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ABSTRACT Tor, a network offering Internet anonymity, presented both positive and potentially malicious
applications, leading to the need for efficient Tor traffic monitoring. While most current traffic classification
methods rely on flow-based features, these can be unreliable due to factors like asymmetric routing, and the
use of multiple packets for feature computation can lead to processing delays. Recognising the multi-layered
encryption of Tor compared to nonTor encrypted payloads, our study explored distinct patterns in their
encrypted data. We introduced a novel method using Deep Packet Inspection and machine learning to
differentiate between Tor and nonTor traffic based solely on encrypted payload. In the first strand of
our research, we investigated hex character analysis of the Tor and nonTor encrypted payloads through
statistical testing across 8 groups of application types. Remarkably, our investigation revealed a significant
differentiation rate of 94.53% between Tor and nonTor traffic. In the second strand of our research, we aimed
to distinguish Tor and nonTor traffic using machine learning, based on encrypted payload features. This
proposed feature-based approach proved effective, as evidenced by our classification performance, which
attained an average accuracy rate of 95.65% across these 8 groups of applications. Thereby, this study
contributes to the efficient classification of Tor and nonTor traffic through features derived solely from a
single encrypted payload packet, independent of its position in the traffic flow.

INDEX TERMS Network traffic classification, Tor network, machine learning, encrypted payload features,
character analysis.

I. INTRODUCTION
Tor [1] is an anonymous network that offers a significant
advantage in providing privacy to Tor users by concealing
their identities. Tor achieves anonymity by routing its
traffic through a series of relays within the Tor network,
which is maintained and operated by volunteers worldwide.
This complicated process makes it difficult to trace the
origin of Tor traffic because the multi-layered process of
relaying traffic conceals users’ actual IP addresses before
reaching their destination. This anonymity protects a wide
range of individuals, from regular internet users who wish
to evade ISP tracking to journalists and activists who
seek a secure connection without revealing their identities.
However, Tor’s benefits also attract criminals for illicit
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activities such as accessing child pornography or conducting
cyberattacks, without fear of detection. While Tor effec-
tively shields users’ identities, locations, and activities,
it cannot entirely hide the network traffic generated during
its usage.

To date, several methods have been proposed for Tor traffic
classification. Many studies have emphasised flow-based
features since Tor traffic has distinctive latency patterns [1],
[2]. However, asymmetric routing could make such a method
less reliable [3], and computing multiple packets for feature
extraction can introduce processing delays. An alternative
approach focuses on the dominant packet properties of Tor
fixed-cell size to detect Tor traffic [4], but the effectiveness
of this technique could be compromised with changes in
the Tor configuration [5]. Our current study aims to address
this gap by introducing a novel method that overcomes these
limitations.
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Interestingly, the unique characteristic of multi-layered
encryption in Tor, which maximises its privacy compared
to the single-layer encryption found in nonTor networks,
has captured our attention. The main goal of encryption
is to ensure that the encrypted data (ciphertext) remains
secure, revealing no details of the original data (plaintext),
even if adversaries have prior knowledge about encryption
methods [6]. The encrypted data should provide no infor-
mation on the original content. Therefore, the encrypted
payloads from the two types of networks should appear
identical and indistinguishable. A study from Choorod and
Weir [7] explored this hypothesis and shed light on this
matter. This leads us to investigate further, leading to our
primary research question RQ1: Can we differentiate Tor
from nonTor encrypted traffic based on their encrypted
payloads?

In addressing this question, previous studies investigated
by [24], [25], and [26] highlighted the effectiveness of
character analysis via statistical computational methods in
text classification. These proven statistical methods are now
adapted for application in the context of computer networks.
In line with this, our analysis focuses on the frequency-related
features of hexadecimal characters present within encrypted
payloads without the need for decryption. Our Deep Packet
Inspection (DPI) approach ensures privacy preservation.
If our observations through the statistical technique indicate
that we cannot differentiate between Tor and nonTor traffic
based on their encrypted payloads, it suggests that the
encrypted payloads in both networks appear identical.
Conversely, discovering differentiation leads to a second line
of investigation.

At this point, certain traditional methods, particularly those
relying on flow-based features, requiremultiple packets span-
ning from the start to the end of a flow to compute relevant
features. This dependency can sometimes lead to unexpected
timeouts, causing delays in the process. In light of these
challenges, our aim shifts towards devising an approach that
circumvents the need for multiple packets, focusing on effec-
tively differentiating between Tor and nonTor traffic. This
leads us to our second research question: RQ2: Can we dis-
tinguish Tor traffic using the encrypted payload in a data-
efficient manner? Considering that collecting an extensive
set of packets can be either impractical or intrusive, a method
that reduces the data requirement to just a single packet
proves to be more data-efficient. To address this, we employ
machine learning techniques, specifically extracting char-
acter statistical-based features from the encrypted payload.
We then conduct classification and predictions on unseen
data using three supervised learning algorithms including
J48, Random Forest (RF) and IBk. Ultimately, our goal is
to demonstrate the efficiency and accuracy of our proposed
method in differentiating Tor traffic from nonTor traffic.

Our research offers a significant contribution to the field of
network security by presenting a novel and effective approach
for detecting Tor traffic. Here are the primary contributions
from our research:

1) Our novel approach requires only one packet to deter-
mine whether the traffic originated from Tor or nonTor
networks. This represents a significant improvement
compared to conventional methods, which usually
require multiple packets for accurate classification.

2) Our novel approach requires only a single packet to
determine whether the traffic originated from Tor or
nonTor networks. This independence from sequential
packet analysis allows us to examine packets from
any location within network traces, eliminating the
necessity to analyze packets in a specific order. Such
flexibility enhances the versatility of our method in
detecting Tor activity.

3) Our novel approach is based on the DPI of encrypted
network traffic to differentiate packets between Tor and
nonTor networks without decryption or accessing the
actual content of the encrypted payload, thereby ensur-
ing privacy preservation. Our approach accommodates
the growing concern for user privacy in the digital age.

The rest of the paper is organised as follows: In Section II,
we present related work on Tor traffic classification. In Sec-
tion III, we provide relevant background information related
to Tor traffic classification. Section IV explains the key
elements involved in Tor traffic classification. In Section V,
we introduce the proposed method. Section VI covers the
two analysis techniques - statistical and machine learning.
Discussion is provided in Section VII, with our conclusion
presented in Section VIII.

II. RELATED WORK
In the domain of Tor traffic classification, numerous studies
have successfully classified Tor traffic using machine learn-
ing algorithms, leveraging a variety of features. As encryption
becomes more prevalent, many researchers now emphasise
flow-based features or metadata from packet-based features,
ensuring that they do not compromise the integrity of
encrypted data.

As depicted in Table 1, various approaches to Tor traffic
classification have been taken in past research. These
approaches range from emphasizing flow-based features
to exploring payload-based techniques. Many of these
studies have chosen flow-based features because Tor traffic
exhibits unique latency patterns [1], [2], allowing for
fine-grained classification. However, these methods face
significant challenges. For instance, asymmetric routing
can reduce the reliability in classifying traffic flows [3],
and the reliance on multiple packets for feature extraction
decreases data efficiency and introduces processing delays.
Additionally, while deep learning algorithms are known
for their capability in automated feature extraction and
often achieving high accuracy, their model interpretability
remains a challenge. Our proposed method addresses these
weaknesses by introducing a novel approach: handcrafting
features from the frequency of hexadecimal characters within
encrypted payloads. This method requires only a single
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TABLE 1. Comparison of tor traffic classification methods.

packet for accurate classification, significantly enhancing
data efficiency compared to existing methods that depend
on multiple packets. Moreover, our approach utilises models
that are transparent and easily interpretable, addressing the
common issue of opaqueness associated with deep learning
models.

Looking into the specifics, previous studies that rely
on flow-based features usually focus on two scenarios:
1) detecting Tor traffic (scenario (a)) and 2) categorising
Tor-based applications (scenario (b)). The widely used UNB-
CIC dataset, introduced by Lashkari et al. [8], comprises both
Tor and nonTor traffic and serves as a foundational resource in
this research domain. The cited authors employed this dataset
to perform Tor traffic classification at two levels, achieving
high performance in both scenarios. Specifically, for scenario
(a) they achieved precision and recall above 0.9 using the
C4.5 algorithm. For scenario (b), the RF algorithm yielded
notable results with above 0.8 for the same metrics.

This dataset has also been utilised in other studies, Cuz-
zocrea et al. [9] showed that the JRip classifier delivered the
best performance in scenario (a), achieving 1 for the weighted
average of both recall and precision. Meanwhile, the J48
classifier demonstrated the best performance in scenario (b)
with a score of 0.998 for the same metrics. Similarly, other
researchers have showcased successful experimentation with
flow-based features to achieve similar objectives, employing
various classification techniques [2], [10], [11].
Hodo et al. [12] pursued different objectives aimed at

improving the efficiency of the Tor network by identifying
anomalous or nonTor traffic that could compromise users’
privacy. They utilised a learning system to establish a regular
traffic profile and detected deviations from this profile as
outlier traffic. Their findings demonstrated that a CFS-ANN
hybrid classifier outperformed SVM in detecting nonTor
traffic, achieving respective overall accuracies of 99.8% and
94%.

As previously discussed, certain network performance
factors, such as asymmetric routing can impact the reliability
of features extracted from flow packets [3]. Additionally, the
need to compute multiple packets for feature extraction can
lead to processing delays. Recently, Kim and Anpalagan [13]

sidesteps the constraints of time-based features in flow pack-
ets. Their focus on payload-based features closely aligns with
our approach. They utilised the UNB-CIC dataset to compare
results with the dataset creators [8]. Their proposed method
employed a 1D-CNN model with raw packet headers as
input, specifically utilising the first 54 bytes of TCP packets,
including the TCP/IP header and Ethernet II header. These
hexadecimal values were then converted to decimal values.
The CNN model achieved packet classification without the
need for manual feature extraction or engineering. The results
indicated that the CNN outperformed the C4.5 algorithm
in terms of precision and recall for classifying Tor and
nonTor traffic in scenario (a). Additionally, in scenario (b),
where application-level Tor traffic was classified, the CNN
model consistently outperformed the C4.5 algorithm for all
applications. These findings highlight the effectiveness of
the proposed approach in classifying Tor traffic without
hand-crafted feature extraction or engineering, showcasing
the advantages of deep learning techniques. However,
while this payload-based approach overcomes the inherent
limitations of time-based features by leveraging deep learning
technology, it still tends to obfuscate the insights derived from
the features.

Until now, as far as we’re aware, no studies have
specifically concentrated on classifying Tor traffic through
an engineering approach that emphasises manual intervention
on its encrypted payload. We are the pioneers in this domain,
extracting features exclusively from a single encrypted
payload using a transparent model.

III. BACKGROUND TECHNOLOGY
In this section, we provide essential background technology
information on Tor traffic classification, which is crucial for
understanding the essence of our work. This will detail the
methodology employed in our research and its significance
in effectively classifying Tor traffic.

A. AN OVERVIEW OF TOR NETWORK
Tor, known as The Onion Router, enables Internet users to
maintain privacy and anonymity. It is an overlay anonymous
network operated in the Application Layer of the TCP/IP
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protocol stack, Tor employs onion routing to encrypt packets
multiple times, resembling peeling onion layers. This process
ensures user identities remain concealed while accessing the
Internet. Tor serves the purpose of preserving privacy for
both individuals and groups. For instance, it assists general
Internet users in preventing their online information from
being viewed by ISPs. Additionally, Tor offers secure com-
munication for various entities, including reporters, whistle-
blowers, and NGO workers. These individuals can establish
secure and anonymous remote connections to organisational
websites without revealing their identities. Moreover, activist
groups utilise Tor to advance civil liberties online while
evading government monitoring. However, the benefits of
Tor can be misused for illicit purposes, highlighting the
need for monitoring who is accessing the Tor network. This
emphasises the critical importance of Tor traffic detection.

The Tor network comprises around 7,000 volunteer
nodes contributing bandwidth to form virtual circuits. This
elaborate network structure serves as the foundation for the
Tor network’s operation. The Tor network is based on the
concept of onion routing, which involves routing connections
through multiple nodes instead of direct client-to-server
communication. In a direct connection scenario, participants
are aware of each other’s IP addresses, which impairs
anonymity. In contrast, employing a non-direct connection
within the Tor network involves encrypting data and relaying
it through several nodes before reaching the destination.
Each node only possesses knowledge of the preceding and
succeeding nodes, rather than the entire path. This makes it
significantly harder to trace your online activity back to your
original IP address, providing a higher level of privacy and
anonymity. Figure1 provides a visual comparison of the Tor
network and the conventional Internet. When a user accesses
a website on the standard Internet, the browser establishes a
direct connection to the destination (a). In contrast, within the
Tor network, packets are routed through multiple nodes, with
each relay modifying the packets along the communication
path (b. This multi-layered approach ensures increased
privacy and anonymity for Tor users.

The Tor network comprises four main components:
Tor Client: Launches the Tor browser to connect to the Tor

network.
Onion Routers (ORs): Carry data between the client and

destination through entry, middle, and exit nodes. At each
router, packets are modified through encapsulation and
decapsulation using the TLS protocol.

Destination: Refers to any servers accessed by the Tor
client.

Directory Servers: Deliver signed documents containing
OR information, enabling clients to receive real-time updates
on the Tor network.

Tor employs a distinctive approach in contrast to con-
ventional communication methods. Instead of transmitting
traffic in its original packet format, Tor uses fixed-sized
cells of 512 bytes for data transmission, ensuring enhanced
anonymity. The process of transmitting data across the

FIGURE 1. Comparison of connections in normal Internet (a) and Tor
network (b).

Tor network involves the initial establishment of circuits,
which are formed by randomly selecting three ORs from
the Tor directory service. Constructing these circuits involves
encryption and decryption operations. Tor utilises a combi-
nation of symmetric and asymmetric encryption techniques
similar to the TLS protocol in principle, but Tor’s approach
involves more complex operations.

Tor strengthens its communication security by incor-
porating the TLS protocol and employing a combination
of cryptographic techniques. For the secure exchange of
public keys, Tor employs asymmetric cryptography using
algorithms like Diffie and Hellman [14] and RSA (Rivest-
Shamir-Adleman) [15]. Historically, Tor has utilised a 1024-
bit key encryption for these algorithms. However, it’s worth
noting that, as of today, a security parameter of 1024-bit
is considered insufficiently robust for Diffie-Hellman. For
bulk data transmission, it utilises symmetric cryptography,
specifically 128-bit AES (Advanced Encryption Standard)
in Counter (CTR) mode, to encrypt and decrypt cells.
As a result, data captured at a Tor client is encrypted with
AES three times. Additionally, Tor integrates various other
cryptographic schemes for diverse operations, ranging from
path selection to congestion management [1].

B. UNDERSTANDING ENCRYPTED PAYLOADS IN
NETWORK TRAFFIC
In this study, our primary focus lies on extracting features
from the encrypted payload of network packets, which
encompasses both headers and actual data or payload. The
headers contain plaintext metadata crucial for communica-
tion, while the payload may consist of either plaintext or
ciphertext, a product of encrypted payload. This encryption
process occurs at the Application Layer before transmission
to the Transport Layer. Several encryption protocols play a
role in this process, but we will exclusively focus on the
protocols present in the dataset utilised for this study. These
protocols include TLS, Secure Shell (SSH), and proprietary
protocols.
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FIGURE 2. Comparison of encrypted payload structures in nonTor (a) and
Tor networks (b).

Considering the encrypted payloads generated by Tor and
nonTor networks, Tor stands out for its distinctive encryption
methodology. In addition to the payload encryption at the
application layer of the TCP/IP model, Tor incorporates a
multi-layered encryption methodology before transmitting
data to its intended destinations. In contrast, nonTor packets
typically don’t incorporate any additional encryption layers.
Figure 2 provides a comparison of the number of encryption
layers in outgoing and incoming packets between nonTor and
Tor networks. In Tor, the packets are encrypted three times
at relay nodes, which results in three additional encryption
layers. In contrast, nonTor packets remain without these extra
layers, as they lack supplementary encryption. As emphasised
earlier, the primary objective of encryption is to ensure
that the encrypted data does not reveal any details about
its original content, even if adversaries have knowledge
about the encryption methods [6]. Ideally, the encrypted
payloads from both network types should look identical and
be indistinguishable. This aspect prompts us to investigate
further.

• Encrypted Payload Transmission Data is transmitted
on the Internet via TCP/IP. To ensure efficient network
communication, application data including encrypted
payload needs to be sent in smaller pieces. This is one
of the responsibilities of TCP that lies on the Transport
Layer, TCP breaks down the application data received
from the upper layers into smaller, transmittable units
called segments. Each segment contains a sequence
number, acknowledgement number, and other control
information in the header. The size of these chunks
is determined by the Maximum Segment Size (MSS)
parameter, which specifies the maximum size of packets
that can be sent over a network. MSS can vary based
on various factors, dependent on the specific TCP stack
implementation. Typically, MSS is calculated based on
theMaximumTransmission Unit (MTU) valuemanaged
at the Network Layer. While many implementations use
segments of 512 or 536 bytes [16], the actual value of
MSS can vary depending on the specific TCP stack and

configuration in use. This study utilises the segments of
the encrypted payload from Tor and nonTor networks for
analysis.

C. A BRIEF OVERVIEW OF MACHINE LEARNING IN
NETWORK TRAFFIC CLASSIFICATION
Older and limited conventional methods, such as payload-
based and port-based approaches, have led to the emergence
of machine learning as a crucial tool in network traffic
classification (NTC). In NTC, the general process of machine
learning involves collecting raw network traffic data from
various sources, pre-processing the data to clean and format
it appropriately, extracting relevant features to represent
the traffic patterns, labelling the data with corresponding
classes, selecting an appropriate machine learning algorithm,
training the model on the labelled data to learn patterns
and relationships, evaluating the model’s performance using
validation metrics, tuning hyperparameters for optimisation,
testing the model on unseen data to assess real-world
performance, and finally, deploying the trained model into
the network infrastructure for real-time traffic classification
and management.

The key techniques of the machine learning process
utilised in this study are presented as follows:

1) SUPERVISED LEARNING ALGORITHMS
In our experiment, we employed the Weka software
suite [17], a popular and versatile platform for machine
learning tasks. For our binary classification task, we selected
three supervised learning algorithms to compare their
performance. We utilised the J48 algorithm, a decision
tree classifier available in Weka. Decision trees (DTs) are
widely recognised for their simplicity, interpretability, and
robustness in handling missing values. We complemented
J48 with the RF algorithm known for enhancing performance
and preventing overfitting. Additionally, we considered the
IBk algorithm for its simplicity, effectiveness, and high
performance alongside the other chosen algorithms.

• J48 is a Java implementation of the C4.5 algorithm,
which is a widely employed DT algorithm used for
regression and classification tasks [18]. DTs are created
using a divide-and-conquer approach, wherein nodes are
recursively split into sub-nodes based on data attributes,
forming an inverted tree-like structure. J48 employs
the gain ratio as the splitting criterion, enhancing
its decision-making process during tree construction.
In this structure, the root node represents the topmost
attribute, branches correspond to decision rules, child
nodes represent attributes, and leaf nodes indicate
decision outcomes or classes.

• RF is an ensemble learning method that creates a more
robust and accurate model by combining multiple DTs.
Each DT in the RF is trained on a different random
subset of the data, achieved through bootstrapping [19].
Additionally, random feature selection is applied to
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form each decision tree, introducing diversity among the
trees. The RF model leverages aggregation, where the
predictions from multiple trees are combined to make
the final decision. By aggregating the results, the RF
model achieves better generalisation and higher accu-
racy compared to a single decision tree. The combination
of bootstrapping and aggregation is often referred to
as bootstrap aggregating or bagging, which ensures the
creation of diverse decision trees, effectively mitigating
overfitting [20], a common issue with individual DTs,
and ultimately enhancing the performance of the RF
model. However, one drawback of the RF approach is
its reduced interpretability compared to a single decision
tree. This is because the RF model operates as an
ensemble of multiple trees, making it challenging to
discern the internal logic behind its predictions.
In addition to the RF model, which employs decision
trees within the bagging framework, there are other
ensemble methods such as boosting and stacking.
All three can enhance performance robustness across
various scenarios, but they come with their challenges,
such as computational costs and difficulties in inter-
preting results. Boosting builds models sequentially
where each new model corrects the errors of its
predecessor. However, this approach may sometimes
lead to overfitting, especially in the case of GBM.
Stacking, on the other hand, involves training multiple
models and then using another model (a meta-learner) to
combine their predictions. One challenge with stacking
is the complexity involved in defining appropriate
models [21]. A study [22] highlighted that the accuracy
gains using bagging, boosting, or stacking might not
always be significant. In our context, we chose bagging
due to its ability to reduce variance without increasing
bias, making it particularly effective for complexmodels
like decision trees that are prone to overfitting. Bagging,
especially when implemented via techniques like RF,
offers a balance between performance and model
robustness.

• IBk refer to the kNN algorithm, which operates by
identifying the k most similar instances to a new
instance and predicting its label based on the majority
label among these neighbours. To prevent ties when
multiple neighbours share the same distance, an odd
value of k is typically selected. The choice of k is a
crucial hyperparameter that significantly impacts the
kNN algorithm’s performance. A larger value of k
enhances the algorithm’s robustness to noise, but it
may also reduce its accuracy. On the other hand,
a smaller value of k increases accuracy but may make
the algorithm more sensitive to noise. The selection of
an appropriate k-value depends on the specific dataset
and problem at hand. The kNN classifier commonly
employs the Euclidean distance function to calculate the
distance between two points or nearest neighbours. This
distance function measures the straight-line distance in

an Euclidean space, which is suitable for a wide range
of applications [23].

2) DATA SPLITTING
Data splitting involves dividing the available dataset into
subsets for training and testing. Our study used two
techniques to split data as follows.
• Percentage split: The dataset is divided into two
portions based on a specified percentage. Our study
employed a 70-30 percentage split, with 70% of the data
allocated for training and the remaining 30% reserved
for testing.

• Cross-Validation (CV): This is a widely-used technique
that divides the dataset into training and testing portions
to evaluate predictive models. It involves splitting the
data into n equally sized, random folds (often n=5 or
n=10). In each iteration, one fold serves as the testing set
while the remaining folds are used for training, and this
process is repeated n times. The objective is to reduce
bias and variance by thoroughly training and testing the
model on different subsets of data. For this study, a 10-
fold CV approach was utilised.

We used both data-splitting techniques. The percentage
split suffices for reliable performance estimates in small or
simple datasets, whereas a 10-fold CV is preferred for larger
or complex datasets to prevent overfitting. It is essential
to balance between robust performance and efficient use
of computational resources. In this study, for datasets with
about 10,000 instances or fewer, we applied CV. Conversely,
for datasets larger than approximately 10,000 instances,
we employed a percentage split.

3) PERFORMANCE METRIC EVALUATION
We evaluate classification model performance using the
following standard evaluation metrics. These metrics are
derived from the confusion matrix, which summarises the
model’s performance based on true positive (TP), false
positive (FP), true negative (TN), and false negative (FN)
predictions.
• Accuracy:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(1)

This metric provides an overall assessment of the
model’s correctness in terms of how well it can correctly
classify Tor and nonTor traffic.

• Precision:

Precision =
TP

TP+ FP
(2)

Precision gauges the accuracy of the positive predictions
made by the model. Precision measures the model’s
ability to correctly classify Tor traffic among those
instances it predicts as Tor.

• Recall:

Recall =
TP

TP+ FN
(3)
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Recall indicates the model’s ability to correctly identify
positive instances. Recall measures the model’s ability
to capture all actual instances of Tor traffic.

• F1-score:

F1-score = 2×
Precision× Recall
Precision+ Recall

(4)

The F1-score is the harmonic mean of precision and
recall, providing a balanced metric that’s especially
useful for imbalanced datasets. In the context of
classifying Tor and nonTor traffic, it measures the
model’s efficiency in accurately detecting Tor traffic,
factoring in both false positives and false negatives.

IV. KEY COMPONENTS OF TOR TRAFFIC ANALYSIS
This section introduces the essential elements employed in
our study’s analysis of Tor traffic.

A. DATASET DESCRIPTION AND SOURCE
In this study, we utilised UNB-CIC or ISCXTor2016
dataset [1] that has been widely used in the research
area of Tor traffic. The dataset encompasses both Tor and
nonTor traffic data, gathered from real-world interactions
via Whonix—a Tor-integrated open-source operating system
based on Linux. Whonix consists of two Debian GNU/Linux
virtual machines: a workstation and a gateway. Traffic
captured by the Whonix workstation pertains to regular
nonTor traffic, while traffic captured by the Whonix gateway
corresponds to Tor traffic, as it is routed through the
Tor network. The dataset was collected by simultaneously
recording network activities on both virtual machines using
a packet sniffing tool (e.g., Wireshark) and storing regular
traffic and Tor traffic as separate PCAP files in Tor
and nonTor directories. The UNB-CIC dataset contains
8 application types (Audio, Browsing, Chat, Email, FTP,
P2P, VDO and VoIP) that were generated from 18 software
applications. These applications employ several encrypted
Internet protocols, including TLS, SSH, and proprietary
protocols.

B. DATA GROUPING AND LABELLING
This dataset is categorised and labelled into eight application
types, aligning with the application types in the original
dataset. This categorisation results in eight binary classifi-
cations for statistical and machine learning purposes. These
eight groups of data ensure consistency and validity in the
quality of the results.

C. ENCRYPTED PAYLOAD FEATURES
Cryptography generates encrypted payloads through encryp-
tion, forming sequences of uniform hexadecimal characters
according to rigorous principles [6]. However, real-world
cryptography in computer networks can be vulnerable,
potentially leading to information leaks. Statistical analysis,
which has proven successful in text classification [24], [25],
[26], is being leveraged in the field of computer networks.

The content of encrypted payloads appears as unreadable
data and is displayed by network analyser tools in various
formats, such as binary, hexadecimal, and ASCII. Among
these formats, the binary representation comprises only 0s
and 1s, making it challenging to comprehend and manipulate
for larger values. In contrast, the hexadecimal format employs
a base-16 numbering system with 16 characters (0 - 9, a -
f), facilitating the interpretation and manipulation of larger
values. Furthermore, encrypted data frequently contains
non-printable characters that don’t map well to ASCII
characters, adding complexity to the analysis. In comparison,
the hexadecimal representation accommodates both printable
and non-printable characters, allowing for a more accurate
and comprehensive analysis of encrypted data. Consequently,
the study focuses on the character analysis of hex character
representation in 1-hex form, as a suitable method. Two sets
of features are considered:
• Set 1: F_0 - F_f: This feature measures the frequency
of each hexadecimal character distributed in encrypted
payloads. While encryption renders the payload unread-
able, the character frequencies remain observable.
By examining the frequency of each character, it is pos-
sible to identify which characters occur more frequently
and which are rarer.

• Set 2: R_0 - R_f: This feature calculates the ratio
of each hexadecimal character’s frequency to the total
frequency in the encrypted payload. Normalising the
frequency distribution ensures length normalisation and
independence, reducing biases or inaccuracies that may
occur when analysing encrypted payloads based solely
on absolute packet length.

To ensure the independence of features in Sets 1 and 2,
we employed the Pearson correlation coefficient. The Pearson
correlation coefficient, typically represented as r , quantifies
the relationship between two variables, X and Y . It is
computed using the following formula:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(5)

where:
• n represents the number of data points.
• Xi and Yi denote the individual data points for the
variables X and Y , respectively.

• X̄ and Ȳ are the means of X and Y , respectively.
A value of r close to 1 indicates a strong positive

relationship, while a value close to -1 signifies a strong
negative relationship. A value near 0 indicates that there is
no significant relationship between the variables.

V. PROPOSED METHOD
The proposed approach in this study comprises three main
steps. Initially, the raw data is subjected to pre-processing,
which includes tasks such as categorising the data into
different types, eliminating irrelevant packetsparticularly
those with unencrypted payloads or those tied to connection
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FIGURE 3. Diagram of the proposed approach.

phases—and extracting features based on the frequency
of hexadecimal characters suited for both statistical and
classification analyses. Secondly, inferential statistics are
applied to the pre-processed data to address RQ1, focusing
on differentiating Tor from nonTor traffic based on their
encrypted payload. Lastly, the pre-processed data is used for
classification and prediction to answer RQ2, evaluating the
efficiency of the proposed approach in distinguishing traffic
originating from Tor and nonTor networks.

A. DATA PREPROCESSING
1) DATA CLEANSING
In the digital era, numerous applications employ dynamic
ports, often as a strategic measure to evade specific network
restrictions or monitoring efforts. However, even widely
recognised ports do not guarantee the identification of a
particular application. For example, while Tor traffic can use
port 443, this port is conventionally associated with HTTPS.
Therefore, to ensure accurate data extraction, we closely
adhere to the dataset description utilised in this study. This
description, detailed within the corresponding paper [8],
pertains to data captured from the control environment of
each application within both the Tor and nonTor networks.
Following the data grouping and labelling discussed in
Section IV-B, two pivotal criteria are considered to filter
only the relevant packets during data extraction: (1) obtaining
packets containing payload data while disregarding network
connection-related packets, and (2) retaining only payloads
encrypted by the specific secure communication protocols.
Based on the security protocols presented in the dataset, TLS,
SSH, and secure proprietary protocols are taken into account.

Algorithm 1 (shown below) presents a systematic
approach for extracting relevant packets from the net-
work traces during the data cleansing process. For
each packet, the algorithm checks if the topmost layer

Algorithm 1 Data Cleansing Algorithm
Require: F : Network flow in PCAP format
Ensure: E : The encrypted payload
1: i← 0 //Initialise with the first packet in the PCAP file
2: while i < F do
3: Read packet i
4: if topmost_layer_protocol = ‘‘TLS’’ then
5: Read payload i
6: if payload i != ‘‘0’’ then
7: E ← Get tls.app_data //Extract non-empty TLS

payloads and append to the encrypted payload set E
8: end if
9: else if topmost_layer_protocol = ‘‘SSH’’ then

10: Read payload i
11: if payload i != ‘‘0’’ then
12: E ←Get ssh.encrypted_packet //Extract non-empty

SSH payloads and append to the encrypted payload set E
13: end if
14: else if topmost_layer_protocol = ‘‘TCP’’ or proprietary

protocol then
15: Read payload i
16: if payload i != ‘‘0’’ then
17: E ← Get tcp.data //Extract non-empty TCP

payloads and append to the encrypted payload set E
18: end if
19: end if
20: i← i+ 1
21: end while
22: return E

protocol is TLS, SSH, TCP, or a proprietary protocol.
If the payload is non-empty, it extracts the relevant data
using specific commands (‘tls.app_data’ for TLS,
‘ssh.encrypted_packet’ for SSH, and ‘tcp.data’
for TCP or proprietary protocols). The extracted payload
data is then added to the encrypted payload set (E). The
algorithm iterates through all packets in the network flow,
applying these steps to each. After processing all packets,
the resulting encrypted payload set (E) is obtained as the
output. This procedure ensures the extraction of only relevant
encrypted payload data from both Tor and nonTor networks
for further analysis while excluding unnecessary packets
from the dataset.

For the imbalanced extracted data, we applied the under-
sampling technique to balance the data to improve the quality
of results for statistical analysis andmachine learning. Table 2
presents the number of Tor and nonTor encrypted payloads
before and after data balancing across all application
types.

However, the number of Tor and nonTor encrypted
payloads after data balancing is divided further into 90% for
classification analysis and 10% for the unseen data prediction
phase in the machine learning approach.

2) FEATURE EXTRACTION
We extracted our proposed features into two sets of hex-
adecimal statistical calculations, referred to as the frequency
set and ratio set. These statistics are obtained using the
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TABLE 2. Number of Tor and nonTor encrypted payloads before and after
data balancing across all application types.

mathematical equations presented below.

Fci (p) =
|p|∑
k=1

δ(ci, p(k))

∀i ∈ {0, 1, . . . ,F}

δ(ci, p(k)) =

{
1, if ci = p(k)
0, otherwise

(6)

Equation 6 calculates the frequency of each hexadecimal
character in a single payload, Fci (p) represents the frequency
of hex character ci in payload p. The hex character ci ranges
from 0 to F . The payload p has a length denoted by |p|, and k
is an index variable iterating through each character in the
payload. The indicator function δ(ci, p(k)) takes the value
1 when hex character ci matches the k-th character of payload
p and 0 otherwise.

Rci (p) =
Fci (p)
T (p)

(7)

Equation 7 calculates the ratio of each hexadecimal
character in a payload, Rci (p) represents the ratio of hex
character ci in payload p. The hex character ci ranges from
0 to F . Fci (p) denotes the frequency of hex character ci in
payload p, as calculated using Equation 6. The payload p has
a total character count represented by T (p).
Regarding the equations, we implemented the feature

extraction process outlined in Algorithm 2.
This algorithm processes each packet in the extracted

encrypted payload (P), splitting the packet if it contains
a comma (‘‘,’’). For each packet, it counts the character
frequency in the payload (F) and normalises it to calculate
the ratio of individual hex characters (R). The algorithm then
returns the extracted features: F and R which will be utilised
for statistical analysis and classification tasks.

Using Algorithm 2, along with Equation 6 and Equation 7,
we derived 32 features which are comprehensively listed in
Table 3. These features were utilised in the classification
process. For easier reference, they are categorised into two
sets: Set 1 comprises the 16 hex character frequency features

Algorithm 2 Feature Extraction Algorithm
Require: P: Extracted encrypted payloads
Ensure: F : Frequency of individual hex characters in the encrypted

payloads
R: Ratio of the frequency of individual hex characters in

the encrypted payloads
1: for all packet in P do
2: if packet contains ‘‘,’’ then
3: Split and append a new row
4: end if
5: F ← Frequency count //calculated using Eq. 6
6: R← Ratio of F //calculated using Eq. 7
7: end for
8: return F , R

(F_0 - F_f) and Set 2 includes the 16 hex character frequency
ratio features (R_0 - R_f).

TABLE 3. List of features used in the analyses.

B. STATISTICAL METHOD
Inferential statistics serve to draw conclusions about pop-
ulations based on sample data. A prominent application of
inferential statistics is determining whether two independent
samples come from populations with identical distribu-
tions [27]. In this study, we employed the Mann-Whitney U
test, a nonparametric test, to determine if there’s a significant
difference in the specific characteristics of Tor and nonTor
encrypted payloads, especially when data is not normally
distributed.

For a valid application of the Mann-Whitney U test, there
are essential assumptions to consider. The two datasets being
compared should be independent, ensuring that observations
in one group are not influenced by those in the other.
The data should be either ordinal, meaning rankable,
or numerical. Additionally, the distributions of both groups
should be similar in shape; while this doesn’t necessitate
identical distributions, the general shape or pattern should be
consistent between the two. The dispersion or spread of data
in both groups should be relatively comparable, ensuring that
one group doesn’t have significantly more variability than the
other. The test yields a p-value ranging from 0 to 1. A p-value
less than 0.05 indicates statistical significance, suggesting
that there’s less than a 5% probability of observing the given
data (or more extreme) if the null hypothesis is true. If the
p-value is less than 0.05, we reject the null hypothesis and
accept the alternative hypothesis.
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Equation 8 presents the calculation of the Mann-Whitney
U test statistic as follows:

U = min(U1,U2) = min

 n1∑
i=1

Ri,
n2∑
j=1

Rj

 (8)

where:
• U is the test statistic.
• U1 andU2 represent the sum of ranks for Tor and nonTor
encrypted payloads, respectively.

• n1 and n2 are the sample sizes of the Tor and nonTor
payloads, respectively.

• Ri and Rj denote the ranks of the observations when both
sample sets are combined.

The resulting U statistic provides a basis to compute
the p-value, which is then used to determine the statistical
significance of the observed differences. A p-value less than
0.05, in our context, suggests that the characteristics of the
Tor and nonTor encrypted payloads are statistically different,
justifying the acceptance or rejection of our null hypothesis.

C. MACHINE LEARNING APPROACH
The machine learning approach was employed to evaluate
the performance of our proposed method. The problem in
our study fell under binary classification, needing labelled
data with extracted features for machine learning analysis.
This analysis included both the classification and prediction
stages.

In our study, themachine learningmodels were constructed
using WEKA version 3.8.3 with default hyperparameters.
For the J48 model, we used a confidence factor for pruning
set at 0.25, ensuring less aggressive pruning. The minimum
number of instances per leaf was set to 2. For the RF
algorithm, the forest was generated with 100 trees, and
each tree was grown to an unlimited depth. At each node,
the square root of the number of attributes was considered
for splits, and bootstrap sampling was used with a sample
size set at 100% of the training set. The IBk employed a
default of 1 nearest neighbor. The distance between instances
was calculated using the Euclidean metric, with no distance
weighting applied. A linear search algorithm was used to
identify the nearest neighbours.

1) CLASSIFICATION
The preprocessed data contains a binary classification of
eight application types with two sets of features: frequency
and ratio frequency. Ensuring the data is balanced helps
circumvent any biases and lays the foundation for consistent
performance across all classifiers. In the model training
phase, the balanced dataset is trained using three supervised
learning algorithms: J48, RF, and IBk as discussed in
Section III-C1. We proceeded with default parameters to
ensure a baseline performance that is generally acceptable.
While in-depth hyperparameter optimization could poten-
tially enhance model performance, it also demands sig-
nificant computational resources. Using default parameters

allowed us a straightforward comparison across algorithms
without the risk of introducing biases or overfitting that
specialized tuning might occur. After training, we evaluated
the models against a validation set, using performance
metrics such as accuracy, precision, recall, and F1-score.

2) PREDICTION
Following the training in the classification phase, the finalised
model was applied to new, previously unseen data to prevent
overfitting and to assess the model’s generalisation ability.
This is a crucial step, ensuring that our model does not only
fit our training data but also understands underlying patterns
and can generalize its learning to new instances. The model’s
performance during this phase gives us an indication of its
real-world applicability and robustness.

VI. STATISTICAL AND MACHINE LEARNING ANALYSES
The preprocessed data, divided into eight binary classes, each
containing two sets of features (frequency and ratio), were
analysed separately: first in the statistical analysis and then
in the machine learning analysis.

A. STATISTICAL ANALYSIS
The analysis aimed to address the question of whether
we can differentiate Tor from nonTor encrypted traffic
based on their encrypted payloads in RQ1. We compared
statistically encrypted payloads based on individual hex
character statistics using two sets of features, each containing
16 features, for both Tor and nonTor traffic across eight
application types. We used the Mann-Whitney U test to
determine the significance of feature differences between
the two traffic types. In accordance with the requirements
of the Mann-Whitney U test, it’s important to recognize
certain foundational assumptions. The two groups of data we
analyzed are independent of each other. The data under study
is discrete in nature making it rankable. Our inspection of the
distributional shapes and variances, done through histogram
visualizations, revealed obvious differences in the shapes of
distributions and their variances for feature set 1, influenced
by the payload size. In contrast, feature set 2, which is
independent of the payload size, displays no significant
differences.

The summarised results are presented in Table 4, high-
lighting features with p-values greater than 0.05, indicating
that they did not meet the conventional threshold for
significance, suggesting non-significant differences between
Tor and nonTor encrypted payloads. We can infer certain
resemblances between Tor and nonTor encrypted payloads
across different application types. Specifically, in the Audio
application type, the features R_5, R_c, and R_e, were found
to be indistinguishable between Tor and nonTor payloads.
This resulted in a similarity rate of 9.38% for both Tor and
nonTor Audio encrypted payloads. In the case of Chat, ten
features were identified, (R_1, R_5, R_6, R_7, R_8, R_9, R_a,
R_b, R_d and R_e) that led to a similarity rate of 31.25% for
both Tor and nonTor Chat encrypted payloads. Conversely,
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TABLE 4. Features with p-values > 0.05 in Tor and nonTor encrypted
payloads.

P2P had only one identical feature (R_0), resulting in a
resemblance rate of 3.13% for both Tor and nonTor P2P
encrypted payloads.

In conclusion, considering all features from all application
types, the Mann-Whitney U test findings revealed that
out of the 256 features analysed, 242 features demon-
strated significant differences between Tor and nonTor
encrypted payloads, resulting in a high differentiation rate of
94.53%. These results highlight the distinct characteristics of
encrypted payloads between the two traffic types, suggesting
inherent differences in their distributions. Leveraging these
differences could offer the method for developing automated
tools to distinguish between the two traffic types. The
following section provides the results of classification and
prediction using machine learning techniques.

B. MACHINE LEARNING
To address the question of whether we can efficiently
distinguish Tor traffic using the proposed approach in RQ2,
we conducted a machine learning analysis. For this purpose,
we employed three classification algorithms: J48, RF, and
IBk in Weka to perform classification and prediction across
eight binary classes. To ensure the robustness and reliability
of our experimental outcomes and account for potential
biases, we adopted a combination of percentage split and 10-
fold CV techniques for dataset partitioning in all experiments.

1) CLASSIFICATION RESULTS
The accuracy scores of different feature sets and classification
algorithms, applied to eight application types, are presented
in Table 5. For Set 1 features, J48 achieved an average accu-
racy score of 94.71% while RF and IBk demonstrated higher
scores of 96.53% and 96.42%, respectively. In contrast, for
Set 2 features, J48 showed a higher performance with a score

of 95.65%, while RF and IBk reached 92.62% and 73.77%
on average, respectively.

TABLE 5. Accuracy comparison of two feature sets using J48, RF, and IBk
algorithms.

The table reveals that Chat and Audio generally demon-
strated lower accuracy scores across most feature-algorithm
combinations. VoIP, on the other hand, consistently showed
the highest accuracies, nearing 100% for both feature sets
across all algorithms.

Overall, RF achieved the highest accuracy for classifying
Tor traffic using Set 1 features at 96.53%, while J48 led with
Set 2 features at an average accuracy of 95.65%.

Despite RF achieving the highest average accuracy score
for classifying Tor traffic using Set 1, the examination of
correlation coefficient values between Set 1 and packet size
reveals a significant association of Set 1 with packet size.
In contrast, Set 2 shows a very weak relationship with packet
size. As a result, we decided to disregard Set 1 due to its
susceptibility to the influence of packet size and instead,
concentrate our analysis on Set 2.

TABLE 6. Precision, Recall and F1 score results of J48 algorithm with
Set 2.

Table 6 presents the precision, recall, and F1 score
results of the J48 classifier employing Set 2 features.
The classifier displayed high performance across various
application types, achieving average precision, recall, and
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F1 scores of 0.93. This uniformity in scoring underscores
the classifier’s effectiveness in accurately identifying Tor
traffic. The individual application type results are consistent,
with scores ranging from 0.80 to 0.99, indicating some
variability in performance depending on the application
type. On average, the J48 classifier demonstrates overall
effectiveness with an aggregate average score of 0.93 across
all metrics, strengthening its reliability in classifying Tor
traffic across diverse applications.

TABLE 7. Comparative analysis of model performance in related studies.

Table 7 provides a comprehensive overview of various
studies on Tor traffic classification, focusing on different
approaches and their model performances. The approach
involving time-based features obtained frommultiple packets
has demonstrated exceptional scores in precision, recall, and
accuracy, surpassing the results of our method. However,
this approach has its challenges. Factors such as network
sensitivities, including asymmetric routing, can undermine
the reliability of time-based features. Additionally, generating
features from multiple packets may lead to complexities in
real-time processing and increased computational load.

On the other hand, the approach that utilises hex-based
features from packet headers of a single packet exhibits
promising results, Its deep learning algorithms may face
interpretability issues. Our study adopts a novel strategy,
focusing on hex frequency-based analysis of encrypted
payloads from a single packet. This method achieved an
average accuracy of 95.65%, which, while slightly lower than
some of the other methods, offers significant advantages.
Our approach addresses the limitations of the aforemen-
tioned methods by enhancing reliability in diverse network
conditions and ensuring more straightforward interpretability
of the model’s decision-making process. This balance of
accuracy and practical usability positions our method as a
viable alternative in the domain of Tor traffic classification.

2) PREDICTION RESULTS
To prevent overfitting—a crucial aspect of developing robust
machine learning models—it’s essential to evaluate the

finalised model using new, unseen data, ensuring it isn’t
merely memorising the training data. In our study, due
to a lack of additional unseen data, we allocated 5% of
the balanced data as unseen data to assess the model’s
performance as discussed earlier in the Data Pre-processing
step.

TABLE 8. Unseen dataset testing results with finalized model.

Table 8 presents the results of testing the finalised model
with an unseen dataset. Each application type was evaluated
on the number of unseen instances and the corresponding
accuracy. The model demonstrated high accuracy across all
application types, with the lowest accuracy achieved for
Email at 93.36% and the highest for VoIP at 99.80%. The
average accuracy across all application types was 98.06%.
These results demonstrate the reliability and generalisability
of the finalised model, as it successfully classified previously
unseen data with high accuracy, ensuring its capability to
classify new instances effectively.

VII. DISCUSSION
This section provides various dimensions that underpin our
study essential for a comprehensive understanding. We’ll
address threats to validity, discuss potential success factors,
detail the key role of feature selection, and directions for
future research.

A. THREATS TO VALIDITY
To ensure the credibility and validity of our research, several
precautionary measures were taken during the data analysis
process:
• Data Sets and Sample Size: We utilized large data
sets to strengthen the robustness of our results. The
employment of multiple datasets ensures that our
findings are not restricted to just a single data source but
have broader applicability and generalizability.

• Statistical Analysis: The assumptions requisite for our
inferential tests were met, ensuring the reliability of our
statistical conclusions.

• Machine Learning:We integrated cross-validation tech-
niques for the validity of our results. Model robust-
ness was assessed through performance metrics like
precision, recall, and the F1-score. Additionally, the
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model’s capability was further validated by evaluating
its performance on new, unseen data sets during the
prediction phase.

Through these rigorous measures, we aimed to minimize
threats to the validity of our research, ensuring our findings
are both dependable and replicable.

B. POTENTIAL SUCCESS FACTORS
While our results challenge the encryption theory’s assump-
tion that ciphertexts shouldn’t be distinguishable from
random strings of the same length, our method refrains from
disclosing message content. Instead, it differentiates Tor and
nonTor traffic through distinctive attributes. Various factors
contribute to our hex character statistics-based method in
identifying Tor traffic type efficiency.

• Packet size and data splitting process: Within the Tor
network, packets of varying sizes undergo an initial
split into 512-byte fixed-size cells before encryption at
the application layer. Conversely, in nonTor networks,
packets are first encrypted, followed by a data-splitting
process. This splitting can occur as either segmentation
(at the TCP layer) or fragmentation (at the IP layer).

• Three-Layer Encryption Scheme in Tor Network: A
significant variation between Tor and nonTor traffic is
their encryption schemes. Typically, nonTor networks
employ single-layer encryption at the application layer.
In contrast, the Tor network adds a sophisticated
multi-layered encryption scheme to the originally
encrypted payload.

• Distinct Encryption Algorithms and Parameters: Tor
and nonTor networks implement different encryption
algorithms and parameters, leading to distinctive char-
acteristics in their encrypted traffic.

• Homogeneous Traffic Pattern in Tor: In the Tor network,
packets are generated by a uniform encryption algo-
rithm, while nonTor packets originate from a multitude
of applications, each using distinct encryption protocols.
This creates a more homogeneous traffic pattern in Tor
compared to nonTor networks.

While our proposed explanations for the effectiveness of
our hex character statistics analysis approach are grounded
in plausible theories, they are currently assumptions. Further
research is required to validate these hypotheses and enhance
our understanding of the differences between Tor and nonTor
traffic.

C. SELECTION OF FEATURES
The results demonstrate that both sets of features are
effective in efficiently classifying Tor and nonTor traffic
using the selected algorithms, especially J48 and RF. While
Set 1 performed well in classification, it was found to
be influenced by packet size. On the other hand, Set
2 achieved slightly lower classification performance but
was not affected by packet size. However, it required more
computational resources for feature computation compared

to Set 1. As a result, it is important to consider the trade-off
between classification accuracy and computational resource
requirements when choosing between the two feature sets.

D. FUTURE WORK
Despite the promising results, there are opportunities for
future research to further refine and enhance the performance
of our classification model. One vital area for improvement
is feature selection. In this study, we used a comprehensive
set of features from Set 2. However, not all features
might contribute equally to the classification task; some
might only have a limited impact or could introduce noise.
By employing feature selection techniques, such as Recursive
Feature Elimination (RFE), Mutual Information, or Feature
Importance from tree-based models, we can systematically
prune the less relevant features. This could not only reduce the
computational resource requirements but may also improve
classification accuracy, offer a safeguard against overfitting,
and enhance the model for better interpretability.

VIII. CONCLUSION
This study has provided insights into the distinct charac-
teristics of encrypted payload of Tor and nonTor networks
from two key perspectives. Firstly, by employing the
Mann-Whitney U test for statistical analysis, the research
unveiled a remarkable differentiation rate of 94.53% among
the 256 analysed features. This effectively highlights the
substantial variations of character analysis between encrypted
payloads of Tor and nonTor traffic, leading to the second
aspect: the classification analysis. This phase demonstrated
robust accuracy scores across diverse feature sets and
algorithms with the highest average accuracy for Tor traffic
classification reaching 96.53% using Set 1 with RF and
95.65% using Set 2 with J48. The evaluation of the model
with an unseen dataset further affirmed its reliability, achiev-
ing the highest average accuracy of 98.06%. Our findings
challenge conventional encryption theory assumptions that
the encrypted data should leak no information, emphasising
the efficiency of our approach in differentiating between
traffic types based on encrypted payload while maintaining
message content confidentiality. While our justification
is theoretically grounded, our explanations need further
exploration for validation. Future research could extend this
methodology to diverse encryption protocols within various
applications. Overall, this work introduces a novel approach
to Tor traffic analysis, focusing on a single encrypted
payload, independent of its position and flow features within
the traffic flow. It marks a substantial advancement in
network security enhancement and monitoring techniques,
overcoming the limitations of conventional methods that rely
on the computation of flow features from multiple packets.
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