
Received 25 December 2023, accepted 14 January 2024, date of publication 19 January 2024, date of current version 30 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355959

Concept Drift Detection Based on Typicality
and Eccentricity
YURI THOMAS P. NUNES AND LUIZ AFFONSO GUEDES
Post-Graduate Program in Electrical and Computing Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil

Corresponding author: Yuri Thomas P. Nunes (yuri.thomas.053@ufrn.br)

This work was supported in part by the Coordenac
¯
ão de Aperfeic

¯
oamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code

001.

ABSTRACT Many applications and fields produce a vast quantity of time-relevant or continuously changing
data which may represent new phenomena. This data stream behavior is known as Concept Drift. The need to
efficiently and accurately process online data streams is a current need in many areas. Concept drift is a cause
of performance degradation of classical machine learning approaches. It is necessary to address the concept
drift to deploy real-world applications fed by data streams. This work presents a perspective of Concept
Drift Detector (CDD) application to empower a data stream classifier in a real-world scenario followed
by the proposal of Concept Drift Detector based on Typicality and Eccentricity Data Analytics (TEDA-
CDD). Our method employs two models in monitoring the data stream in order to keep the information
of a previous concept whereas monitoring the emergence of a new concept. The models are considered to
represent two distinct concepts when the intersection of data samples are significantly low, described by the
Jaccard Index. TEDA-CDD is compared to known methods from literature in experiments using synthetic
and real-world datasets simulating real-world applications. In these experiments, TEDA-CDD performs
comparably in terms of accuracy against well-established algorithms whereas presenting higher memory
efficiency.

INDEX TERMS Classification on data stream, concept drift detector, data stream, supervised learning,
TEDA.

I. INTRODUCTION
Data stream processing is a growing area where applications
and fields produce a vast quantity of data. These data
are time-relevant or continuously changing, representing
new phenomena. Therefore, it is essential to use evolving
techniques to process the data stream and these techniques
must be wary of concept drifts. In this scenario, determining
when the data stream has changed enough to demand
readjustments for a real-time application is essential.

A common approach is to define a Concept Drift Detector
(CDD) to monitor the data stream and determine when
concept drift occurs to prevent inappropriate data processing.
There are three major categories of CDD: supervised,
unsupervised and semi-supervised [1]. Supervised CDD tech-
niques assume that the ground-truth label of a data sample

The associate editor coordinating the review of this manuscript and

approving it for publication was Berdakh Abibullaev .

is known immediately after a prediction. In unsupervised
CDD, the prediction feedback is delayed or does not exist.
A semi-supervised CDD has access to a small number of
ground-truth labels enabling the combination of supervised
and unsupervised approaches.

A CDD can also be categorized multidimensional or uni-
dimensional. The multidimensional approaches can capture
more detailed information on each concept by leveraging
the model’s complexity. Unidimensional methods captures
less detailed information on each data concept whereas it
is far simpler and less resource-demanding. The trade-off
between these two approaches is relevant to the application
performance in terms of computation time, memory usage
and model complexity.

In recent years, several approaches have been proposed
for unsupervised concept drift detection. One such method,
NN-DVI, utilizes the nearest neighborhood concept to
compare densities between the reference and detection

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 13795

https://orcid.org/0000-0003-0280-0346
https://orcid.org/0000-0003-2690-1563
https://orcid.org/0000-0002-8623-5526

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

windows [2]. Another approach, FAAD, is designed to
detect sequence-anomalies in multidimensional sequence
data streams that are prone to concept drift [3]. It employs
information theory concepts to select features and reduce
redundancy, reducing the workload associated with high
dimensionality. Anomaly detection uses models built with
random feature sampling to generate scores, which are then
compared to a user-defined threshold. A comparison between
the proportion of anomalies in the reference and detection
windows indicates the occurrence of concept drift.

Furthermore, UDetect detects concept drift in activity
data streams using a supervised classifier model as a
reference to compare unlabeled data instances [4]. Similarly,
the algorithm SQSI-IS [5] is based on SQSI [6]. SQSI
relies on a supervised offline trained model to provide
scores to unlabeled data (detection window) and training
data (reference window). Divergence in score densities
indicates a concept drift. SQSI-IS introduces an additional
step of instance selection for the unlabeled data using the
Kolmogorov-Smirnov Test.

MD3 is an approach that monitors the decision boundaries
of an SVM classifier to detect concept drift [7]. It looks for
density changes within the boundary region, which indicates
concept drift, triggering a classifier retrain. On the other hand,
the algorithm DDAL utilizes active learning to determine
relevant instances in the incoming data stream [8]. DDAL
uses these instances to calculate the maximum and minimum
densities and constructs a range with the same values from
the reference window. This range is then compared to a
user-defined threshold to determine if a concept drift has
occurred.

Despite the discussed methods, the literature has a higher
concentration of supervised concept drift detection papers
[9] and unsupervised concept drift detection research area
is considered unexplored [10]. In this context, this work
focuses on efficient unsupervised unidimensional concept
drift detection approaches for its performance and realistic
approach. It is essential to have a performative method
to process data stream due to its sample-wise nature.
A sample must be processed before the next arrives. Also, the
unsupervised approach addresses the realistic fact of concept
drift detection: the true label of a data sample is unknown and
maybe never becomes available.

Concept Drift Detector based on Typicality and Eccentric-
ity Data Analytics (TEDA-CDD) is a concept drift detector
based on TEDA, a framework for data analytic leveraging on
typicality and eccentricity [11]. It is devised for unsupervised
scenarios where the ground-truth label of the incoming
samples from the data stream are unavailable. Furthermore,
TEDA-CDD is an unidimensional CDD, which means
that each feature of the data stream must be individually
monitored by distinct TEDA-CDD instance. It monitors
a data stream feature by using two TEDA-based models
and comparing them at each sample arrival. One model
is more resistant to change whereas the other models
the most recent data samples. The models are compared

using the Jaccard Index based on characteristics intrinsic
to TEDA. The principal novelties are the use of TEDA for
modeling the concepts and Jaccard Index for comparing
the models. The proposed CDD presents a competitive
performance compared to other unsupervised CDDs and
more memory efficiency using up to three times less memory.

In this paper, we present a novel unidimensional unsu-
pervised Concept Drift Detector, which utilizes TEDA as
a concept modeling tool, offering an efficient balance
between time and memory consumption. To enhance its
capability to detect new concepts, we introduce a forgetting
factor associated with the TEDA model. The detection of
emerging concepts is achieved using the Jaccard index. Our
novel model is thoroughly evaluated through experiments
simulating real-world data stream processing scenarios using
a data stream classifier. Additionally, we delve into an
in-depth discussion of the essential characteristics and
behavior of the data stream classifier under consideration. In
this paper, we present a novel unidimensional unsupervised
Concept Drift Detector, which utilizes TEDA as a concept
modeling tool, offering an efficient balance between time and
memory consumption. To enhance its capability to detect new
concepts, we introduce a forgetting factor associated with the
TEDAmodel. The detection of emerging concepts is achieved
using the Jaccard index. Our novel model is thoroughly
evaluated through experiments simulating real-world data
stream processing scenarios using a data stream classifier.
Additionally, we delve into an in-depth discussion of the
essential characteristics and behavior of the data stream
classifier under consideration.

The following section, Section II, presents a realistic
description of concept drift detection on data stream pro-
cessing. The description of the TEDA-CDD is in Section III.
The discussion on experiments and results using the proposed
CDD is in Section IV. Finally, the paper concludes in Sec-
tion V with arguments defending the proposed approaches,
limitations regarding the TEDA-CDD applications, and
future works exploring the concepts in this paper.

II. PROBLEM DESCRIPTION
Data Streams are sources of non-stationary and theoretically
infinite data. They are present in many real-world applica-
tions across many areas, for example, network monitoring
[12], [13], [14], [15] environment monitoring [12], [16], [17],
health monitoring [18], [19], [20], [21], finance [15], [18],
sensoring [15], [19], [22], [23], [24], social network [22],
[25], [26], scientific production [18], [22], [27], management
[12], [18], [28], telecomunications [15], cyber security [19],
[29], [30], [31], to name a few. These applications are known
for evolving through seasonality and tendency. Atypical
events may also affect how these data sources change over
time. In the context of data stream processing, the changes
over time of the data streams are concept drift.

These potential applications have restrictions regarding
the use of data available regarding size and aging. Some
applications present challenges to storing and processing

13796 VOLUME 12, 2024

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

FIGURE 1. Concept drift types: a) Incremental; b) Gradual; c) Abrupt;
d) reoccurring.

data due to time constraints and data growth rate. In some
applications, even if storing data is mandatory, older data
becomes irrelevant as newer data changes and represents new
concepts. Generally, data stream processing techniques must
quickly and efficiently process data samples and adapt to
any concept drifts. Another common characteristic of data
stream processing techniques is to process each data sample
once. This last characteristic is known as single pass and
is a consequence of data availability restrictions on data
streams [32].

Concept drift is a relevant aspect of data stream processing.
Since a concept drift represents a change in the data stream,
it can no longer be considered stationary [33]. Therefore,
algorithms and techniques that assume stationarity in data
are ineffective as the data stream evolves, demanding new
algorithms to process data streams effectively.

There are two known taxonomies regarding concept drift.
One classifies the concept drift depending on how the
concept changes over time. The second classifies the concept
drift based on the relation between features and target.
Regarding change over time, concept drifts can occur in four
ways: abrupt, gradual, incremental, and reoccurring. Figure 1
illustrates concept drift types. Abrupt concept drift is an
abrupt change in the occurrence of concepts in consecutive
samples. Gradual concept drift is composed of abrupt concept
drifts that gradually increase the new concept occurrence
probability while decreasing the old concept occurrence
probability. In contrast, an incremental concept drift is a
smooth transition between two persons where a previous
person transforms into a newer person going through many
intermediate states. Finally, in the reoccurring concept drift,
concepts keep reappearing in the evolving data stream over
time.

The learning process of a machine learning model is
analogous to estimating a conditional probability density
function between a target variable, y, and a feature vector, X,
as in Equation (1) [34].

P(y|X) =
P(y)P(X|y)∑
y P(y)P(X|y)

(1)

In this context, Equation (2) represents a concept drift in a
data stream between two time instants.

Pt0 (X, y) ̸= Pt1 (X, y) (2)

where Pt0 (X, y) denotes the joint distribution at time
t0 between features, X, and target, y, variables. A concept
drift can be classified as real or virtual based on the relation
between features and target. In a real concept drift the way
to represent a concept changes over time even if the features
remain stationary. Equation (3) represents the condition for a
real concept drift.

Pt0 (y|X) ̸= Pt1 (y|mathbf) (3)

whereas a virtual concept drift occurs when the incoming
data distribution change without affecting the P(y|X). The
condition for a virtual requires P(y|X) remains stationary
whereas P(X) changes as in Equation (4).[

Pt0 (y|X) = Pt1 (y|X)
]
∧

[
Pt0 (X) ̸= Pt1 (X)

]
(4)

The distinction of real and virtual concept drift is meaningful
in supervised learning whereas in unsupervised learning one
can assume that any concept drift is virtual.

Due to data stream processing restrictions, a classical
Machine Learning technique faces obstacles in training and
maintaining good performance. For instance, data can not be
considered stationary, and concept drift degrades the model
performance making them obsolete over time. Specifically,
in supervised techniques, data streams do not provide the
correct label at the prediction time, delaying the model
adaptation for when and if the data stream provides a
class. However, they are usable if it is possible to mimic
the stationary condition on data stream segments or if
incremental learning approaches are employed.

Therefore, any machine learning model must be adaptable
as the concepts evolve when processing data streams.
A sample, batch, or concept drift can update the model.
When updating sample-wise or batch-wise, the model update
occurs as soon as data is available. It is blind to performance
degradation. Using concept drifts to determine when to
update the model is more efficient. Concept drift is a cause of
performance degradation. To enable update by concept drift,
a CDD is needed.

Using a CDD enables the deployment ofMachine Learning
models in real applications. Considering the classification
task, a Data Stream Classifier may use a CDD to prevent
performance degradation. This strategy allows the model
to efficiently and quickly update internal parameters to
adapt to new concepts. The following subsections deepen
the discussion on Data Stream Classifier and CDD con-
cepts while highlighting the arguments to develop the
TEDA-CDD.

A. DATA STREAM CLASSIFIER
AData Stream Classifier must have at least three components
to perform the task in a real-world application.

VOLUME 12, 2024 13797

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

FIGURE 2. Data stream application perception.

• Classifier model
• Concept Drift Detector
• Data Sample Storage

The first component is a classifier model to provide a label
based on the known features. As discussed earlier, a CDD is
necessary to efficiently and effectively update the classifier
model. Finally, a data sample storage for retraining. Figure 2
illustrates a real-world Data Stream Classifier.

A realistic assumption on data stream application is that a
data stream exists before the application. It implies that there
are available data from the data stream (pre-deploy data),
which enables offline training. Once online, the model can
be used for prediction and retrained when needed. Therefore
it is possible to avoid cold starts of Data Stream Classifiers
and leverage this strategy in updating the model. Figure 3
illustrates this idea.

To enable the classifier update, a CDD monitors the
available data. It is important to note that not the whole data
sample may be available at the same time. When processing
a data stream in a supervised task, the ground-truth label is
unavailable at prediction time. There is no guarantee that the
data will receive the actual labels within the time to update
the model. Therefore, a supervised concept drift detector is
not appropriate for many cases. Waiting for the ground-truth
label to perform a concept drift detection enables the model to
make predictions on a data stream that suffered a concept drift
without raising the alarm. Therefore an unsupervised online
strategy must be applied as the first line of defense against
model aging.

B. CONCEPT DRIFT DETECTOR
A CDD determines when a data stream has suffered a
significant change. These changes are relevant when they
invalidate any assumption on the data or invalidate known

descriptors. In these cases, it is necessary to take action and
correct the assumptions or update the descriptors.

A CDD must monitor the incoming data and process it
adequately to determine if a change has occurred. CDDs are
classified as supervised, semi-supervised, and unsupervised,
depending on the available data and processing strategy. The
supervised approach assumes that the ground truth of the task
it is assisting is known. A semi-supervised CDD has access
to a limited ground truth labels. An unsupervised approach
only considers the feature variables.

In a supervised approach, when the ground truth of the task
is known, the CDDmaymonitor descriptors for the target and
feature variables. Although, a common strategy is to monitor
the model performance in terms of hits.

When the target variables are unconsidered, the CDD
is considered unsupervised. It is only possible to monitor
the descriptors in these cases. This approach has two main
benefits: reduced time to detect a concept drift, and the
underlying descriptors are frequently updated to represent
the concept instead of increasing an arbitrary performance
metric. The major downside is that some concept drifts
are invisible for unsupervised approaches, for example,
switching two known classes.

Another relevant aspect of a CDD is if it is unidimensional
or multidimensional. A unidimensional CDD monitors each
feature individually, needing multiple CDDs to monitor a
multidimensional feature space. Whereas multidimensional
CDDs can monitor the entire multidimensional feature
space with only one CDD instance. The main point of
a trade-off between unidimensional and bold CDDs is
the complexity. Whereas the unidimensional CDD is less
complex, the multidimensional CDD may be more accurate.
The complexity affects performance in terms of memory,
time, and concepts.

Usually, supervised CDDs are unidimensional and only
process the hits of a classifier. Unsupervised CDDs are more
common in unidimensional approaches by their simplicity
and efficiency.

Using a classifier and a CDD to monitor a data stream,
a Data Stream Classifier may run online indefinitely with
low-performance degradation. The present work focuses on
CDD and assumes that any data stream classifier can take
advantage of an unsupervised concept drift detector. This
work focuses on unidimensional unsupervised CDD to detect
concept drifts in incoming data streams.

III. TEDA-BASED CONCEPT DRIFT DETECTOR
Concept Drift Detection is essential for evolving models and
traditional deployed models. In realistic scenarios, the detec-
tion of virtual concept drifts can occur before real concept
drifts since a virtual concept drift does not directly depends
on the target feature. Therefore, an unsupervised concept
drift detector can detect early changes in the distribution
of the input features. It is a principal motivator to propose
an unsupervised concept drift detector. Another factor that
enables early detection is sample-wise processing, and using

13798 VOLUME 12, 2024

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

FIGURE 3. Stream Classifier System model.

TEDA as the base model enables sample-wise processing.
Therefore, TEDA-CDD is an unsupervised concept drift
detector based on TEDA.

TEDA is a framework for data analytics and defines a way
to measure how typical or eccentric (atypical) a data sample
is to a data set [11]. Typicality measures how representative
a sample is to a data set. Inversely, eccentricity measures
how abnormal a data sample is to a data set. Both metrics
are defined based on a distance or similarity measure to
all other data in the dataset. The framework is theoretically
independent of any specific distance measure. Although, the
implementation can be optimized and problem-specific based
on the distance measure utilized.

In this work, the Euclidean distance is used and impli-
cated in a series of definition formulations and specific
limitations. For instance, the implementation of TEDA
using Euclidean distance defines a hyper-spherical pertinence
threshold. A hyper-sphere does not capture covariances in a
multidimensional space. It provides an improper pertinence
threshold in most cases. The spherical implication indirectly
limits TEDA-CDDas a unidimensional concept drift detector.
Therefore, in a multidimensional machine learning task, each
input feature has an instance of TEDA-CDD.

TEDA-CDD has four essential components: reference data
model, evolving data model, detection metric, and reset
strategy. Both the reference and evolving models are TEDA
based and referred as concept models. The detection metric
is based on the Jaccard Index to compare the model ranges.
Finally, the reset strategy considers the relevancy of past
models and avoids cold restarts.

A. REFERENCE MODEL
The reference model uses the classical definition of TEDA to
represent the concept known by the classifier. Whereas the
evolving model uses an adaptation to describe the current
features state. Therefore, the reference model uses typical
data samples to update the internal parameters. The reference
model disregards any atypical data sample. This approach
considers the reference model incomplete and can change
within a tolerable range.

In general, to determine if a data sample is atypical, the
eccentricity of the data sample is calculated and compared
to the threshold. When the eccentricity is lower than the
threshold, the data sample is considered typical, and the
reference model is updated. The reference model is not

updated if the data sample is atypical to retain the original
concept representation.

The eccentricity can be estimated as in (5) when consid-
ering the Euclidean distance. Which is based on a recursive
estimation of the mean, µk , and the variance, σ 2

k , where k is
the time index of the data sample, and n is the number of data
samples processed.

ξ (n) =
1
n

+
||µ(n) − x(n)||2

nσ 2(n)
(5)

The values of mean and variance can be recursively
estimated by (6) and (7).

µR(n) =
n− 1
n

µR(n− 1) +
x(n)
n

(6)

σ 2
R(n) =

n− 1
n

σ 2
R(n− 1) +

∥µR(n) − x(n)∥2

n
(7)

The threshold devised to determine if a data sample
is eccentric derives from the Chebyshev inequality. The
eccentric threshold is a function of a sensitivity parameter and
the total number of processed typical samples. Equation (8)
describes this threshold where n is the number of samples and
m is a parameter to control the threshold sensibility [11]. The
sensitivity parameterm has a similar effect of a multiplicative
factor of sigma (mσ). Higher values of m make difficult to
encounter atypical data samples whereas lower values causes
more data samples to be considered atypical. The parameter
m is a positive real number and it is indicated values between
1 and 3.

ξ (n) ≤
m2

+ 1
2n

(8)

Finally, the reference model is composed of three internal
parameters: n, µ, and σ 2. The parameter n is the number of
samples considered typical for the model. Parameters µ and
σ 2 are updated using Equations (6) and (7), respectively.

B. EVOLVING MODEL
A key difference between the reference and evolving model is
that the evolving model is updated by each new data stream
sample whereas the reference only by the typical samples.
Although, the reference model weighs each sample equally
making new concepts hard to detect. For this reason the
evolving model uses an adaptation of TEDA.

The adaptation used for constructing the evolving model of
TEDA is regarding the ability to focus on recent data samples.

VOLUME 12, 2024 13799

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

That means older data samples have less contribution to
estimating eccentricity. This effect is achieved by introducing
a forgetting factor in the update formulas for mean and
variance, effectively creating an exponential window.

The forgetting factor enables TEDA to forget past concepts
by recursive applying an exponentially decreasing weight
as the number of samples grows. The ability to forget an
outdated concept enables TEDA to model the current state
of a data stream. Equations (9) and (10) describe the update
strategy using the forgetting factor, α. The parameter α affects
the evolving model as a sentivity parameter. The higher the
value of α more important is a data sample to the current
concept and the evolving model is more sensible to noise.
Conversely, the lower the parameter α more less important
is the incoming data sample to the current concept whereas
the model is more robust against noise. Acceptable values for
α are between 0 and 1. Ideally, closer to 0. It is important
to note that using Equations (6) and (7) avoids weighting
inconsistency while the value of 1−α is higher than (n−1)/n.

µF (n) = αµF (n− 1) + (1 − α)x(n) (9)

σ 2
F (n) = ασ 2

F (n− 1) + (1 − α)∥µF (n) − x(n)∥2 (10)

The evolving model is compatible with Equations (5)
and (8). This fact makes the concept models comparable in
terms of internal parameters, over time.

C. DETECTION STRATEGY
TEDA-CDD indicates a concept drift when the reference
and evolving models are sufficiently distinct. In this context,
a detection strategy based on the Jaccard Index is proposed.
If the strategy indicates a dissimilarity then a concept drift is
detected.

The detection strategy for concept drift considers the
concept models as representations of sets. Each set is
equivalent to a subspace inside the hypersphere defined as
the consequence of using Euclidean distance for TEDA.
It enables using the Jaccard Index as a similarity measure
between the concept models.

The Jaccard Index (JI) is a measure of similarity between
sets. Equation (11) defines the JI for two arbitrary sets, A
and B. Using JI as similarity measures for the concept models
is an obvious solution considering that they represent datasets
from the data stream.

JI =
A ∩ B
A ∪ B

(11)

Effectively, the two sets are similar as their intersection is
closer to the union. They are identical if the intersection of
the sets is equal to the sets union. Any two sets are distinct
when there is no intersection.

The geometric shape in the feature space is the reference to
estimate the intersection between the concept models. Ideally,
the volume equivalent in the n-dimensional feature space
would the estimated for the intersection and union. In this
work, for simplicity, the radius and center of each concept
model are used to represent the subspace delimiting the set.

FIGURE 4. Jaccard Index illustrative example.

The center is analogous to the mean. The radius derives from
the Chebyshev inequality as the maximum distance a data
sample can be from the center in the Equation (12).

r(n) = mσ 2(n) (12)

where r(n) is the radius of a given concept model at instant k ,
m is the sensitivity parameter, and σ 2(n) is the variance.
Combining the fact that TEDA effectively defines

hyper-spherical decision boundaries when using the
Euclidean distance and Equation (8) it is possible to simplify
the JI based on the radius of the hyper-spheres as in
Equation (13).

JI =
rR + rF − dRF
rR + rF + dRF

(13)

This enables to detect a concept drift regardless the number
of data samples. A concept drift occurs if the JI is lower than
a given threshold, JT. The JT defines a limit of similarity
between similar and dissimilar and the higher the value of
JT more sensible to divergence is the CDD. A lower JT
makes the CDD tolerate higher levels of divergence between
reference model and evolving model. Possible values of JT
are between 0 and 1. Considering the JI, a JT of 0.5 delimits
that two models that share less the half of their data samples
are dissimilar.

The main drawback is that the model should have a
strategy to avoid nuisance while too few data samples are
processed. In the other hand, themain advantage, is that if two
models share a great number of samples before diverging in
parameters, the decision is not weighted to not raise the alarm
of concept drift. Figure 4 illustrates the concepts to devise the
detection strategy.

This parameter is crucial for the detection. Ideally, it would
be tuned used using an optimization search. It can also be
adjusted dynamically using concept drift detection metrics
[35]. Unfortunately, it is out of the scope of this initial work
with TEDA-CDD.

13800 VOLUME 12, 2024

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

D. TEDA-CDD RESET
When a concept drift is detected TEDA-CDD is reset to start
monitoring the current concept. To avoid a cold restart, the
information on the evolving model is used to update the
reference model while a new evolving model is created from
scratch. It is achieved by implementing Equations (15), (16),
and (14).

nR =

nF ,

n− 1
n

≤ α⌊
1

1 − α

⌋
,

n− 1
n

> α
(14)

µR(nR) = µF (nF) (15)

σ 2
R(nR) = σ 2

F (nF) (16)

After the reset, the detection will not trigger, while the
evolving model does not process enough new data samples.
This behavior avoids nuisance detection due to noise and high
variance in the early data samples.

E. OVERALL ALGORITHM
In Figure 5 is presented the flowchart of a data stream
classifier for a generic CDD. Considering the application of
TEDA-CDD, the steps of updating the reference and evolving
model are performed in the Run CDD process. The detection
strategy is applied in the CD Detected decision and TEDA-
CDD is reset if a concept drift is detected at Reset CDD
process. This flowchart connects each main component of
TEDA-CDD to clearly present the whole functionality of
the detector into a data stream classifier. In Algorithm 1,
we also provided an algorithm in pseudocode implementing
the proposed strategy.

Regarding memory usage, the proposed algorithm does not
apply a time window in the same way as the comparison
algorithms. TEDA-CDD only stores a fixed-size set of
descriptors (n, µ, α, σ) from the data stream, so for an
n-dimensional data stream, it would use n sets of descriptors.
As a result, the memory complexity is O(n).

IV. EXPERIMENTS
In this section, we discuss the experiments and results which
indicate that TEDA-CDD is viable and efficient in terms
of memory and performance. Initially, the methods used
for comparison are presented. Following, the metrics and
simulation strategy are discussed. Then, the sythetic datasets
experiments are discussed in Subsection IV-A followed by
real-world datasets discussed in Subsection IV-B.
The experiment simulates using a concept drift detector

processing a data stream in real-time. Besides TEDA-CDD,
ADWIN, KSWIN and Page-Hinkley are used to compare the
performance. ADWINmaintains a variable-length window of
recent data stream samples and detects drift by comparing
the distributions of two sub-windows within the window [36].
TheKSWIN [37] concept drift detector uses a slidingwindow
divided into two sub-windows: reference and detection
windows. The r most recent data samples compose the

Algorithm 1 Data Stream Classifier Algorithm
Input: Pre-deploy dataset, m, α, JT

1 model = new Classifier().fit(preDeployDataset)
2 CDD.setup(preDeployDataset, m, α, JT)
3 dataStorage = new DataStorage()
4 N =

1
1−α

5 X = yield
6 while true do
7 ŷ = model.predict(X)
8 for i = 0 to |X| do
9 detected = false

10 x = X[i]; µ, σ, n = CDD[i].reference
11 ξ =

1
n +

||µ−x||2

nσ 2

12 if ξ ≤
m2

+1
2n then

13 n = n+ 1
14 Use Eq. (6) and (7) using µ, σ , n and x
15 end if
16 µ, σ, nF , α = CDD[i].evolving
17 if 1 − α > nF−1

nF
then

18 Use Eq. (6) and (7) using µ, σ , nF and x
19 else
20 Use Eq. (9) and (10) using µ, σ , α and x
21 end if
22 Calculate JI using Eq. (13)
23 detected = detected or (JI > JT and n ≥ N)
24 end for
25 if detected then
26 dataStorage.addOnlineLabels()
27 model = new Classifier().fit(dataStorage)
28 for i = 0 to |X| do
29 Update CDD[i].reference (Eq. (14), (15), (16))
30 CDD[i].evolving = new EvolvingModel()
31 end for
32 dataStorage.flush()
33 end if
34 dataStorage.push(X)
35 X = yield ŷ, detected
36 end while

detection window, whereas sampling from the remaining
sliding windows composes the reference window. Then, the
Kolmogorov-Smirnoff test indicates when sub-windows data
distributions are statistically different. Page-Hinkley [38]
monitors CUMSUM metrics of each feature to measure
the expected increase or decrease of feature value. For an
increasing scenario, a drift is detected when the difference
between expected increase and minimum expected increase
exceeds a given threshold. All methods must process a
minimumnumber of data samples prior concept drift test after
each reset. The selected methods are unsupervised strategies
to detect concept drift to ensure comparison fairness. Also,
the River python package [39] has implementations of the
selected algorithms. The parameters used for the benchmark
methods are listed below according to the used library.

VOLUME 12, 2024 13801

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

FIGURE 5. Data stream classifier running flowchart.

• ADWIN:
– delta: 0.002

• KSWIN:
– alpha: 0.005
– window_size: 100
– stat_size: 30

• Page-Hinkley:
– min_instances: 30
– delta: 0.005
– threshold: 50.0
– alpha: 0.9999
– mode: both

The evaluation process basis are the ideas of Figures 2,
3 and 5. The Naive Bayes classifier is used as the model
and trained with the pre-deploy data as an initial batch. Then
the CDD and the classifier start processing the data stream.
The sample storage stores the streaming data for future
model updates. Whenever concept drift occurs, the model is
updated using the data available in the sample storage, the
sample storage dumps the previous data, and the concept drift
detector resets.

In this experiment, CDD performance and model perfor-
mance are related. When the CDD correctly detects concept
drifts, the model does not suffer performance degradation
due to frequent training or false alarms. Therefore, the model
performance through the data stream is also a metric of
the employed CDD performance. The experiment uses three
strategies for performance measuring: prequential, sliding,
and holdout [40]. The prequential and sliding strategies
measure the classifier performance, whereas the holdout
provides a reference baseline.

There are two key points in using prequential scoring.
First, it allows using all data stream samples as test and
train samples. When a new data sample arrives, the model
makes a prediction for scoring and then a model update
using the data sample. Second, the most recent score is the
accumulated score for all data samples processed, differently
to holdout and sliding, which use a subset of the data
stream samples. Equation (17) defines the estimation of the
prequential accuracy at instant k of the data stream where the

function 1(x) is the indicator function, ŷ is the predicted label,
and y is the true label.

Pacc(k) =
1
k

k∑
i=0

1(ŷi = yi) (17)

In sliding scoring, the performance metrics only consider
the data samples into a sliding window of size w. It provides
a performance score unbiased by previous data samples (data
samples out of the sliding window). Equation (18) defines the
estimation of the sliding accuracy for a window of size w at
instant k .

Sacc(k,w) =
1
w

k∑
i=k−w

1(ŷi = yi) (18)

The holdout scoring strategy divides the incoming data
samples into two groups: train and test. The model updates
using the train set and the test set to evaluate the model’s
performance. It provides a strong separation between train
and test samples in contrast to prequential scoring but reduces
the number of training samples. Similarly to the sliding
scoring, the holdout scoring provides a performance score not
biased by older data samples (data samples out of the current
holdout batch). Equation (19) defines the estimation of the
holdout accuracy of a given test batch, b, of size wb where ŷbi
and ybi are, respectively, the i-th predicted label and i-th true
label of the b-th test batch.

Hacc(b) =
1
wb

k∑
i=0

1(ŷbi = ybi) (19)

To use the holdout reference it is need to split the data
into batches and for this the drift length of the synthetic
datasets is used. In this context, the holdout accuracywas only
calculated for the synthetic experiments. Since the classifier
used for calculating the holdout accuracy uses the drift length
as batch size the models are not presented with concept drift
and therefore do not present performance degradation by
concept drift or use a CDD. It is important to note that the
holdout accuracy is not used to estimate the performance of
the methods but to give a baseline for reference and is also

13802 VOLUME 12, 2024

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

expected that the holdout accuracy is consistently higher than
the prequential or sliding accuracy.

In order to provide a meaningful reference for prequential
accuracy, the holdout reference was accumulated. Accu-
mulating the holdout accuracy makes it comparable with
prequential accuracy in the sense of all previous data sample
affect the current score. The accumulated holdout accuracy
for the i-th batch uses all test subset from the first batch up
to the i-th, inclusive. In this context, the accumulated holdout
accuracy is also biased by older data samples presenting the
global accuracy for data stream.

The last metric of interest of a CDD is the memory usage
along the data stream processing measured in bytes (B). In
this context, memory usage is measured at each data sample
processing. Memory usage only considers the CDD since
the models use the same classifier, and the stored data does
not directly affect the detection. The less memory usage, the
better.

A. SYNTHETIC DATASETS
The synthetic benchmark used is the Non-stationary
Environments Archives (NEA) [41]. It is a collection of
non-stationary datasets. The majority is of synthetic data
composed of moving Gaussian distributions. There are a
variety of concept drift patterns that the majority can be
considered incremental.

The NEA Benchmark is relevant because of three charac-
teristics: extensive, complex, and determined. It is extensive
as it presents various datasets with multiple behaviors. NEA
expresses its complexity through the evolution and interaction
between concepts and datasets dimensionality. And finally,
it is well-defined as it describes the data and behavior patterns
between concepts.

Each dataset presents a unique pattern and a drift duration
as listed in Table 1. The drift duration is used to setup the
first pre-deploy training of the classifier and to determine the
holdout batches. In the pre-deploy data only half of the drift
duration is used to build the batch whereas the remaining
drift duration is used as online data. To determine the holdout
batches the data stream is divided into segments with the drift
duration length. Each segment is divided in half for training
batch and testing batch (holdout batch) producing a score
value for each segment.

The paramaters used for TEDA-CDD in this experiment
are: m = 3, α = 0.9655 and JT = 0.93. The other methods
use the default parameters from the library.

Figure 6 present the prequential accuracy for data-sets
2CDT and UG_2C_3D. The holdout reference shows the
accuracy metric for a classifier with the knowledge of drift
duration and therefore performs better than any methods
and indicates the upper limit in performance. The remaining
algorithms present consistent performance among them. In
the case of dataset 2CDT, the algorithms had a significantly
inferior performance than the reference, whereas for dataset
UG_2C_3D all algorithms’ performances were similar.

TABLE 1. NEA datasets descriptions.

TABLE 2. Final accuracy of model.

The same behavior is noticeable in Figure 7, which
show the sliding accuracy for datasets 2CDT and
UG_2C_3D. The 2CDT presents a higher variance and a
tendency of the compared methods to be averagely below
the reference. The UG_2C_3D has a lower variance and a
tendency to follow the reference.

These remarks are confirmed by Table 2. This table
lists the final accuracy achieved by each method for all
datasets. In bold is the highest accuracy value for the dataset
disregarding the reference accuracy. In this experiment,
TEDA-CDD and KSWIN have the highest accuracy in
7 datasets. This performance shows that TEDA-CDD is
competitive in detecting concept drifts.

In terms of memory, TEDA-CDD presents a consistent
superiority using less memory for all datasets. Although,
it is important to highlight two points. First, ADWIN
and KSWIN are window-based techniques, making this an
unfair comparison. Second, the Page-Hinkley technique is
unidirectional, only capable of detecting a concept drift that
increases the values of a feature. Therefore, its implementa-
tion needs two instances to monitor a data stream feature. The
second instance monitors the decrease in values of the data
stream.

VOLUME 12, 2024 13803

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

FIGURE 6. Prequential accuracy for synthetic datasets.

FIGURE 7. Sliding accuracy for synthetic datasets.

B. REAL-WORLD DATASETS
The real-world benchmark is composed by three datasets
obtaining from the River package and one the the NEA. From

River, the datasets credit_card, electricity and phishing are
selected. From NEA, the only real-world dataset provided is
selected, keystrokes.

13804 VOLUME 12, 2024

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

FIGURE 8. Prequential accuracy for real datasets.

FIGURE 9. Sliding accuracy for real datasets.

• credit_card is an anonymized and preprocessed
dataset with data from credit card transactions. The
goal of this dataset is to detect fraud. It has 28

PCA extracted features, a time index feature, the
value of the transaction and target feature. The time
index is not used since it presents a monotonic

VOLUME 12, 2024 13805

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

TABLE 3. Mean memory usage in B (bytes).

TABLE 4. Real datasets descriptions.

increasing feature and does not represent concepts
directly.

• electricity is a dataset for an Australian Electricity
market. The task of this dataset is to determine if the
electricity cost wil increase or decrease. It has 8 features
besides the target feature, two beign time related and,
therefore, not used in the experiment.

• keystroke is a subset from a dataset from volunteers
typing a password. It has 10 features and a 4 class target
feature. This version of the dataset was obtained from
NEA.

• phishing is a dataset composed from data of websites
which are classified and phishing or not. It has 9 features
and a two classes target feature.

Table 4 presents the number of classes, features and samples
of each dataset.

In this experiment the pre-deploy data is composed by
5% of the samples of each dataset. The paramaters used for
TEDA-CDD are: m = 3.3, α = 0.9666 and JT = 0.85. The
other methods use the default parameters from the library.

Since they are real-world datasets, it is unreasonable
to consider a known periodicity or concept drift time
instants. In this context, the evaluation based on the classifier
performance from the synthetic scenario is valid. Table 5
lists the final accuracy of each method for each real-world
dataset. Table 6 lists the mean memory usage in bytes for
the real-world dataset experiment. Again, TEDA-CDD has
similar performance in terms of accuracy and lower memory
usage.

Using data from all experiments, we constructed a critical
difference diagram for accuracy and one for memory use,
Figures 10 and 11, respectively. We can extract from them

TABLE 5. Final model accuracy on real-world datasets.

TABLE 6. Mean memory usage in B (bytes) on real-world datasets.

FIGURE 10. Critical difference diagram for accuracy.

FIGURE 11. Critical difference diagram for memory.

TABLE 7. Parameters sensitivity space.

that TEDA-CDD performance is equivalent to PageHinkley
andKWSIN in terms of accuracy and is the isolated best when
considering memory usage.

A straightforward experiment illustrates the sensitivity of
the parameters wherein Table 7 designates sets of values
corresponding to each parameter. Subsequently, all datasets
underwent processing and measuring of the overall accuracy
for every parameter combination. The outcomes of this exper-
imentation were employed to construct a parallel coordinates
graph. The findings reveal a discernible level of parameter
tolerance. Predominantly, the results manifest an accuracy
hovering around 0.82, with infrequent instances exhibiting
values below 0.8. Importantly, no distinct parameter range
was identified as causing any decline in performance.

Finally, the accuracy and memory usage indicate that
TEDA-CDD is efficient in terms of memory and accuracy for
synthetic and real-world datasets. TEDA-CDD presents the
same level of accuracy with much less memory consumption
compared to KSWIN. Whereas Page-Hinkley performs
closer to TEDA-CDD in terms ofmemory and accuracy-wise,
the implementation complexity (managing two instanceswith

13806 VOLUME 12, 2024

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

FIGURE 12. Parameter sensitivity analysis.

data sample preprocessing) and lack of generality in the base
algorithm subjectively place TEDA-CDD in a better position.

V. CONCLUSION
Our assumptions on data stream processing make our sim-
ulations closer to real machine learning applications. In this
scenario, unsupervised concept drift detection enables early
detection and safer handling. And in this scenario, TEDA-
CDD presents a state-of-the-art performance comparable to a
consistent method as KSWINwhile having lower complexity
(in terms of parameters and theoretical concepts) and lower
memory usage. Therefore, TEDA-CDD is a competitive
approach to concept drift detection.

The known limitations of TEDA-CDD are related to the
use of Euclidean distance as a metric of similarity and the
fully unsupervised approach. Use Euclidean distance forces
spherical models that are conceptually simple because they
depend heavily on the mean and variance parameters. The
fully unsupervised approach ignores the offline setup of the
data stream processing algorithm and online labeling.

In future work, we plan to expand TEDA-CDD to process
multidimensional data with the same performance as the one-
dimensional approach. Using Mahalanobis distance makes
it possible to create ellipsoidal models instead of spherical
models to describe concepts. And in a parallel effort, we will
propose a more realistic approach where exists known labels
at training time and unknown at prediction time. In our
understanding, this approach is semi-supervised and enables
the modeling and monitoring of known concepts in an
unsupervised data stream. Also, we intend to investigate
the effects of dynamically adjust TEDA-CDD parameters in
response to data stream changes.

REFERENCES
[1] I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, and K. Ghédira,

‘‘Discussion and review on evolving data streams and concept drift
adapting,’’ Evolving Syst., vol. 9, no. 1, pp. 1–23, Mar. 2018.

[2] A. Liu, J. Lu, F. Liu, and G. Zhang, ‘‘Accumulating regional density
dissimilarity for concept drift detection in data streams,’’Pattern Recognit.,
vol. 76, pp. 256–272, Apr. 2018.

[3] B. Li, Y.-J. Wang, D.-S. Yang, Y.-M. Li, and X.-K. Ma, ‘‘FAAD:
An unsupervised fast and accurate anomaly detection method for a multi-
dimensional sequence over data stream,’’ Frontiers Inf. Technol. Electron.
Eng., vol. 20, no. 3, pp. 388–404, Mar. 2019.

[4] S. A. Bashir, A. Petrovski, and D. Doolan, ‘‘A framework for unsupervised
change detection in activity recognition,’’ Int. J. Pervasive Comput.
Commun., vol. 13, no. 2, pp. 157–175, Jun. 2017.

[5] A. G. Maletzke, D. M. dos Reis, and G. E. A. P. A. Batista, ‘‘Combining
instance selection and self-training to improve data stream quantification,’’
J. Brazilian Comput. Soc., vol. 24, no. 1, pp. 1–17, Dec. 2018.

[6] A. G. Maletzke, D. M. dos Reis, and G. E. A. P. A. Batista, ‘‘Quantification
in data streams: Initial results,’’ in Proc. Brazilian Conf. Intell. Syst.
(BRACIS), Brazil, Oct. 2017, pp. 43–48.

[7] T. S. Sethi and M. Kantardzic, ‘‘Don’t pay for validation: Detecting drifts
from unlabeled data using margin density,’’ Proc. Comput. Sci., vol. 53,
pp. 103–112, Jan. 2015.

[8] A. F. J. Costa, R. A. S. Albuquerque, and E. M. dos Santos, ‘‘A drift
detectionmethod based on active learning,’’ inProc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2018, pp. 1–8.

[9] A. S. Iwashita and J. P. Papa, ‘‘An overview on concept drift learning,’’
IEEE Access, vol. 7, pp. 1532–1547, 2019.

[10] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, ‘‘Learning under
concept drift: A review,’’ IEEE Trans. Knowl. Data Eng., vol. 31, no. 12,
pp. 2346–2363, Dec. 2019.

[11] P. Angelov, ‘‘Anomaly detection based on eccentricity analysis,’’ in Proc.
IEEE Symp. Evolving Auto. Learn. Syst. (EALS), Dec. 2014, pp. 1–8.

[12] L. Zhang, J. Zhao, andW. Li, ‘‘Online and unsupervised anomaly detection
for streaming data using an array of sliding windows and PDDs,’’ IEEE
Trans. Cybern., vol. 51, no. 4, pp. 2284–2289, Apr. 2021.

[13] V. L. Cao, M. Nicolau, and J. McDermott, ‘‘Learning neural representa-
tions for network anomaly detection,’’ IEEE Trans. Cybern., vol. 49, no. 8,
pp. 3074–3087, Aug. 2019.

[14] X. Miao, Y. Liu, H. Zhao, and C. Li, ‘‘Distributed online one-class
support vector machine for anomaly detection over networks,’’ IEEE
Trans. Cybern., vol. 49, no. 4, pp. 1475–1488, Apr. 2019.

[15] M. U. Togbe, Y. Chabchoub, A. Boly, M. Barry, R. Chiky, and M. Bahri,
‘‘Anomalies detection using isolation in concept-drifting data streams,’’
Computers, vol. 10, no. 1, p. 13, Jan. 2021.

[16] H.Mehmood, P. Kostakos,M. Cortes, T. Anagnostopoulos, S. Pirttikangas,
and E. Gilman, ‘‘Concept drift adaptation techniques in distributed
environment for real-world data streams,’’ Smart Cities, vol. 4, no. 1,
pp. 349–371, Mar. 2021.

[17] D. J. Hill and B. S. Minsker, ‘‘Anomaly detection in streaming environ-
mental sensor data: A data-driven modeling approach,’’ Environ. Model.
Softw., vol. 25, no. 9, pp. 1014–1022, Sep. 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364815209002321

[18] J. Lu, A. Liu, Y. Song, and G. Zhang, ‘‘Data-driven decision support under
concept drift in streamed big data,’’ Complex Intell. Syst., vol. 6, no. 1,
pp. 157–163, Apr. 2020, doi: 10.1007/s40747-019-00124-4.

[19] R. N. Gemaque, A. F. J. Costa, R. Giusti, and E. M. dos Santos,
‘‘An overview of unsupervised drift detection methods,’’ WIREs Data
Mining Knowl. Discovery, vol. 10, no. 6, pp. 1–18, Nov. 2020.

[20] A. A. Beyene, T. Welemariam, M. Persson, and N. Lavesson,
‘‘Improved concept drift handling in surgery prediction and other
applications,’’ Knowl. Inf. Syst., vol. 44, no. 1, pp. 177–196, Jul. 2015,
doi: 10.1007/s10115-014-0756-9.

[21] H.-S. Chiang and Z.-W. Wu, ‘‘Online incremental learning for sleep
quality assessment using associative Petri net,’’ Appl. Soft Comput.,
vol. 68, pp. 774–783, Jul. 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1568494617304696

[22] A. L. D. Rossi, C. Soares, B. F. D. Souza, and A. C. P. de Leon Ferreira
de Carvalho, ‘‘Micro-MetaStream: Algorithm selection for time-changing
data,’’ Inf. Sci., vol. 565, pp. 262–277, Jul. 2021.

[23] J. Gama and P. P. Rodrigues, ‘‘Data stream processing,’’ in Learning
from Data Streams. Berlin, Germany: Springer, 2007, pp. 25–39, doi:
10.1007/3-540-73679-4_3.

[24] P. Kadlec, R. Grbić, and B. Gabrys, ‘‘Review of adaptation mech-
anisms for data-driven soft sensors,’’ Comput. Chem. Eng., vol. 35,
no. 1, pp. 1–24, Jan. 2011. [Online]. Available: https://www.sciencedirect
.com/science/article/pii/S0098135410002838

VOLUME 12, 2024 13807

http://dx.doi.org/10.1007/s40747-019-00124-4
http://dx.doi.org/10.1007/s10115-014-0756-9
http://dx.doi.org/10.1007/3-540-73679-4_3

Y. T. P. Nunes, L. A. Guedes: Concept Drift Detection Based on Typicality and Eccentricity

[25] R. A. Rios, P. A. Pagliosa, R. P. Ishii, and R. F. de Mello, ‘‘TSViz:
A data stream architecture to online collect, analyze, and visualize
tweets,’’ in Proc. Symp. Appl. Comput. (SAC). New York, NY, USA:
Association for Computing Machinery, Apr. 2017, pp. 1031–1036, doi:
10.1145/3019612.3019811.

[26] M. Heusinger, C. Raab, and F.-M. Schleif, ‘‘Dimensionality reduction in
the context of dynamic social media data streams,’’ Evolving Syst., vol. 13,
no. 3, pp. 387–401, Jun. 2022, doi: 10.1007/s12530-021-09396-z.

[27] I. Fister, I. Fister, and M. Perc, ‘‘Toward the discovery of citation cartels
in citation networks,’’ Frontiers Phys., vol. 4, p. 49, Dec. 2016. [Online].
Available: https://www.frontiersin.org/articles/10.3389/fphy.2016.00049

[28] D. Sun,M. Fu, L. Zhu, G. Li, and Q. Lu, ‘‘Non-intrusive anomaly detection
with streaming performance metrics and logs for DevOps in public clouds:
A case study in AWS,’’ IEEE Trans. Emerg. Topics Comput., vol. 4, no. 2,
pp. 278–289, Apr. 2016.

[29] T. S. Guzella and W. M. Caminhas, ‘‘A review of machine
learning approaches to spam filtering,’’ Expert Syst. Appl.,
vol. 36, no. 7, pp. 10206–10222, Sep. 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S09574174
0900181X

[30] A. Abdallah, M. A. Maarof, and A. Zainal, ‘‘Fraud detection system:
A survey,’’ J. Netw. Comput. Appl., vol. 68, pp. 90–113, Jun. 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1084804516300571

[31] B. Bobowska, M. Choras, and M. Wozniak, ‘‘Advanced analysis of
data streams for critical infrastructures protection and cybersecurity,’’
J. Univers. Comput. Sci., vol. 24, no. 5, pp. 622–633, 2018.

[32] S. Mansalis, E. Ntoutsi, N. Pelekis, and Y. Theodoridis, ‘‘An evaluation
of data stream clustering algorithms,’’ Stat. Anal. Data Mining, ASA
Data Sci. J., vol. 11, no. 4, pp. 167–187, Aug. 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11380

[33] H. Wang and Z. Abraham, ‘‘Concept drift detection for streaming data,’’
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2015, pp. 1–9.

[34] J. Gama, I. Žliobaité, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
‘‘A survey on concept drift adaptation,’’ ACMComput. Surv., vol. 46, no. 4,
pp. 1–37, Apr. 2014, doi: 10.1145/2523813.

[35] A. Liu, J. Lu, Y. Song, J. Xuan, and G. Zhang, ‘‘Concept drift
detection delay index,’’ IEEE Trans. Knowl. Data Eng., vol. 35, no. 5,
pp. 4585–4597, May 2023.

[36] A. Bifet and R. Gavaldà, ‘‘Learning from time-changing data with adaptive
windowing,’’ in Proc. 7th SIAM Int. Conf. Data Mining, Apr. 2007,
pp. 443–448.

[37] C. Raab, M. Heusinger, and F.-M. Schleif, ‘‘Reactive soft prototype com-
puting for concept drift streams,’’ Neurocomputing, vol. 416, pp. 340–351,
Nov. 2020, doi: 10.1016/j.neucom.2019.11.111.

[38] E. S. Page, ‘‘Continuous inspection schemes,’’ Biometrika, vol. 41,
no. 1, pp. 100–115, Jun. 1954. [Online]. Available: http://www.jstor.org/
stable/2333009

[39] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty, R. Vaysse,
A. Zouitine, H. M. Gomes, J. Read, T. Abdessalem, and A. Bifet, ‘‘River:
Machine learning for streaming data in Python,’’ 2020, arXiv:2012.04740.

[40] J. Gama, R. Sebastião, and P. P. Rodrigues, ‘‘On evaluating stream learning
algorithms,’’Mach. Learn., vol. 90, no. 3, pp. 317–346, Mar. 2013.

[41] V. M. A. Souza, D. F. Silva, J. Gama, and G. E. Batista, ‘‘Data stream
classification guided by clustering on nonstationary environments and
extreme verification latency,’’ in Proc. SIAM Int. Conf. Data Mining,
Vancouver, BC, Canada, Jun. 2015, pp. 873–881.

YURI THOMAS P. NUNES received the B.S.
degree in science and technology, the B.S. degree
in computing engineering, and the Master of
Science degree in electrical and computing engi-
neering from the Federal University of Rio Grande
do Norte (UFRN), Natal, Rio Grande do Norte,
Brazil, in 2015, 2017, and 2019, respectively. He
is currently pursuing the Ph.D. degree in electrical
and computing engineering. His previous research
interests include the fields of data science, data
analysis, and industrial applications.

LUIZ AFFONSO GUEDES received the B.Sc.
degree in electrical engineering from the Federal
University of Pará (UFPA), Brazil, in 1988, the
M.Sc. degree from the Institute Technological
of Aeronautic (ITA), Brazil, in 1991, and the
Ph.D. degree from Unicamp, Brazil, in 1999.
Currently, he is a Full Professor with the Depart-
ment of Computer Engineering and Automation
(DCA), Federal University of Rio Grande do
Norte (UFRN), Brazil. He has expertise in fault

diagnostic and operational reliability of industrial processes. He has
supervised 14 doctoral theses and 39 master dissertations, and he has more
than 15 years of experience in coordination of research and development
projects, which have resulted in various software solutions in use in industry.

13808 VOLUME 12, 2024

http://dx.doi.org/10.1145/3019612.3019811
http://dx.doi.org/10.1007/s12530-021-09396-z
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1016/j.neucom.2019.11.111

