

length, as expressed by Equation3.

Relative error =
Absolute error
Actual size =

Actual size - Absolute error
Actual size

(3)

For M-sized strawberries (27 g–17 g), the mean absolute
error (MAE) for width was approximately 1.08mm, with a
relative error of about 3.4%. In contrast, L-sized strawberries
exhibited a width MAE of approximately 1.31mm and a
relative error of about 3.6%. The largest strawberries, Extra-
L-sized (25 g and above), showed a width MAE of 1.8mm
and a relative error of about 4.1%. It was observed that
as the size increased, there was a tendency for the error
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TABLE 3. Presents the results of the size estimation experiment. ‘Abs. Err.’, ‘Rel. Err.’, and ‘S.E.’ represent the abbreviations for absolute error, relative error,
and standard error, respectively. The relative errors for the Width and Height of the strawberries are (a) 3.71% and (b) 5.42%, with the Width exhibiting a
lower error rate. The average relative error for weight was (c) 10.3%.

rate to increase by around 0.7%. Regarding the height of
the strawberries, there was a total MAE of 2.1mm with
a relative error of 5.42%. This revealed a slight increase
in the error rate of approximately 1–2% compared to the
width, which could be attributed to the uncertainty of manual
measurements caused by differences in capturing angles
due to the three-dimensional shape of the strawberries.
Furthermore, the equatorial axis length exhibited a standard
deviation of 0.0019 (0.19%), while the height showed a
standard deviation of 0.0024 (0.24%), indicating consistent
and reliable results. The RootMean Square Error (RMSE) for
width estimation was 5.0%, and for height estimation, it was
6.8%, corresponding to an accuracy of approximately 95%
and 93.2%, respectively. These results demonstrate slightly
improved accuracy compared to previous studies utilizing 2D
images for width and height estimation [21].
In terms of classification criteria for strawberries, the

equatorial axis length plays a more crucial role, and in
weight prediction as well, more emphasis is placed on
the equatorial axis length. This results in an average
absolute discrepancy of approximately 1.3mm, which can
be considered highly accurate. However, there is a tendency
for the average relative error to be inflated by certain sizes
with relatively larger relative errors. This is attributed to the
discrepancy in recognizing the major axis during keypoint
detection and length prediction, introducing errors during
the actual measurement of strawberries. Nevertheless, despite
the presence of an average absolute discrepancy of only
approximately 1–2mm, it is evident that precise keypoint
recognition and length prediction can be achieved.

Figure3 in the graph represents data collected from
1010 images, with 70% used for deep learning-based
keypoint recognition and 30% (303 images) randomly
sampled for size prediction based on their respective sizes.
Among these, 3 images with keypoint recognition errors were
excluded, leaving 300 data points. It can be observed that the
measured values and predicted values are distributed without
significant errors. Some instances with larger errors were
present, occurring at a probability of less than 1–2%.

The estimation of strawberry weight was conducted based
on the average error of approximately 1.3mm in width (along
the equator axis) and 2.1mm in height (vertical axis), using
individual strawberry’s 2D RGB data, depth map, and point
cloud. Regression analysis was performed using the predicted
equatorial width and height values obtained from a total of
1010 data points. The regression equation derived from the

FIGURE 4. Some examples of size measurement results. Irrespective of
the status of the calyx, successful keypoint recognition was achieved,
facilitating precise size measurement.

calculated weights is as follows Equation 4.

Weight Estimation

= 0.8323 × width + 0.3719 × height + (−23.3061) (4)

Using this regression equation, the weight was predicted and
calculated for 30% (303 samples) of the data. Among these,
3 data points with keypoint recognition errors were excluded,
resulting in a dataset of 300 for analysis. According to
Table 3, for M-sized strawberries, an error of approximately
1.5 g MAE occurred, resulting in a relative error rate of about
10.3%. For L-sized strawberries, an error of approximately
1.6 g MAE occurred, with a relative error rate of 7.9%. For
Extra-L-sized strawberries, an error of about 4.0 g MAE was
observed, leading to a 14% relative error rate. The error rate
exceeding 10% in the Extra-L size is attributed to the lower
proportion of Extra-L size strawberries, which accounted for
23.7% of the dataset in this experiment as shown in Table 2.
On average, a relative error rate of 10.3% was observed,
which does not significantly deviate from the acceptable error
range of about 5–10% based on weight standards (OECD
International Strawberry Standards, 2021). Figure 4 displays
some examples of size measurement results. It is evident
that regardless of the status of the calyx, accurate keypoint
recognition was achieved for four points.
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TABLE 4. Comparison table with previous strawberry sizing methods. Because the conventional method derives the actual size from the image, all
environmental elements between the camera and the strawberry had to be tightly controlled. On the other hand, our method (using a LiDAR sensor) does
not require such a setup.

C. DISCUSSION
Our proposed method exhibited excellent precision and
tolerance performance with very low errors, as shown in
Tables 3. As demonstrated in Table 4, research utilizing
3D Depth and Point cloud data through LiDAR sensors
offers practical and substantial advantages compared to
methods that rely solely on 2D images [21], [29]. Regardless
of whether the sepals were open or closed, the keypoint
was accurately detected, and the size measurement was
successfully conducted. This demonstrates the robustness of
the proposed method in accurately measuring the size of
strawberries, irrespective of the state of the sepals. Thus, the
proposed method offers consistent performance regardless of
environmental variations or the condition of the strawberries,
providing reliable and stable measurements for strawberry
sizing. One of the key advantages of using LiDAR sensors
for strawberry size measurement and weight estimation is
that it does not require environmental control. In the past,
methods relying only on 2D images required meticulous
environmental control and camera calibration to map the
spatial information of each pixel [21]. The method that exclu-
sively utilizes 3D images also had limitations, as it required
fixing strawberries in strict environmental conditions and
measuring relative sizes by fitting Orienting bounding boxes
(OBB) [29]. To achieve this, careful consideration of all
components (such as the distance between strawberries and
the camera, camera lens angles and curvatures, lighting
setups, etc.) and designing the external environment were
necessary for strawberry classification. However, such pre-
cise environmental control is not suitable for small-scale
businesses or easy applications. In contrast, the proposed
method does not technologically require such constraints.
The operator measuring the size does not need to know
information such as camera specifications or the distance
to the target. LiDAR sensors [36] can record the distance

from the viewpoint to the target space with an accuracy
of up to 0.0001mm, similar to a 2D image. In summary,
anyone can instantly measure the size using a single mobile
device, regardless of location. In terms of vision-based
deep learning-based keypoint detection, the proposed method
enables immediate estimation of the size and further extends
to weight estimation without the need for contour extraction.
By recognizing more keypoints and estimating the weight
based on variables such as strawberry perimeter, equatorial
length, height, and depth, more accurate weight estimation
can be achieved. The technical novelty of this paper lies in
proposing a dimension measurement framework through the
registration by aligning RGB and 3D LiDAR data. Addi-
tionally, from an EdgeAI perspective, it develops software
that implements ONNX-converted deep learning models to
run on mobile platforms in iOS and Android environments.
This software operates independently, separate from cloud
platforms, showcasing the capability for autonomous use.
However, addressing significant adversarial samples and
achieving precise keypoint recognition for a more diverse
range of strawberry shapes pose challenges for future work.
Furthermore, predicting weight through the recognition of a
greater number of keypoints for more accurate measurement
of area, and subsequently estimating weight based on this,
is predicted to further reduce error values.

V. CONCLUSION
This paper presents a dataset utilizing the built-in LiDAR
sensor in a mobile camera for automatic size measure-
ment and weight prediction in strawberry classification.
The dataset includes 2D RGB, depth, 3D point cloud,
keypoint detection, and size andweight information. Through
deep learning-based keypoint recognition and automatic
length measurement of width and height, as well as
weight prediction, experiments were conducted. The results
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demonstrated precise length measurements with a Mean
Absolute Error (MAE) of 1.3mm for the width and 2.1mm
for the height of strawberries. Furthermore, the MAE for
strawberry weight was 2.2 g. This resulted in a 10.3% relative
error in weight measurement, falling within the acceptable
range for strawberry classification criteria. This signifies
that strawberries can be classified and packaged easily
using vision technology through mobile devices, without
the need for manual size or weight measurements. This
advancement allows for the unification of harvesting and
classification tasks using AI, leading to increased efficiency.
As research in the field of strawberry recognition and
harvesting continues to progress, applying the methodologies
discussed in this paper in practical settings holds the promise
of significant labor and time savings. This can lead to highly
accurate size-based classification and efficient packaging
of strawberries, which is expected to yield substantial
benefits. Despite the remarkable advancements in artificial
intelligence technology, previous research heavily relies on
specialized algorithms that are highly dependent on specific
data formats. Despite the development and widespread use
of devices, their capabilities are not fully utilized in many
applications. Our research demonstrates that even a simple
connection between deep learning models and point cloud
data can surpass the performance of previous size estimation
methods that require meticulous control of environments
and algorithms. Moreover, this method can be easily used
and applied through mobile devices, enabling cost-effective
utilization in various small-scale farms.
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