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ABSTRACT To ensure comfort and longevity of vehicle components, it is important to suppress
low-frequency transient vibrations in the powertrain. This study proposes a unique technique for active
vibration control that incorporates six rules-based fuzzy logic compensation. The technique addresses
changes in control periods of an actuator over time. Firstly, a model prediction technique is used with a
sampled-data controller (SDC) to address the highest possible phase delay in the control input caused by
the fluctuating control period. In addition, fuzzy sets are utilized to define the changing renewal timings of
the control input, which are distinct from the regular timings used by the periodically operated SDC. These
fuzzy sets are named ‘‘Nearly previous timing’’ and ‘‘Nearly upcoming timing’’. This study employs six
inference rules to achieve fuzzy compensation that resembles human intuition. These rules utilize output
variables defined by linguistic fuzzy sets, such as ‘‘Similar to commands from SDC’’ and ‘‘Very similar to
commands from SDC’’, making the inference process more flexible. Due to the utilization of the fuzzy sets
and periodic control signals provided by the SDC, it is possible to reasonably deduce unknown control inputs
at various update timings. To evaluate the effectiveness of the control scheme, simulations and experiments
are conducted using an actual test setup to investigate its damping performance. The experimental findings
indicate that the new active damping technique effectively minimizes transient powertrain vibrations.
Furthermore, comparative studies with previous control systems indicate the improved performance and
robustness of the proposed approach.

INDEX TERMS Fuzzy reasoning, restriction on control timing, sampled-data control, vehicle powertrain,
vibration reduction.

I. INTRODUCTION
Vibrations produce noise, fatigue failure, and discomfort, all
of which have a negative impact on mechanical systems.
As a consequence of the present trend toward downsiz-
ing, more comfort, less weights, and better performance,
there is a higher requirement for vibration suppression tech-
nologies [1], [2], [3], [4]. Active vibration damping has
drawn a lot of study attention because it has the ability to
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provide powerful dampening effects for complex mechanical
systems [5], [6].

Drivetrains of vehicles may undergomomentary vibrations
when there are abrupt variations in torque or gear backlash.
These oscillations have a negative impact on factors such as
drivability, passenger comfort, and the lifespan of the vehicle.
As a result, numerous studies have focused on findingways to
control these transient vibrations in powertrains. Many con-
trol strategies have been investigated, including sliding mode
control [7], [8], switching control of linear-quadratic regula-
tor (LQR) [9], andmodel reference adaptive Linear Quadratic
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Tracking (ALQT) control [10]. Additionally, model predic-
tive control (MPC) is widely used in many attempts [11],
[12], [13], [14]. The complicated properties of powertrain
systems, such as nonlinearities and mechanical constraints,
are however accommodated by standard MPC through com-
putationally intensive optimization calculations and elaborate
modeling.

To implement active vibration control, an actuator must be
utilized. Among the available options, engines have become
a preferred choice because of their cost-effectiveness and
high power output, serving as power sources for powertrains.
Recently, there has been an increasing focus on the advance-
ment of engines that operate with clean energy sources like
hydrogen and biomass fuels [15]. This development aligns
with the integration of these new engines into hybrid vehi-
cles (HVs) that already exist, thereby generating significant
interest in the field [16], [17]. As a result, active vibration
control utilizing an engine [18] has become a significant area
of focus.

However, the limitations on engine control periods create a
more difficult situation for actively dampening powertrains.
For instance, the control input, which is the engine torque,
cannot be adjusted at regular intervals as shown in Fig. 1.
The occurrence of updates is limited to a particular angle of
rotation of the crankshaft, leading to the investigations of the
following problems as the primary focus of this study.

FIGURE 1. Constraint on the control cycle due to actuator dynamics.

Issue (a): First of all, while using digital vibration control,
the discretization accuracy is degraded since the update inter-
vals are much longer than the intended resonance frequency
that needs suppression.

Issue (b): Furthermore, variances in vehicle speed con-
tribute to differences in the time intervals of control for the
actuator (i.e., time-fluctuated control period). This feature
consequently induces the time-fluctuated timings of updates
of the control input.

Earlier research has concentrated on examining the behav-
ior and management of powertrain control systems, which
include those powered by HV engines [18], [19], [20],
[21], [22]. The use of real-time predictive controllers has
shown potential in mitigating engine delay [18], [19].
Another effective strategy to combat the slow reaction of
engines is to include an extra active damping actuator, i.e.,
a friction brake [20]. To deal with the changing dynamics
over time, an adaptive disturbance observer-based harmonic
rejection technique was used in another investigation [21].

Nevertheless, the conventional approaches mentioned ear-
lier failed to address both issues (a) and (b) at the same
time. In addition, there have been few attempts to priori-
tize simplicity in control systems and create a method that
is understandable (reasonable) and has an easy-handling
compensation mechanism. Although MPC-based approaches
hold potential, accuratelymodeling complex powertrain char-
acteristics within the limitations of the control period presents
challenges in achieving a straightforward strategy.

Previously, we presented a vibration control system that
confronted two problems: issues (a) and (b), which arise
from the limitation on control period, to a certain extent [23].
To address discrete errors and the phase delay in the control
input caused by variations in the control period, we employed
a combination of a sampled-data H2 controller and an MPC
compensation mechanism in this system. Nevertheless, our
prior method solely addressed the highest amount of phase
lag in control inputs and failed to consider variations in the
timing of updates, resulting in insufficient compensation for
issue (b).

Fuzzy logic provides a quantitative approach to han-
dle uncertainties, such as linguistic interpretations, through
the utilization of membership functions and if-then logical
inference rules. This effective technique allows for the repre-
sentation of intricate systems. Notably, it excels in scenarios
where accurate modeling of the system is challenging. For
instance, it is employed in various intricate engineering prob-
lems [24] such as control system design [25], [26] including
active powertrain vibration controllers [27].

To summarize the above, we give a brief overview of the
existing approaches and why a novel control technique is
needed. Although it is necessary to suppress low-frequency
vibrations (primary resonance) in the powertrain for vehicle
comfort and longevity, there are the two problems that hinder
the high-performance vibration suppression, as indicated by
issues (a) and (b) above. However, the existing approaches
mentioned above cannot sufficiently address both issues (a)
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and (b) at the same time. Therefore, a novel control strategy
is needed to tackle the two issues by a straightforward and
easy-handling compensation mechanism.

The objective of this study is to develop a drivetrain active
damping controller that can deal with the above issues (a)
and (b) simultaneously. As a goal of this objective, the effec-
tiveness as well as the robustness of the proposed controller to
the time-fluctuated control periods needs to be demonstrated
in simulation and experimental verifications.

This paper introduces an innovative approach to actively
control vibrations in the drivetrain of a vehicle by consid-
ering variable timings for updating control inputs. We use a
sampled-data H2 controller along with fuzzy logic to over-
come the problem of irregular intervals for updating inputs.
Issue (a) (i.e., effects of controller’s discretized errors) is
dealt with by the sampled-data H2 controller [23], while
issue (b) (i.e., variations in the update timing ) is dealt with
via fuzzy logic. This strategy revolves around utilizing fuzzy
logic to handle situations where the timing of input updates
deviates from the fixed periodic controller. The approach
involves representing the update timings using fuzzy sets such
as ‘‘Nearly previous timing,’’ ‘‘Nearly upcoming timing,’’
and ‘‘Nearly intermediate timing.’’ By combining control
signals from the fixed periodic controller, the fuzzy sets, and
fuzzy rules designed to imitate human intuition, we determine
control inputs at uncertain fluctuating times. Although the
basis of such fuzzy compensation has been established in
our studies [27], [28], the previous approach has only four
inference rules composed of two fuzzy output variables. Due
to its lack of flexibilities (flexible inferences) with abundant
linguistic expressions, it may result in deteriorations of the
robustness. To improve the robustness, this study presents a
new compensation strategy based on six fuzzy rules including
abundant linguistic output variables, leading to a rich diver-
sity of control commands.

The principal contribution of this study is to propose
a novel drivetrain vibration controller that addresses the
issue (a) by the application of SDC while handling the
issue (b) by a six rules-based fuzzy compensation approach.
The paper’s three unique contributions can be more detailed
as follows:

(C1). Compared to the existing works [18], [23], the new
contribution of this paper is to address the actuator’s variable
timings in updating control input (issue (b)) by develop-
ing a six rules-based fuzzy compensation approach. This
approach simplifies the compensation mechanism by emulat-
ing qualitative decisions resembling human thinking. Another
advantage is that the fuzzy compensation eliminates the need
for intricate and detailed modeling of control input update
timings.

(C2). In order to overcome the issue of discretization errors
(issue (a)) that are increased for a digital controller due to an
extended control period, this study introduces a sampled data
controller (referred to as SDC).

(C3). In contrast to a prior study that only demonstrated
simulation data and lacked essential experimental tests [28],

this article confirms the proposed approach through simula-
tions and experiments utilizing a physical test device. The
experimental setup involves a simplified version of a real
vehicle drivetrain. The simulations and experiments confirm
the robustness of the proposed approach in dealing with
substantial time-changes in the control period.

II. EXPERIMENTAL SYSTEM
A. EXPERIMENTAL DEVICE
A basic experimental device, whose specifications can be
found in Table 1, is employed as the controlled plant.

To examine the fundamental aspects of vibration occur-
rences resulting from sudden shifts in the propelling
force and the impacts of backlash, a simplified config-
uration is employed to replicate a real drivetrain [29],
[30], [31] (see Fig. 2). This configuration emulates a

FIGURE 2. Abstract drivetrain mechanism: (a) dynamical model and
(b) experimental apparatus.
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TABLE 1. Parameters of drivetrain model.

three-degrees-of-freedom oscillation model comprising mass
points (ME , mG, and MB). To represent backlash, a dead-
zone band is introduced, delimited by leaf springs on both
sides of mG. More information on the test instrument can be
found elsewhere [29], [30], [31]. The actuator is constituted
by the motor and the control period limitation, which will be
discussed later.

B. MODEL
The experimental device contains backlash and other non-
linearities. However, a linearized model is necessary for
the construction of the base vibration controller. The time
varying linear state equation of the plant is given as [23],
[29], and [30], see (1)–(4), as shown at the bottom of the
page, where wp stands for the disturbance, which includes
the effect of backlash, and u stands for the control input. The
dead-zone feature of backlash is formulated via switching on
the parameter Sw. This formulation has been provided by [32]
and [33]

F = Sw · KG · (XE − xG) + OKG

Sw =


1, XE − xG > |δ|

1, XE − xG < − |δ|

0, |XE − xG| ≤ |δ|

,

OKG =


− |KG × |δ|| , XE − xG > |δ|

|KG × |δ|| , XE − xG < − |δ|

0, |XE − xG| ≤ |δ|

(5)

where, in the SDC design, |δ| and F , respectively, stand for
the width of the dead zone and the force of the rigidity KG.
Sw in this design has a value of 1.0.

III. ACTUATOR’S LONG PERIOD OF CONTROL WITH TIME
VARIATIONS
A. CONSTRAINT ON CONTROL PERIOD
The experimental setup shown in Fig. 2(b) contains a motor
functioning as the actuator. We focus on the essential aspect
related to the limitation of control period, in principle, equiv-
alent to that of a real engine, in order to examine issues (a)
and (b) on the control period. The digital signal processor
(DSP) employs software to enforce this limitation for the
motor. In this study, issues (a) and (b) are owing to the
control period restriction, which is incorporated into the soft-
ware of the experimental system. The overall closed-loop
experimental setup is depicted in Fig. 3(a). The timing for
updating the actual control inputs is limited (fluctuated)
due to longer and time-varying control periods specified
by the aforementioned software, despite the capability of
a control system in the DSP to calculate control input
commands for vibration control at shorter and consistent
intervals.

Fig. 3(b) illustrates the patterns of time-fluctuated control
periods. The studies examined two instances of fluctuation,
referred to as Cases 1 and 2, which are similar to the ones
shown in Fig. 3(b). Depending on these fluctuating control
intervals, the DSP maintains a consistent value for the actual
control input applied to the motor. In Case 1 of Fig. 3(b),
the frequency at which the actuator’s control input is updated
varies between 2.0 and 4.0 s, occurring approximately 5 to
9 times the vehicle’s resonance frequency of 4 Hz, which is
the desired frequency to be attenuated.

ẋp = Apxp + Bp1wp + Bp2u (1)

yp = Cpxp + Dp1wp + Dp2u (2)

Ap =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−
(KD+KC )

MB

KD
MB

0 −
(CD+CC )

MB

CD
MB

0
KD
mG

−
(SwKG+KD)

mG
SwKG
mG

CD
mG

−
(SwCG+CD)

mG
SwCG
mG

0 SwKG
ME

−
SwKG
ME

0 SwCG
ME

−
(SwCG+Ccl )

ME


Bp1 =

[
0 0 0 0 1

mG
−

1
ME

0 0 0 1
MB

0 0

]T
,Bp2 =

[
0 0 0 0 0 1

ME

]T
,Cp =

[
1 0 0 0 0 0

]
Dp1 = 0,Dp2 = 0 (3)

xp =
[
XB xG XE ẊB ẋG ẊE

]T (4)
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FIGURE 3. The experimental setup: (a) a closed-loop configuration, and
(b) two instances where the control cycle is fluctuated.

B. TIMING VARIATIONS FOR UPDATES
Fig. 4 depicts a graphical representation of the control input
command acquired from a controller (illustrated as a solid
black line) and the corresponding real input provided by the
actuator (displayed as a dashed red line). Figure 4 clearly
illustrates the main problem this work seeks to address.

FIGURE 4. Varying timings of control input updates compared to those of
a fixed periodic SDC.

The actuator and the fixed periodic controller, which runs
at a period of 1Tcont , have different update timings since the

control period fluctuates. The timing error leads to a phase
lag in the control input, which diminishes the efficiency of
vibration control.

The purpose of this research is to establish the suitable
control instructions for the actuator during the time interval
(T3), with the condition that k1Tcont < t< (k+1)1Tcont ,
based on the given periodic control command values u(k) at
(T1) t = k1Tcont and u(k + 1) at (T2) t = (k+1)1Tcont .

IV. PROPOSED METHOD FOR MITIGATING VIBRATIONS
THROUGH ACTIVE DAMPING
A. ALGORITHM FOR MODEL PREDICTION UTILIZING SDC
The proposed method is comprised of two components,
as demonstrated in Fig. 5. It involves utilizing the SDC [23]
for a model predictive algorithm, along with incorporating
straightforward fuzzy logic compensation to consider the
variances in the timing of control input updates.

FIGURE 5. The vibration control approach presented in this study:
(a) overall control system, and (b) relationship between the fuzzy
inference part and SDC in the model predictive part.

11976 VOLUME 12, 2024



H. Yonezawa et al.: Novel Powertrain Vibration Controller With Six Rules-Based Fuzzy Inference

Employing digital controllers under an extension of the
update intervals for the input leads to highlighting dis-
cretization error issues. The control performance of a digital
vibration controller degrades as the actuator control period
is extended, according to earlier studies [23], [30]. However,
the use of a sampled data controller (SDC) can circumvent
this problem [34], [35]. The SDC can be designed and imple-
mented in a way that avoids discretization. Hence, we employ
a fixed periodic sampled data H2 controller [34], [35] in this
scenario with a calculation period denoted as 1Tcont , owing
to its simplicity and ease of implementation.

The digital control form for the sampled data H2 con-
troller is directly derived from the continuous-time plant
mentioned in Eqs. (1)–(4). Therefore, there is no need for
discrete approximations in the implementation process. There
are more details on the controller design [23]. The resulting
controller is expressed as a discrete-time state equation,

xc (k + 1) = Acxc (k) + Bc (XB (k1Tcont) − r (k1Tcont))

(6)

u (k) = Ccxc (k) + Dc (XB (k1Tcont) − r (k1Tcont))

(7)

where the target signal, denoted as r (k1Tcont), represents
a smooth step reference without any oscillations when there
is a sudden change in the propelling force of a real vehicle.
The state variable in the SDC is xc (k), where k indicates the
number of computation steps at1Tcont (i.e., SDC’s periodical
steps). The measured output, yp = XB, corresponds to the
vibration of the body of the vehicle. At step t = k1Tcont ,
the control command u(k) is determined by combining
Eqs. (6) and (7), along with the feedforward input of the
reference signal [29], [30].

Next, the control period, which changes over time, causes
phase delays in the control input that drives the actuator.
These delays are illustrated in Fig. 4 and contribute to the
amplification of vibrations in the vehicle body. In this context,
only the largest phase delay,1Tcont , is considered. The future
(upcoming) control signal u (k + 1) from the SDC at step
t = (k + 1) 1Tcont must be acquired at step t = k1Tcont in
order to perform phase-delay compensation for the maximal
delay 1Tcont . To achieve this, a model predictive technique,
which utilizes the SDC and a time-varying linear Kalman
filter, is implemented [23]. From the viewpoint of the overall
control system shown in Fig. 5 (a), the contribution of the
model predictive technique with the SDC is to provide peri-
odical control signals u(k), u(k + 1) · · · . Then, the periodical
control signals u(k) and u(k + 1) are delivered to the fuzzy
inference part to compute control signals u(t∗) at fluctuating
update timings. The predicted value of u(k+1), which should
be known at t = k1Tcont , is required for performing the
fuzzy inference compensation explained in the next section.
Using the time-varying state equation of the plant model,
this approach carries out iterative-simulation-based predic-
tion with a small period 1Tpredict . Then, operating the SDC
in (6) and (7) results in the delivery of u (k + 1) of the next

step t = (k + 1) 1Tcont . This predictive simulation occurs
at step t = k1Tcont (see Fig. 5). Therefore, the model
predictive algorithm is composed of estimation of an initial
condition by the Kalman filter, online simulation of the plant
dynamics, and execution of the SDC to derive u (k + 1). This
algorithm can be implemented with a for-loop from i = 1 to
Npre = (1Tcont/1Tpredict ) + 1. i is loop counter, and Npre is
the maximum number of iterations for the model prediction.
Specifically, during the time interval from (T1) t = k1Tcont
to (T2) t = (k+1)1Tcont , with Npre steps, the plant is
simulated in real-time as

xpd [i+ 1] = Apdxpd [i] + Bp1dwp [i] + Bp2du [i]

=
{
I6×6 + 1Tpredict · Ap (t)

}
xpd [i]

+
{
1Tpredict · Bp1 (t)

}
wp [i]

+ {1Tpredict · Bp2 (t)}u [i] (8)

ypd [i] = Cpdxpd [i] + Dp1dwp [i] + Dp2du [i]

= Cp (t) xpd [i] (9)

where i = 1, 2, · · ·Npre and Npre = (1Tcont/1Tpredict ) + 1.
Based on the time-varying switched linear state equation
of the experimental apparatus, which includes nonlinearities
such as backlash, the online calculations are performed for
the discrete-time systems (8) and (9) [29], [30]. The con-
trol input used to operate the actuator is denoted as u[i],
while the external input taking backlash into consideration is
represented by wp [i].
Initial conditions are necessary for the simulation. The

time-varying switched linear state equation and Kalman fil-
tering theory are utilized to estimate the value of the state
variable xpd [i] [23], [31].

The SDC (Ac, Bc, Cc, Dc) is represented in state-space
form, and it generates the output u(k + 1) at the next com-
putation instant t = (k+1)1Tcont , with 1Tcont being the
computation period. As a result, by employing the SDC incor-
porated within the real-time simulation, the value of u(k + 1)
can be estimated at the time step t = k1Tcont .
The six rules-based fuzzy inference is combined with the

SDC and model prediction part by delivering the periodical
control signals u(k) and u(k + 1), which are outputted from
the SDC in the model prediction part, to the fuzzy inference
part. In other words, the fuzzy inference part and the SDC
are connected in series via the transmission of u(k) and
u(k + 1). The relationship between the two (i.e., how the
fuzzy inference is combined with the SDC) is illustrated in
Fig. 5(b). Based on u(k) and u(k+1) given from the SDC and
the model prediction, the six fuzzy rules execute inference to
compute control signals u(t∗) at fluctuating update timings.
In summary, the step-by-step process of the model

prediction technique is indicated below.
(Process 1): The time-varying linear Kalman filter esti-

mates the state variable xpd [i = 1]. Then, xpd [i = 1] is
delivered to the model prediction part as the initial condition.

(Process 2): At t = k1Tcont , the plant model is
simulated in real-time from (T1) t = k1Tcont to
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(T2) t = (k+1)1Tcont . Specifically, the state-space represen-
tation (8) and (9) is iteratively operated with i = 1, 2, · · ·Npre
and Npre = (1Tcont/1Tpredict )+1. As a result, we can obtain
the output ypd

[
Npre

]
.

(Process 3): According to ypd
[
Npre

]
and r , the SDC (6)

and (7) is operated to compute u(k + 1). This operation is
executed at t = (k+1)1Tcont within the real-time simulation
(i.e., i = Npre within a for-loop).
(Process 4): u(k) and u(k + 1), which have been outputted

from the SDC, are then delivered to the six rules-based fuzzy
inference part, as shown in Fig. 5(b). Based on u(k) and u(k+

1) given from the SDC, the six fuzzy rules execute inference
to compute control signals u(t∗) at fluctuating update timings.

B. SIX RULES-BASED FUZZY INFERENCE EMPLOYED TO
ADDRESS THE ISSUE OF COMPENSATING FOR
DIFFERENCES IN THE TIMING OF CONTROL INPUT
UPDATES
A straightforward method of fuzzy inference compensation
is introduced to determine the control input values that are
updated at varying timings between t = k1Tcont and t =

(k+1)1Tcont (i.e., k1Tcont < t< (k+1)1Tcont ). The con-
cept of the fuzzy strategy is shown in Fig. 5.
If the update timing of the actuator aligns perfectly with

either t = k1Tcont or t = (k+1)1Tcont , it is logically
acceptable to refer to u(k) or u(k + 1) as the control input,
respectively. However, when the timing of the control input
update varies, it deviates from the periodic sampled-data H2
controller’s timing within the range of k1Tcont < t < (k+1)
1Tcont . In such cases, the following inference issue, which is
based on known information (e.g., if t = (k + 1)1Tcont then
u(t) = u(k + 1)), needs to be considered to derive the control
inputs updated at uncertain timings.

The proposed approach is based on the concept that
changes in the timing of control input updates can be repre-
sented by fuzziness. The predetermined periodic computation
timings: the future (i.e., upcoming) step (t = (k + 1) 1Tcont )
and the past (i.e., previous) step (t = k1Tcont ) of the
sampled-data controller are linked with fuzziness. Specif-
ically, fuzzy sets such as: ‘‘Nearly previous step t =

k1Tcont ’’, ‘‘Nearly intermediate step t = (k + 1
/
2)1Tcont

before it’’, ‘‘Nearly intermediate step t = (k + 1
/
2)1Tcont

after it’’, and ‘‘Nearly upcoming step t = (k + 1)1Tcont ’’
are defined to address control input update timing that devi-
ates from that of a fixed periodic controller. To handle the
fluctuating update timing, the degree of proximity (closeness)
to these four update timings is evaluated within the range of
k1Tcont < t < (k + 1)1Tcont . Additionally, fuzziness on
control inputs is also employed to incorporate qualitative and
intuitive (i.e., human-thought-like) knowledge that suggests

(Knowledge 1): An unknown control input updated close
to t = k1Tcont (t = (k + 1)1Tcont ) should be similar to
u(k) (u(k + 1)).
That is, fuzziness is linked to the control commands u(k)

at the previous step and u(k + 1) at the upcoming step. The
two commands are computed in Section IVA.

A suitable control input can be determined by combin-
ing fuzzy sets with periodic control signals from SDC and
accurately analyzing the factor of how closely the fluctu-
ating update timing aligns with the predetermined steps.
Compared to the previous fuzzy inference [27], [28], this
study introduces four fuzzy sets: ‘‘Similar to u(k)’’, ‘‘Similar
to u(k + 1)’’, ‘‘Very similar to u(k)’’, and ‘‘Very similar to
u(k + 1)’’. These linguistic fuzzy output variables are aimed
at providing more various candidates of the resultant control
commands by the fuzzy compensation.

Our fuzzy rules also evaluate the rate of change with time
in the control output. Specifically, we evaluate the absolute
value of the vibration in the vehicle body velocity, denoted as
ẏp = ẊB, for the drivetrain in Eqs. (1) and (2). The inference
rules are based on the following intuitive concept:

(Knowledge 2): If the fluctuation of the control output
increases in the future, the impact of the phase delay in
the control input will become more severe. Hence, when the
update timing occurs during the latter half of the control
period, the predicted control input provides improved com-
pensation for the phase delay.

As a result, this study offers the enhanced fuzzy compensa-
tion made up of the six rules illustrated below. These six rules
are based on the abundant linguistic expressions of the output
variables. They are combinations of the fuzziness such as
‘‘Similar to. . . ’’ or ‘‘Very similar to. . . ’’ and the periodic opti-
mal commands ‘‘u (k), u (k + 1), u (k + 2). . . ’’ from SDC.
The proposed six rules-based inference offers a higher level
of adaptability and flexibility in managing fluctuations in the
timing of control input updates.
(Rule 1):

IF (t∗ is nearly upcoming step (1Tcont ))
THEN (u(t∗) is similar to u(k + 1)) (10)

(Rule 2):

IF (t∗ is nearly previous step (0))
THEN (u(t∗) is similar to u(k)) (11)

(Rule 3):

IF (t∗ is nearly intermediate step (
1
2
1Tcont ) after it)

and (
∣∣ẏp∣∣ is Big)

THEN (u(t∗) is very similar to u(k + 1)) (12)

(Rule 4):

IF (t∗ is nearly intermediate step (
1
2
1Tcont ) after it)

and (
∣∣ẏp∣∣ is Small)

THEN (u(t∗) is similar to u(k + 1)) (13)

(Rule 5):

IF (t∗ is nearly intermediate step (
1
2
1Tcont ) before it)

and (
∣∣ẏp∣∣ is Big)

THEN (u(t∗) is similar to u(k)) (14)
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(Rule 6):

IF (t∗ is nearly intermediate step (
1
2
1Tcont ) before it)

and (
∣∣ẏp∣∣ is Small)

THEN (u(t∗) is very similar to u(k)) (15)

where the input variable, t∗, is specified as t∗ = t − k1Tcont
within the range of 0 < t∗ < 1Tcont with regard to time t
(k1Tcont < t < (k + 1)1Tcont ). The control input at that
moment (t∗) is represented by the output variable u(t∗). Due
to its simplicity, Tsukamoto-type fuzzy inference [36], [37]
is used in this case for Rules 1–6.

(Rule 1) is operated to apply the above-mentioned (Knowl-
edge 1) for u(k + 1) already calculated at t = (k + 1)1Tcont .
Concretely, the intuitive knowledge, ‘‘The closer a control
input update timing is to t = (k + 1)1Tcont , the more similar
its proper value should be to u(k + 1)’’, is translated into
(Rule 1). In the same manner, the role of (Rule 2) is to
apply (Knowledge 1) for u(k) calculated at t = k1Tcont .
During the latter half of the control period, (Rule 3) and
(Rule 4) consider the above-mentioned (Knowledge 2). They
help the inference process judge how much the utility of the
phase delay compensation needs to be introduced. In their
operations, this decision depends on not only timings but also
the rate of change in the control output. In particular, the
priority is focused on u(k + 1) because (Rule 3) and (Rule 4)
use (Knowledge 2) in the latter half of the control period.
In (Rule 3), the effect of u (k + 1) is reflected more intensely
in the output by using the linguistic expression ‘‘Very similar
to u(k + 1)’’. In the same way, (Rule 5) and (Rule 6) are
operated to consider (Knowledge 2) during the first half of
the control period.

The operation of these rules is based on the combina-
tion of (Knowledge 1) and (Knowledge 2), i.e., a blend of
Rules 1, 2, 3, 4, 5, and 6., resulting in reasonable control
signals.

For the input variable t∗, the fuzzy sets ‘‘nearly upcoming
step (1Tcont )’’, ‘‘nearly previous step (0)’’, ‘‘nearly interme-
diate step (1/21Tcont ) after it’’, and ‘‘nearly intermediate step
(1/21Tcont ) before it’’ are defined as triangular membership
functions htupcoming, h

t
previous, and h

t
middlea, and h

t
middleb respec-

tively. ‘‘Big’’ and ‘‘Small’’ are represented by the functions
hcyBig and h

cy
Small , respectively, for the input variable

∣∣ẏp∣∣,.
htupcoming =

1
1Tcont

· t∗ (16)

htprevious = −
1

1Tcont
· t∗ + 1 (17)

htmiddlea =



2
1Tcont

(
−

(
t∗ −

1
2
1Tcont

)
+

1
2
1Tcont

)
,

t∗ ≥ 1Tcont
/
2

0,
t∗ < 1Tcont

/
2

(18)

htmiddleb =


2

1Tcont
· t∗, t∗ ≤ 1Tcont

/
2

0, t∗ > 1Tcont
/
2

(19)

hcyBig =
1∣∣ẏp∣∣max ·

∣∣ẏp∣∣ (20)

hcySmall = −
1∣∣ẏp∣∣max ·

∣∣ẏp∣∣ + 1 (21)

The maximum value within the range of
∣∣ẏp∣∣ is shown by∣∣ẏp∣∣max . A membership degree of 0 or 1 corresponds to values

above
∣∣ẏp∣∣max . In other words, the tuning parameter for hcySmall

and hcyBig is
∣∣ẏp∣∣max . The membership functions with regards

to t∗ and
∣∣ẏp∣∣ are described in Fig. 6 (a) and (b), respectively.

Because the magnitude of each membership function is lim-
ited within the range from 0 to 1 at all points, all of them used
in the proposed fuzzy system have the proper forms. This
study employs Tsukamoto-type fuzzy inference [36], [37].
According to this type, right-angled triangular membership
functions are required as shown in Fig. 6(a). In addition,
an input variable to the fuzzy system of this study is an update
timing t∗ of the control input. Therefore, the membership
functions require shapes and conditions, which are different
from those used in conventional fuzzy PID controllers by
Mamdani-method.

FIGURE 6. Examples of the membership functions used in this study.

Given the current condition, the rule’s antecedent part cal-
culates the degree of match wi (0 ≤ wi ≤ 1, i = 1, 2, . . . 6)
for Rules 1–6 as follows.

w1 = htupcoming
(
t∗

)
(22)

w2 = htprevious
(
t∗

)
(23)

w3 = htmiddlea
(
t∗

)
× hcyBig

(∣∣ẏp∣∣) (24)

w4 = htmiddlea
(
t∗

)
× hcySmall

(∣∣ẏp∣∣) (25)

w5 = htmiddleb
(
t∗

)
× hcyBig

(∣∣ẏp∣∣) (26)

w6 = htmiddleb
(
t∗

)
× hcySmall

(∣∣ẏp∣∣) (27)
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Next, the fuzzy rule’s output is determined by reflecting the
degree of match w1,w2 . . .w6 on the rule’s consequent. How
to define linguistic fuzzy sets, like ‘‘Similar to commands
from SDC’’ and ‘‘Very similar to commands from SDC,’’ is as
follows. For the control commands u(k) and u (k + 1) from
SDC, it is firstly needed to consider membership functions
with the horizontal axis as the control input candidates and
the vertical axis as the membership degree (degree of match)
from 0 to 1, as shown in Fig. 6(c). Then, the linguistic fuzzy
sets can be defined by constructing the membership functions
according to Eqs. (28)-(31) in real time based on the use of
u(k) and u (k + 1). This processmeans that fuzziness is added
to u(k) and u (k + 1) by givingmembership degrees to control
input values other than u(k) and u (k + 1) in the set of control
input candidates on the horizontal axis. In Eqs. (28)-(31), the
membership functions: huupcoming, h

u
previous, h

u
veryup, h

u
verypre,

respectively, are used to define the four fuzzy sets: ‘‘similar
to u(k + 1)’’, ‘‘similar to u(k)’’, ‘‘very similar to u(k + 1)’’,
and ‘‘very similar to u(k)’’. These membership functions are
described in Fig. 6(c). Right-angled triangular monotonic
membership functions are used in Tsukamoto-type fuzzy
inference [36], [37] as

huupcoming

=


1

1u
(u− u (k)) if u(k) < u(k + 1)

−
1

1u
(u− u (k + 1)) + 1 if u(k + 1) < u(k)

(28)

huprevious

=


−

1
1u

(u− u (k)) + 1 if u(k) < u(k + 1)
1

1u
(u− u (k + 1)) if u(k + 1) < u(k)

(29)

huveryup

=


2

1u

(
u−

(
u (k) +

1u
2

))
if u(k) < u(k + 1)

−
2

1u
(u− u (k + 1)) + 1 if u(k + 1) < u(k)

(30)
huverypre

=


−

2
1u

(u− u (k)) + 1 if u(k) < u(k + 1)

2
1u

(
u−

(
u (k + 1) +

1u
2

))
if u(k + 1) < u(k)

(31)

where 1u = |u(k + 1) − u(k)|.
Note that Fig. 6 (c) shows the just numerical examples

because huupcoming, h
u
previous, h

u
veryup, and h

u
verypre are automat-

ically constructed using u(k) and u(k + 1) changing in real
time. The inference result ui (i = 1, 2, . . . 6) in each rule
can be determined using fuzzy reasoning of the Tsukamoto
type by substituting w1,w2 . . .w6 for the inverse function of
huupcoming (u), huprevious (u), h

u
veryup (u), or huverypre (u), which is

represented by as

(Case 1): u(k) < u(k + 1)

u1 = huupcoming
−1 (w1) = u(k) + w11u (32)

u2 = huprevious
−1 (w2) = u(k) − (w2 − 1) 1u (33)

u3 = huveryup
−1 (w3) =

(
u (k) +

1u
2

)
+ w3

1u
2

(34)

u4 = huupcoming
−1 (w4) = u(k) + w41u (35)

u5 = huprevious
−1 (w5) = u(k) − (w5 − 1) 1u (36)

u6 = huverypre
−1 (w6) = u(k) − (w6 − 1)

1u
2

(37)

(Case 2): u(k + 1) < u(k)

u1 = huupcoming
−1 (w1) = u(k + 1) − (w1 − 1) 1u (38)

u2 = huprevious
−1 (w2) = u(k + 1) + w21u (39)

u3 = huveryup
−1 (w3) = u(k + 1) − (w3 − 1)

1u
2

(40)

u4 = huupcoming
−1 (w4) = u(k + 1) − (w4 − 1) 1u (41)

u5 = huprevious
−1 (w5) = u(k + 1) + w51u (42)

u6 = huverypre
−1 (w6) =

(
u (k + 1) +

1u
2

)
+ w6

1u
2

(43)

Finally, the inference result uFuzzy (t) to fully encompass
the six rules is provided by

uFuzzy (t) =

∑6
i=1 wiui∑6
i=1 wi

(44)

In Fig. 5, uFuzzy (t) represents the control input instruction
from the active powertrain vibration damping system inside
time-zone (T3) k1Tcont < t< (k+1)1Tcont .
The proposed fuzzy rules: (Rules 1-6) in (10)-(15) are

summarized in Table 2. The element where rules and fuzzy
sets are not defined is denoted as the symbol ‘‘−’’.

TABLE 2. Rule table of fuzzy rules 1-6 (output: u(t∗), input: t∗ and
∣∣ẏp

∣∣).
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V. SIMULATION VALIDATIONS
A. SIMULATION SETTINGS
Simulation studies are carried out to verify the robustness
of the fuzzy system. The objective in the simulations is to
obtain a target response signal (smooth step) by the control
objective, which is to dampen the XB vehicle oscillation.
At 2.0 s, there is a smooth change in the target response
that does not involve vibrations from a negative value to a
positive one. It is inspired by the circumstance which causes
a sudden change in the driving force in actual automobiles.
The transitional vibrations occurring in the vehicle body can
be clearly assessed in this condition.

Table 3 shows the parameters for simulation setting.
Fig. 7(a) shows the configuration of the Simulink environ-
ment used for the validations. The validations test the two
cases: (Case 3) and (Case 4) on time-fluctuated control cycles
like those indicated in Fig. 7(b).

TABLE 3. Parameters for simulation setting.

B. SIMULATION RESULTS AND DISCUSSION
The time responses of the vehicle vibration in the top graph
and the control inputs in the lower graph are shown in Fig. 8
as the simulation result (Case 3).

The remaining vibration shown by the cyan line argues
that only the traditional SDC with no compensations for
the time-fluctuating control cycle is insufficient even though
its transient characteristic is improved compared to the
open-loop response (i.e., no controls) shown by the green line.
On the other hand, the red line indicates that the vibration is
considerably suppressed, meaning the contribution of the pro-
posed fuzzy compensation to the improved response. Taking
care of time-fluctuations in the update timings of the control
input is crucial to bringing the response closer to the ideal one
in the black line.

Another validation result (Case 4) is shown in Fig. 9.
It can be observed that the vibration is deteriorated depending
on cases of the time-fluctuated control cycle, as shown in
the cyan line. Nevertheless, the proposed method (red line)
consistently demonstrates the higher damping performance.
This result proves the robustness to more patterns of the
fluctuations in the control periods.

Regarding the result of Fig. 9, the time histories of the
degree of match wi (0 ≤ wi ≤ 1, i = 1, 2, . . . 6) for
Rules 1–6 at the update timing are summarized in Fig. 10.
These results provide analysis material to discuss how much
each rule was used. The remarkable point is that there are

FIGURE 7. Simulation environment: (a) Simulink diagram and (b) two
cases of the control period constraint.

FIGURE 8. Time responses of the control input and vehicle vibration of
the simulation (Case 3).

no unnecessary fuzzy rules. This can be found from the fact
that all the rules take some values within the total simulation
time. Even though Rules 1 and 2, which have the high values
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FIGURE 9. Time responses of the control input and vehicle vibration of
the simulation (Case 4).

FIGURE 10. Degree of match wi (0 ≤ wi ≤ 1, i = 1, 2, . . . 6) for Rules 1–6
at the update timing in the result of (Case 4).

of w1 and w2, are dominant over the other rules, we can
see that Rules 3-6 are also frequently used after 2.0 seconds
when active damping is especially required. Combined with
discussion about Fig. 10, the result of Fig. 9 implies that a
blend of all the rules contributes to improving the transient
vehicle response.

In this study, we chose to observe the 2-norm of the
vehicle body vibration response as the criteria used to eval-
uate the effectiveness of the control scheme. The 2-norm is

well-known to be suitable for evaluating transient character-
istics of a time response [27]. A smaller value of the 2-norm
means better control performance (i.e., less oscillation) with a
controller. Specifically, the 2-norm of this study is computed
using the error between each controlled response and the ideal
response as:

∥e∥2 =

√√√√ N∑
m=1

|e [m]|2 =

√√√√ N∑
m=1

|y [m] − r[m]|2 (45)

The error, controlled response, ideal response at the mth
sampling point are denoted as e[m], y[m], r[m], respectively.
N indicates the total number of sampling points.
Table 4 performs the quantitative comparison of each

result in Figs. 8 and 9. Table 4 shows the smallest norm is
achieved by the proposed fuzzy compensation. This means
that the response by the proposed method is the closest to the
ideal one.

TABLE 4. Quantitative performance index by 2-norm of each error
between the vehicle vibration and the ideal response in simulation.

C. COMPARISON WITH PREVIOUS APPROACH FOR
ROBUSTNESS
Robustness tests are carried out to further confirm the
effectiveness of the proposed approach. For Table 1, each
drivetrain parameter is changed in relation to its nominal
value. Table 5 shows the variation amount given for the
parameters [28].

TABLE 5. Parameter variation given for the drivetrain.

In addition, another control strategy, which is based on the
elementary fuzzy inference compensation with only two out-
put variables [27], [28] is tested just for comparison with the
proposed method. The capability to deal with time-fluctuated
control periods has been confirmed in the previous
studies [27], [28].
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FIGURE 11. Comparison with the previous method under time-fluctuated
control cycle, which is like (Case 3).

FIGURE 12. Comparison with the previous method under time-fluctuated
control cycle, which is like (Case 4).

Figs. 11 and 12 show the test results under two patterns
of the time-fluctuated control cycles, which are like (Case 3)
and (Case4), respectively. As shown by the red and blue
lines, both the proposed and previous fuzzy compensations
improve the vibrations over the case with no compensations.
Observed in detail, however, we can see that the proposed
six rules-based fuzzy compensation (red line) has the better
transient response than that by the previous fuzzy one (blue
line). These results imply that there is a possibility that the
six rules-based inference has a superiority over the previous
one in terms of robustness.

The cause of such improvement is considered to be pres-
ence of the abundant linguistic expressions of the output
variables defined in the six fuzzy rules. In the previous fuzzy
compensation [27], [28], the flexibility in inference is insuffi-
cient due to few candidates of the control commands because
it has only two output variables. To ensure the robustness,
i.e., adaptability, to various conditions induced by severe
fluctuations in the plant parameters and control cycles, it is
necessary to prepare more options of the control commands.
Such flexible inference is based on a rich diversity of output
variables in the fuzzy rules. Therefore, the abundant linguistic
expressions of the output variables: ‘‘similar to u(k + 1)’’,
‘‘similar to u(k)’’, ‘‘very similar to u(k+1)’’, and ‘‘very sim-
ilar to u(k) can contribute to the robust performance shown in
Figs. 11 and 12.

Table 6 performs the quantitative comparison of each
result in Figs. 11 and 12. Table 6 shows that the smallest
norm, which means the best vibration control performance,
is achieved by the proposed fuzzy compensation.

TABLE 6. Quantitative performance index by 2-norm of each error
between the vehicle vibration and the ideal response in simulation with
robustness test.

VI. EXPERIMENTAL VERIFICATIONS
A. RESULTS OF THE EXPERIMENT AND DISCUSSION
Finally, the system shown in Figs. 2 and 3 is used to exper-
imentally verify the effectiveness of the vibration control
strategy.

The test result, which is based on the control period limita-
tion like (Case 1) shown in Fig. 3(b), is displayed in Fig. 13.
Each color line corresponds to the same meaning as that in
the simulation results.

Fig. 13 shows that the proposed method sufficiently sup-
presses the transient vibration after 2.0 s, realizing the almost
ideal response.We can observe the need for compensating for
variations in the control input update timings as well as the
advantages of the fuzzy technique by comparing the proposed
method’s response to that given by ‘‘No compensation’’,
which fails to reduce the vibration.

Here, the practical implications of the proposed technique
need to be discussed. To implement control systems on real-
world vehicles, it is necessary to reduce the computational
loads so that the operation of a controller can be finished
within a control period. Compared to the existing method
(e.g., MPC), the proposed fuzzy strategy is more suitable
for the implementation in that online iterative optimizations
with heavy computational loads are unnecessary. In addition,
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FIGURE 13. Experimental result under the time-fluctuated control cycle
like (Case 1).

this approach is built upon the compensation mechanism
emulating human intuition with abundant linguistic variables.
This characteristicmakes handling of the controller easier and
eliminates the need for intricate modeling of control input
update timings.

To observe the result of Fig. 13 in more details, Fig. 14
presents the enlarged view of the control input signals com-
puted in the proposed active control system. The blue and
cyan lines indicate u(k) by the SDC and u(k + 1) by the
model prediction, respectively. The black line indicates the
control command by the fuzzy logic. The control input actu-
ally updated by the actuator is shown in the red line.

FIGURE 14. Enlarged view of the control input obtained by the fuzzy logic
compensation.

We can see that u(k) calculated by the SDC matches the
predicted value u(k + 1) with a one-step delay. This means
that online prediction of the plant dynamics is successfully

achieved with the good accuracy. Such a well-performed
model predictive technique is required for performing the
fuzzy inference. In addition, Fig. 14 demonstrates that the
control command by the fuzzy logic gradually changes
between u(k) and u(k + 1). This movement is due to employ-
ing the update timing t∗ as the input variable to the fuzzy
system. That is, the command indicated by the black line is
determined by compromise of both signals u(k) and u(k+1).
Table 7 performs the quantitative comparison of each result

in Fig. 13 via the 2-norm of the response. The smallest norm is
obtained by the proposedmethod. Compared to ‘‘Open-loop’’
and ‘‘No compensation’’, the proposed method reduces the
2-norm by 80.2367% and 80.4455%, respectively, in Fig. 13.
Consequently, the effectiveness of the proposed fuzzy system
is quantitatively confirmed by the comparison experiment.

TABLE 7. Quantitative performance comparison by 2-norm in experiment.

B. COMPARISON STUDY AND QUANTITATIVE
PERFORMANCE ANALYSIS
Fig. 15 displays the comparison outcome between the
proposed approach and another earlier strategy under the
fluctuated control period like (Case 2). The latter one is
the model-prediction-based compensation with SDC, which
has been studied in the previous literature [23]. Fuzzy logic
is not involved with this approach.

FIGURE 15. Experimental result under the time-fluctuated control cycle
like (Case 2).
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In Fig. 15, the best damping performance is given by the
proposed method, as indicated by the comparison between
each response. The larger vibration remains in the response
(yellow line) by the model-prediction with no fuzzy infer-
ences. This is because the previous strategy does not
explicitly handle various fluctuated timings of updating the
control input, even though only the maximal delay of it can
be addressed. Against the previous system’s drawback, the
improvement indicated by the red line proves the efficacy of
the application of fuzzy logic.

In Table 8, the above experimental result of Fig. 15 is
quantitatively summarized in the form of 2-norm on each
response. The performance analysis reveals that the proposed
fuzzy-logic-based strategy offers higher vibration reduction
levels despite fluctuations in the control period. Compared to
‘‘Open-loop’’, ‘‘No compensation’’ and ‘‘No fuzzy logic’’,
the proposed method reduces the 2-norm by 56.5394%,
40.7869%, and 35.1716%, respectively, in Fig. 15.

TABLE 8. Quantitative performance comparison by 2-norm in
comparative experiment with previous method.

Some limitations on this research should be described.
Specifically, the control system contains design parame-
ters that need to be tuned manually, sometimes hindering
the smooth process of the implementation on real vehicles.
Additionally, it is necessary to investigate the robustness
of the fuzzy logic for a variety of driving situations and
more severe fluctuations in the parameters. Nevertheless, they
have not been yet carried out for real vehicles. Therefore,
the introduction of optimization algorithms into powertrain
controllers like those in the literatures [38], [39] and the
verification using an actual test vehicle will be our future
tasks.

VII. CONCLUSION
The contribution of this study is to develop a straightforward
fuzzy compensation composed of six inference rules to tackle
the problem of a time-varying control period constraint,
which arises in the active vibration control of a drivetrain.
The key finding is that changing update timings of the control
input can be successfully managed by the fuzzy rules in the
proposed system. This is based on the unique technique that
represents the update timings as fuzzy sets with abundant
linguistic expressions. The significant feature of the proposed
six fuzzy rules is that it achieves the simple compensating
mechanism inspired by human intuition, thereby eliminating
the need for intricate and detailed modeling of control input
update timings. The efficacy of the active damping technique

was demonstrated through simulations and experiments using
the abstract drivetrain mechanism. The verifications pre-
sented the significant finding: the robustness of the proposed
approach in dealing with substantial changes in the control
period, when compared to previous control strategies.

In the future, the proposed approach will be implemented
in real-world vehicles to investigate the practicability and
robustness. In addition, our future works include the intro-
duction of optimization algorithms to eliminate the need for
manual tunings of the controller parameters.
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