IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 15 December 2023, accepted 24 December 2023, date of publication 18 January 2024, date of current version 5 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355130

== RESEARCH ARTICLE

Parallel Deployment and Performance Analysis
of a Multi-Hop Routing Protocol for

5G Backhaul Networks Using

Cloud and HPC Platforms

SOMAYA A. ABOULROUS “!, AMANY ABDELSAMEA"2,
ALI A. EL-MOURSY 3, (Senior Member, IEEE), MOHAMED SAAD -3, (Senior Member, IEEE),
FADI N. SIBAI'“4, SALWA M. NASSAR2, AND HAZEM ABBAS"', (Senior Member, IEEE)

! Department of Computer and Systems Engineering, Ain Shams University, Cairo 11566, Egypt

2Department of Computer and Systems Engineering, Electronics Research Institute, Cairo 12622, Egypt

3Department of Computer Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates

4Department of Electrical and Computer Engineering, Gulf University for Science and Technology, Mishref, Hawalli 32093, Kuwait

Corresponding author: Ali A. El-Moursy (aelmoursy @sharjah.ac.ae)
This work was supported in part by the Cloud Computing Center of Excellence through the Science and Technology Development Fund

(STDF), Egypt, under Grant 5220; and in part by the Distributed and Networked Systems Research Group Operating through the
University of Sharjah, United Arab Emirates, under Grant 150410.

ABSTRACT The main goals of fifth generation (5G) systems are to significantly increase the network
capacity and to support new 5G service requirements. Ultra network densification with small cells is
among the key pillars for 5G evolution. The inter-small-cell 5G backhaul network involves massive data
traffic. Hence, it is important to have a centralized, efficient multi-hop routing protocol for backhaul
networks to manage and speed up the routing decisions among small cells, while considering the 5G service
requirements. This paper proposes a parallel multi-hop routing protocol to speed up routing decisions in
5G backhaul networks. To this end, we study the efficiency of utilizing the parallel platforms of cloud
computing and high-performance computing (HPC) to manage and speed up the parallel routing protocol
for different communication network sizes and set recommendations for utilizing cloud resources to adopt
the parallel protocol. Our numerical results indicate that the HPC parallel implementation outperforms the
cloud computing implementation, in terms of routing decision speed-up and scalability to large network
sizes. In particular, for a large network size with 2048 nodes, our HPC implementation achieves a routing
speed-up of 37x. However, the best routing speed-up achieved using our cloud computing implementation
is 15.5x, and is recorded using one virtual machine (VM) for a network size of 1024 nodes. In summary,
there is a trade-off between a better performance for HPC vs. flexible resources of cloud computing. Thus,
choosing best fit platform for 5G routing protocols depends on the deployment scenarios at 5G core or edge
network.

INDEX TERMS 5G routing protocol, cloud radio access networks, cloud computing, HPC, ultra-dense

network.

I. INTRODUCTION
Cloud computing has gained significant popularity as an
Internet-based and cost-effective computing model to access

The associate editor coordinating the review of this manuscript and

approving it for publication was Jjun Cheng

a massive configurable and virtualized pool of shared
computing resources on a user-demand basis [1]. Cloud
users can scale up and scale down with high reliability and
quick provisioning procedures unlike traditional computing
models e.g., high performance computing (HPC). Cloud
environments, from the HPC point of view, is a distributed

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
16696 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024


https://orcid.org/0000-0001-5011-4717
https://orcid.org/0000-0001-7770-1348
https://orcid.org/0000-0002-3660-6544
https://orcid.org/0000-0003-2546-4453
https://orcid.org/0000-0002-9677-8911
https://orcid.org/0000-0001-9128-3111
https://orcid.org/0000-0001-5176-4762

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

computing model that can run large applications on central-
ized, scalable, and computationally powerful resources due to
the virtualization benefits. HPC systems typically do not have
the luxury of elastic provisioning and dynamic scalability
upon-demand (cloud characteristics). Hence, most HPC
applications recently started utilizing the cloud resources [2],
called (HPC cloud) to build a parallel Virtual Cluster (VC)
to move and run HPC applications on the cloud. In this
approach, Infrastructure-as-a-Service (IaaS) cloud solution is
adopted for HPC users. Some compute-intensive applications
target cloud features such as centralized processing and
management [3], as well as dynamic scalability and resources
utilization. Many studies show that the cloud can be a better
candidate than a dedicated HPC cluster to yield speed up for
some of HPC applications and benchmarks [2], [4]. Their
studies also show that the cloud degrades HPC performance
due to virtualization effect on network latency, resource
sharing among multi-tenants, and the idle time of slowest
threads over VMs. On the other hand, HPC is considered
as a perfect candidate parallel platform for a wide range
of compute-intensive applications in terms of performance
possibility and application scalability. However, HPC centers
have a big challenge to provide higher computing perfor-
mance with less resource input regarding cost, maintenance
and operation. Finally, there are limitations that define best-fit
applications for the cloud such as parallel performance,
scalability, and cost-benefit. Both HPC and cloud computing
have in common the advantage of computationally powerful
servers and the capability of parallel processing for compute-
intensive applications. These applications are mainly found
in production and manufacturing, science and engineering
simulation research, healthcare, and financial sectors. The
wireless communication sector also utilizes cloud computing
functionalities in fifth-generation (5G) systems.

Mobile wireless communication systems facilitate our
daily activities. By providing seamless connectivity, these
systems allow almost all the world’s smart devices to
communicate with extremely low latency and high-speed
throughput. It is expected that the next generation of mobile
wireless communications, 5G, will provide connectivity to
the numerous smart devices and interconnected things [5],
[6]. By 2023, there will be 5.3 billion total Internet users
(66 percent of the world’s population), up from 3.9 billion
in 2018, and 29.3 billion devices on the network, according
to the Cisco Annual Internet Report (2018-2023) [7]. Hence,
the overall mobile data traffic is forecasted to increase to
77 exabytes per month by 2022, which is a seven-fold
increase over that in 2017. 5G networks should not only sup-
port this massive volume of mobile data traffic and network
capacity, but also support new services requirements such as
high data rate (10 GB), low latency (1 ms), high reliability,
and enhanced spectral efficiency (SE), which defined as
the bandwidth-nominalized-data-rate (in bits/sec/Hz), and
energy efficiency (EE). Therefore, the 5G development is not
only concerned with achieving higher capacity, but it also

VOLUME 12, 2024

represents a paradigm shift in mobile cellular networks to
provide the capability for better coverage and new services
at high quality-of-service (QoS) and lower operational cost
for Mobile Network Operators (MNOs). This requires various
technologies and architectures to be proposed for efficient
and flexible 5G Radio Access Networks (RANSs). The
main projected technologies to accommodate 5G needs are
network densification, Millimeter Wave (mmWave), and
the virtualization of some base-station functionalities in a
centralized cloud. The latter leads to the Cloud Radio Access
Network (C-RAN) technology. Network densification or the
ultra-dense network (UDN) is considered a critical technique
to meet the requirements of explosive mobile data traffic in
5G mobile communications. Deploying a massive number of
low-power small wireless cells can enhance the coverage in
crowded areas and increase network capacity. As a result,
these cells produce massive backhaul traffic to the core
network. Consequently, because of the various 5G service
needs (ultra-low latency, low power consumption, and high
data rate), cost-effective backhauling in UDN is a vital issue
that must be addressed [8], [9], [10]. Millimeter wave (mm-
wave) technology is cost-effective, and it only performs well
for short-distance line-of-sight (LOS) communications [11].
Therefore, multi-hop routing is highly needed for mm-wave
backhauling in UDN to enhance the flexibility of path
selection among wireless cells [12]. Since its processing
is compute-intensive, the path selection process at wireless
cells requires massive processing power. Besides that,
using mm-wave between wireless small cells should avoid
blockage and signal propagation loss, which affects spectral
efficiency [8] and end-to-end latency of data flows [13].
In nutshell, the procedure of best route selection requires
extensive computation and time-consuming effort in UDN,
which necessitates speed-up, particularly with different
5G service requirements. C-RAN is the most prominent
way to afford such extensive computation needed through
virtualization and cloud computing concepts. C-RAN allows
more dynamic traffic handling and the best path selecting
in mm-wave backhauling. C-RAN is supposed to tackle
network traffic growth for end-users by considering different
5G service use cases. Accordingly, RAN construction and
optimization need new protocols [14].

The motivation of using cloud computing with 5G,
especially in C-RAN architecture, is to promote centralized
processing and management, scalability, and parallel exe-
cution [15]. C-RAN has major tenets from centralization
and cloudification of RAN architecture to improve spectral
efficiency and energy efficiency, and to reduce latency and
network costs [15], [16], [17]. C-RAN is attracting MNOs
to decrease the cost of network operations, maintenance, and
upgrade procedures and increase throughput and decrease
delay. As massive amounts of 5G network connections, large
amounts of data need to be efficiently processed and analyzed
in real-time. Therefore, this paper is set out to develop
an efficient multi-hop routing protocol for 5G backhauling

16697



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

in UDN and C-RAN architecture, utilizing the parallel
platform offered by the cloud and HPC clusters. The major
objective of this research is to compare the performance of
virtual platforms on OpenStack private cloud to conventional
parallel HPC platforms.

The following points summarize our contributions in this

paper:

o We develop a parallel multi-hop routing protocol
implementation of the algorithm proposed in [18].

o We deploy a virtual cluster using cloud computing and
analyzing the performance of the parallel protocol.

o We analyze and compare the efficiency between virtual
cluster results and HPC cluster results [19] in the
speed-up and performance enhancement provided by the
parallel multi-hop routing protocol.

o« We evaluate of the scalability of (HPC and cloud
computing) parallel platforms with different network
sizes (network densification effect). Thus, our numerical
study takes extremely large sizes of networks with
thousands of communication nodes into consideration.
It contrasts considerably with the literature that usually
uses networks with tens of nodes.

« We set recommendations for the adoption of both
platforms to be highly utilized by 5G protocols in terms
of scalability, speed up, and resources or infrastructure
requirements in 5G deployment.

The remainder of the paper is organized as follows. Section II
presents related work for multi-hop routing protocols in 5G
backhaul network. Our network model is shown in section III.
Section IV describes the multi-hop routing algorithm that
we use. Section V presents the parallel implementation
details of the multi-hop routing protocol. The evaluation
methodology is presented in section VI. Section VII discusses
the cloud results and comparative results with HPC. Finally,
Section VIII discusses our conclusions and upcoming work.

Il. RELATED WORK

Multi-hop routing in backhaul networks is considered an
optimization problem to find the best solution that achieves
the network objectives and satisfies the design constraints.
The objectives considered in the literature include some of
5G network requirements such as high spectral efficiency,
ultra low-latency, high capacity, and high energy efficiency.
Hence, flexible and efficient multi-hop routing protocol is
critically needed for backhaul network in all 5G scenarios.
The work in [8] proposed multi-hop routing schema in UDN
with maximizing the transmission rate as the optimization
objective under network channel and flow constraints using
a Dijkstra algorithm. Also, [20] proposed a multi-hop multi-
path selection scheme that achieves optimization objectives
of selecting the path and allocating the data rate under
latency constraints using reinforcement learning techniques.
Both previous works do not find the optimal solution for
selecting the best path in the backhaul network, and do not
assure a fixed level of spectral efficiency. The authors of [21]

16698

proposed an energy-efficient routing reactive protocol to
locate low-level energy nodes for reliable transmission in 5G
network. However, their process takes several tens of seconds
in the simulation results. The study in [22] proposed optimal
routing algorithm for UDN using a combination of Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) to
handle network scalability and seamless QoS and link reli-
ability. However, the procedures of GA and PSO are slower
than other classical route optimization algorithms, such as the
Bellman-Ford algorithm [23]. Also, the proposed algorithm
does not consider power consumption along the selected path.
The study in [24] adopted a C-RAN architecture to present a
centralized software-defined network algorithm to avoid data
traffic congestion in backhauling routes via dynamic path
selection. The work in [25] proposed a routing algorithm for
Cloud Assisted-Mobile Ad Hoc Networks (CA-MANETS)
to achieve lower energy consumption and increased network
lifetime. The proposed algorithm works through two phases.
First, the local path recovery phase aims to minimize energy
consumption among mobile nodes and peer nodes. Then, the
path discovery phase aims to select the shortest path with
less routing cost. However, these procedures have a high
computational cost, especially in UDN deployments. The
work in [26] proposes a C-RAN architecture, and presents
an algorithm for joint routing and VM selection such that
the total energy cost is minimized and the task response
time required by user is satisfied. The algorithm, however,
neglects other 5G service requirements such as achieving
a target spectral efficiency. In combination of UDN and
C-RAN architectures, other studies introduced multi-hop
routing protocols such as [27], in which a multi-hop relay-
ing protocol for fronthauling signals among remote radio
heads (RRHs) is proposed to minimize capacity-constrained
fronthaul and the maximum allowable network delay as
optimization objectives. The optimization design is restricted
by a maximum number of relays per hops to three. The work
in [28] proposed a RRH placement strategy to assign traffic
and resources to a few low-traffic RRHs for maximizing
backhaul survivability and energy efficiency. This solution
depends on deep neural networks for learning and predicting
the data traffic. Accordingly, it requires expensive GPUs and
high processing to train for complex data.

In general, recent work is limited to a subset of 5G
network requirements [29], [30], [31], [32]. Unlike previous
work, the algorithm we use, which was initially proposed
in [18], chooses the best optimal path with considering the 5G
requirements such as a spectral and energy efficiency target.
This algorithm is guaranteed to generate the exact optimal
path, with an execution time of milliseconds for networks
with few tens of nodes. However, if the network density
is increased in 5G networks and beyond, the algorithm
execution time may become problematic. The process of
the Bellman-Ford algorithm used in [18] is iterative and
computationally intensive, especially in large networks with
hundreds or thousands of communication nodes [33]. There-
fore, it gives rise to the algorithm performance improvement

VOLUME 12, 2024



S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

using parallelization which has not been completely explored
before. None of the literature work considers speeding up the
path selection process for ultra-dense networks using parallel
platforms (i.e., cloud computing and/or HPC).

Several parallel implementations for the shortest path
problem algorithm (Bellman-ford) were proposed in the
literature. However, these implementations are different in
terms of objectives, the applied parallel programming, the
platform for parallel implementation, comparison algorithms,
and disadvantages as shown in Table 1. The work in [34]
presented different parallel implementations of Bellman-Ford
algorithm on GPU using parallel framework OpenCL.
These implementations of Bellman-ford are Single Source
Shortest Path (SSSP) and All Pair Shortest Path (APSP).
Their work targets performance comparative analysis on
Central processing units (CPUs) and Graphical processing
units (GPUs) using real environment of two compute
nodes. However, this work did not use hybrid execution
of CPUs and GPUs. Another work in [35] presents a
high-performance implementation of the Single Source
Shortest Path (SSSP) Bellman-Ford algorithm that exploits
the architectural features of recent GPU architectures of
NVIDIA (Kepler GPU) to improve the performance and
workload efficiency. CUDA parallel framework is used
for NVIDIA GPUs. Their work compare with sequential
Dijkstra and other parallel Bellman-Ford implementations on
GPUs. However, this work lacks more low-level instructions
parallelization such as OpenCL and CUDA. The study in [36]
proposed a work-efficient, Multiple Source Shortest Path
(MSSP) implementation of the Bellman-Ford algorithm is
proposed to dramatically increase the performance of shortest
path calculations for low-density high diameter graphs to
apply in transportation networks. Their implementation is
used both frameworks OpenMP and CUDA. Several sets
of hardware were used to evaluate performance in [36],
with multiple CPUs and GPUs servers used and real-
world benchmark. Then, comparative analysis is done among
different benchmarks and hardware. However, the paper did
not use greater number of GPUs. Finally, the work in [37]
proposed a new SSSP-Asyn (Single Source Shortest Path in
asynchronous mode) technique, which is parallelized form of
inter node Dijkstra and intra node Bellman Ford algorithm
and implemented in Message Passing Interface (MPI) frame-
work. Their results generated from PaARMAT (multi-threaded
RMAT graph generator) simulator among 32 processors
only. Their algorithm is evaluated using different network
graph sizes. Our implementation is different from these
implementations since we use MPI parallel programming
for SSSP Bellman-Ford algorithm parallelization using
HPC and cloud computing platforms to be applied in 5G
networks. The motivation of using cloud computing with 5G
promotes central routing decision and provides a potential
for enhancing the overall performance of route selection
using parallel processing which is not discussed before
in literature work. In a previous effort, the study in [19]
has developed a parallel multi-hop routing protocol for the

VOLUME 12, 2024

Fron
(BBU Po! (!I!dMI

§ ~ Aggregator T
(;A’) e
B et S
scf | s | F sc
«sseeee- MM-wave link
—— fiber link sf o oF s
f radio signal RIIQI-T_."'

FIGURE 1. UDCSnet 5G network architecture.

algorithm originally proposed in [18] using HPC platform.
This follow-up paper extends primarily results in [19] using
cloud virtual cluster, in an attempt to speed up path selection
and satisfy the needs of 5G UDNSs. In contrast to [19], we use
cloud computing as a cost-effective platform to parallelize the
routing algorithm proposed in [18] using HPC over cloud,
to speed up the path selection procedure, and to fulfill the
requirements of 5G UDNs. The parallelization process starts
with performance and code analysis for the serial algorithm.
Then concurrency analysis is performed for the different tasks
to reveal the data dependencies. Finally, the parallel algorithm
is implemented using a parallel programming model.

ill. NETWORK MODEL

Due to small cells densification advantages, UDN considers
a capacity-enhancing and coverage-expanding approach for
targeting 5G data and network growth requirements. C-RAN
is one of the critical cutting-edge and green technologies
adopted by 5G networks due to its advantages of cen-
tralization and cloudification. A combination of C-RAN
and UDN, as known as ultra-dense cloud small cell
network (UDCSnet), utilizes both small cells densification
and centralized processing simultaneously. Accordingly, this
network model improves spectral efficiency, coverage with
high capacity demands, and energy efficiency [17], [38],
[39]. Many studies [28], [39] adopt the UDCSnet architecture
or Heterogeneous (H-CRAN) due to its flexibility and
scalability for 5G system. In this paper, we also adopt
the UDCSnet architecture as shown in Fig.1. There are
heterogeneous base stations such as traditional macro base
station (BS), which are placed on building rooftops to give
full network coverage, in addition to antennas of smaller base
stations (small cells) to give increased data rates and extended
coverage for remote locations. Unlike the traditional RAN
architecture, baseband processing functions of small cells
are performed in centralized powerful data centers (cloud
computing or HPC) using clustered BBU pools. The BBU
pools accomplish the intolerable task of central processing
and resource management. Remote Radio Heads (RRHs) of
small cells are distributive deployed in a grid with network
size N where N is the number of RRHs. RRHs play two

16699



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

TABLE 1. Comparative analysis of parallel Bellman-Ford algorithm implementations.

Authors names Paper objectives Parallel pro- | Platform Comparison algorithms Disadvantages
gramming for parallel
frameworks | implementation
Gaurav Hajela | presents and compare differ- | OpenCL HPC servers Serial implementations of | The paper did not use hybrid
et al. [34] ent parallel implementations SSSP and APSP Bellman- | implementation of Bellman-
of Bellman-Ford algorithm for Ford on CPUs and their | Ford by partitioning the algo-
shortest path problems (SSSP, parallel executions on | rithm among CPUs ad GPUs in
APSP) using CPUs and GPUs CPUs and GPUs a balance manner.
Federico Busato | presents a high-performance | CUDA HPC servers with | Boost library sequential | They did not use other tech-
et al. [35] implementation of Bellman- Kepler GPU Dijkstra, and other | niques of low-level instructions
Ford algorithm for the Single Bellman-Ford parallelism such as OpenCL
Source Shortest Path (SSSP) implementations for | with CUDA.
problem to improve the perfor- GPUs using graphs of
mance and workload efficiency different graph sizes
Peter Heywood, | proposes a work-efficient, | OpenMP and | HPC servers with | Different set of hardware | There is lacking of using
Steve Maddock | Multiple Source  Shortest | CUDA GPUs and benchmarks for the | greater numbers of GPUs,
et al. [36] Path (MSSP) problem proposed algorithm through high-density
implementation of the GPU nodes such as the
Bellman-Ford algorithm to NVIDIA DGX-2 or through
increase the performance of distributed ~ computing  to
shortest path processing for improve performance for large
transportation networks workloads
Yadav, Sangeeta | proposes a new SSSP-Asyn | MPI Simulator Different network graph | The paper did not use real plat-
et al. [37] (Single Source Shortest Path sizes form
in asynchronous mode) tech-
nique, which is parallelized
form of inter node Dijkstra and
intra node Bellman Ford algo-
rithm

light functions to relay baseband signals from user equipment
(UE) to the BBU pool (cloud computing or HPC), and vice
versa. Therefore, the network size can be scaled up flexibly
and cost-effectively. The fronthaul or transport network is
the connection layer between the BBU pool and RRHs
to give high bandwidth. Fronthauls can be realized using
different technologies that include optical fiber or mm-wave
communications. Using millimeter-wave communication for
relaying signals among RRHs is considered a cost-effective
way to guarantee a fixed spectral efficiency for backhauling in
UDN. The procedures of this network model work as follows:

o The aggregator node, the nearest RRH to BBUs pool,
forwards the relaying UE data traffic to the BBUs
pool via fronthaul links for central processing of path
selection.

« The BBUs pool is deployed at a centralized location with
high computation and storage capabilities (i.e. cloud
computing or HPC).

o The proposed parallel routing protocol is deployed on
HPC or cloud clusters within the BBU pool, to accelerate
routing decisions from a source RRH to a destination
RRH.

The benefit of parallelization is two-fold. On the one hand,
it utilizes the cloud resources available in C-RANs. On the
other hand, it allows scalable and parallel processing in very
large networks as anticipated in 5G. One of the envisioned
5G scenarios for our network model is the Enhanced Mobile
Broadband (eMBB) scenario to deal with massively increas-
ing data rates, dense user populations, and extremely high
traffic capacity in hotspot areas. Another possible scenario

16700

is the Massive Machine-type Communications (mMTC)
scenario for the Internet of Things (IoT), requiring low power
consumption and high data rates for very large numbers
of connected devices. Some of 5G applications of these
scenarios are 4K high definition (HD) video, smart cities,
smart homes, and industrial automation. In the following
section we summarize the serial routing algorithm, which will
be parallelized using HPC and cloud computing platforms.

IV. MULTI-HOP ROUTING ALGORITHM
We are given a multi-hop wireless network represented by
a graph G = (V, E), where V is the set of communication
nodes (RRHs) and E is the set of links joining the nodes.
We let N = |V| and M = |E| denote the number of nodes
and links in the network, respectively. The multi-hop routing
algorithm used in parallelization is originally proposed
in [18]. It finds the optimal shortest path from source node
s € V to destination node d € V that jointly addresses an
end-to-end spectral efficiency level and allocates minimum
transmit power among communication nodes along the
selected path. The suitability to 5G systems highly depends
on jointly achieving a spectral efficiency level (in bits/s/Hz)
and high energy efficiency through minimizing total power
consumption used in the backhauling network. It has been
established in [18] that the maximum transmit power used by
any link on some path L, denoted by Py, (L), is given by
Prax(L) = (27 = 1) max NoB (1)
leL Gy
where y is the required spectral efficiency target (in
bits/s/Hz), |L| denotes the hop-count of path L, / signifies

VOLUME 12, 2024



S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

a link on path L, Ny is the noise power spectral density, B
is the channel bandwidth (in Hz) and G; is the path gain
from the transmitted of link / to its receiver. The problem
addressed in [18] can be formulated as finding the path from
a source node s to a destination node d such that (1) is
maximized. It has been proven that the following algorithm is
theoretically guaranteed to provide the exact optimal solution
to the problem [18]:
Algorithm Max-Power Minimization

1) For each hop-count h=1,2,...,N —1:

a) Find Lp, the widest path from s
to d with at most h hops, using
w; = G;/NoB as the link metric.
b) Calculate maximum transmit power
Prax(Ly) = (254 — 1) maxjer, J82 .
2) Return the path with the smallest
Pax(Lp) -

The following two comments are worth noticing. The Max-

Power Minimization algorithm can be implemented using

the Bellman-Ford (BF) algorithm. The BF shortest path

algorithm can be modified to produce the widest path from

a single source node to every other communication node

(destination node). This is known as the maximum capacity

path (widest path) problem. Furthermore, the BF algorithm

has the implicit property of identifying the optimal and
widest path from the source to the destination, among paths
of at most h hops at its hth iteration. The Maximum-

Power Minimization algorithm is implemented by calling BF

algorithm only once, as opposed to N — 1 times. To illustrate

the Bellman-Ford procedure, the following definitions are
needed.

) NoB*

o Width),: width of the widest path from the source node
s € V to any other node i € V such that the path has at
most & hops.

. Length;l: hop-count of the widest path from the source
node s € V to any other node i € V such that the path
has at most 4 hops.

. pred}l: predecessor of node i € V on the widest path
from the source node s € V such that the path has at
most & hops. The widest path with at most 4 hops from
the source node s € V to destination d can be explicitly
constructed by tracing pred;; backwards from d until s.

o w;j: weightof link (i, j) € E, i.e., w;j =

The procedure for the widest path computation of the
Bellman-Ford algorithm is explained below.
Procedure Bellman-Ford

1) INITIALIZATION:
Let Widthfl:oo for h=0,1,...,N—1, and
Widthy =0 for all i#s.

2) ITERATION:

for h=1,2, ..., N-1

VOLUME 12, 2024

for all i € V do Width,

Lengthz = Lengthﬁl_l;
for all (i,j)€e E do: _
if min{Width;'l_l,wi,j} > Width,,, then /=

= Width,_;

(S1) =/ _
Width), := min{Width, |, w;;}
/x (S2) */ '
Length’h = Length;_, +1;
pred) ==1i.

Now, algorithm Max-Power Minimization is implemented
using a single run of Procedure Bellman-Ford, with the
following two changes. At the end of each of the N —
1 iterations of Step 2, the maximum transmit power Pjy,qx(Lp)
needed for path L is calculated using (1). Moreover, after
Step 2, an additional step is added, in which the path with the
smallest Py, (Ly) is returned as the solution to the problem.

The functionalities of serial algorithm implementation can
be described by the following tasks:

1) updateNetwork function: relies on a single call to
Bellman-Ford algorithm to search out the widest paths
for pair of given source-destination nodes at every hop
count.

2) caculatePmax function: computes Pmax for the widest
path for a pair of source-destination node at every hop
counth =1,2,..., N — 1. The path with the smallest
Pmax value is then returned.

The Max-Power Minimization algorithm has a running time in
the order of milliseconds for networks with tens of nodes [18].
The ultra densification of the network in 5G, however,
may introduce difficulties in the algorithm’s execution time.
In addition, the BF algorithm is a more computationally
demanding procedure than Dijkstra algorithm, especially in
large networks with hundreds or thousands of communication
nodes [33]. As a result, the serial algorithm extensively needs
parallelization. The primary aim of this study is to parallelize
the Max-Power Minimization algorithm proposed in [18],
using both cloud computing and HPC platforms, to explore
the efficiency of these platforms to accelerate the path
selection between a pair of source-destination nodes in our
network model. The main goal of this research is to parallelize
the Max-Power Minimization algorithm to have an efficient
multi-hop routing protocol in 5G networks that utilizes
cloud computing and HPC platforms. The parallelization
process starts with performance and code analysis for the
serial algorithm. Then, concurrency analysis is performed
for the different tasks to reveal the data dependencies.
Finally, the parallel algorithm is implemented using a parallel
programming model.

V. PARALLEL PROTOCOL IMPLEMENTATION

A. PERFORMANCE ANALYSIS

The parallelization methodology begins with an analysis
of execution to detect hotspots in the serial algorithm
by the Gprof (GNUproler) tool [40], which is used for

16701



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

updateMetwork

0.41% 0.00% . 0.00%

main

1.23% 0.00% . 0.00% 0.00%

FIGURE 2. Part of the callgraph of the serial multi-hop routing algorithm.

performance analysis for Linux/Unix applications. This study
provides us with the relative execution time for each function,
which is an important indicator for hotspots investigation
to exploit parallelization opportunities then, in a balanced
manner, distribute the load among the processing units. The
tool generates a call graph that declares the relationships
among functions and their dependencies. Also, it defines the
execution time percentage for each function and its callee
in a colorful manner. The high-percentage function in the
graph indicates a hotspot function. Fig. 2 shows a part of the
output callgraph for the serial multi-hop routing algorithm
that indicates how much time is spent in each function and
its callee. As shown, The ‘updateNetwork’ function occupies
98.77% of the serial algorithm total serial execution time.
The ‘updateNetwork’ function represents the Bellman-Ford
algorithm procedure in four subfunctions as listed below:

o setNetwork function: defines the initialization of
Bellman-Ford procedure.

« updateWidth function: updates the width of all paths
that begin from the source node to any other node using
iterative communication with their neighboring nodes.

« updateLength function: updates the length of all paths
that begin from the source node to any other node.

« updatePath function: defines the execution of the widest
paths estimate updates from a given source to destination
for all hops in the network.

We concentrate on the ‘updatePath’ function because it takes
almost all of the execution time of serial implementation
98.35%.

B. CODE ANALYSIS

The purpose of the ‘updatePath’ function is to find the
widest path between a given source and a given destination
node in the network. We analyze the function using an
activity diagram to display a comprehensible summary of
the execution flow as shown in Fig.3. The function iterates

16702

three times. The outer loop iterations indicate network hops,
while the other loops iterate communication nodes. The outer
loop is defined as the intermediate nodes that begin the path
search from the source to all other nodes. The inner loop is
then referred to as destination nodes. Width and length arrays
represent output data structures with two dimensions: hop
count and network communication nodes. The weighted link
between two communication nodes is represented by a weight
array. Single source shortest path Bellman-Ford algorithm
checks all paths starting from a given source node to all
nodes at most h iterative phases. At each phase, all edges or
links are checked to update the widest path estimate to the
destination node by going through intermediate nodes and
taking the weight of their edge into consideration. Hence,
the function ‘updatePath’ works as follows. There are two
main phases in this process, one phase is for the number
of communication nodes in the network and the other is for
the network links. First, all one-hop routes are searched for
the path from source to all communication nodes. Second,
further iterations (for each possible hop count) are performed
to traverse across all the network links. Then, the width
estimate value of the destination node may be changed. The
path from the source s to any destination node is extended by
links through intermediate nodes. The core of ‘updatePath’
function follows this equation 2.

Width, := min{Width, ,, w; ;) 2)

The widest path from source node s to destination node j is
the minimum of the width of the path to the node following
source node (intermediate node i) and the weight w from that
node to node j. To find the widest path from any node i, start
at 7 and follow the corresponding links of the network until
node j is reached for / iterations. Finally, after successful
completion of algorithm, width will contain the widest path
to all the communication nodes from the source s at most i
hops.

VOLUME 12, 2024



S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

Hop in a communication network

.
| [Mferative™ T s
b
b
|
L peratver T R
Only if ! N
destination v
ol I R

communication i '
node and has ' '
valid link with .
intermediate '
node

\ source to
intermediate node

i
. Width last hop from
i
i

-

Yes
i Get i
! = minumum 1
! value |
| |

I

Weight of link !
intermediate node '

and destination node

i i | Check if the

Width current hop
from source to
destination node

Update Width
and length at
current hop

. minumum value

' is larger than

Width current hop
from source to

destinati d
Length last hop estination node

from source to E
intermediate v i
node Lo i
' 1 1
' 1 1
' 1 1

Length current hop
from source to
destination node

FIGURE 3. The activity diagram of the ‘UpdatePath’ function.

C. CONCURRENCY ANALYSIS
Using loop iterations in the ‘updatePath’ function, the
analysis indicates that the jobs may be processed concurrently
by defining loop-carried dependencies. The relationships
between iterations within a loop and through loops identify
whether tasks can be distributed across parallel processing
elements (processors) or not. Fig.4 depicts the Loop-carried
Dependencies Graph (LDG) across loops in the function.
Every LDG node represents two dimensional iteration, and
edge shows the dependency between LDG nodes. The graph
iterates through communication nodes and hop count using
i or j, and h, respectively. The primary instructions of the
‘updatePath’ function are presented by S; and S», which
are previously referred in the Bellman-Ford procedure in
section IV. Also, Fig. 5 shows the dataflow for ‘updatePath’
function regarding the width data structure. The width
represents as an input and output for S7 and Sp.

LDG graph shows that S uses the value Widt,, computed
by S in the previous hop iteration. The iteration & computes
Width;h1 read in iteration (h — 1). Therefore, a loop-carried

VOLUME 12, 2024

dependence prevents parallelism across hop count (#) and
intermediate node (i) iterations. S> updates the value of
Width/h at the same iteration. Hence, each processing element
changes its output and input width values, iterations at the
destination node (j) may be split across parallel processing
elements.

D. PARALLEL IMPLEMENTATION

The underlying infrastructure of the hardware system is
the fundamental factor that defines the parallel imple-
mentation. We utilize a multi-processor distributed mem-
ory architecture because of its scalability. For build-
ing our distributed-memory parallel implementation, the
master-slave programming paradigm is the best match since
it is a widely utilized approach for executing independent
tasks while being supervised by a control processor. In this
approach, one processor known as the master oversees
carrying out the optimization functions. The master-slave
job consists of three fundamental tasks; preprocessing,
computation, post-processing.

16703



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

Communication nodes

lteration#— j j i+1, j+1
lteration#
h-1 | e
|
) |
c |
3 |
9 idthi | -
o widthl, | widthl
o |
: |
|
|
|
h ! e

Loop-carried Dependence
FIGURE 4. Loop-carried dependencies graph across ‘updatePath’ loops
for the width data structure.

widthi ,
>

widthi p, 4

updatePath

) function
widthl!

FIGURE 5. Dataflow across ‘updatePath’ function for the width data
structure.

1) Preprocessing task: it is to initialize and set up tasks to
collect the data needed by slave processors and send it
to slaves. This task is done by the master processor.

2) Computation task: in this task, the slaves receive the
data and code from the master, they do computation on
the data then transfer the results back to the master.

3) Post-processing task: it is a gathering task to receive
the local results, and perform other post-processing on
these results by the master processor.

For building our application in a distributed-memory system,
we utilized the Message Passing Interface (MPI), which
is the most typical and dominant programming paradigm.
The MPI offers a programming model in which processes
interact with other processes by directly calling the library
routines to send and receive messages. The benefits of the
MPI programming model include direct control of data
distribution by the programmer, process synchronization,
explicit communication, and the ability to optimize the
data locality. This allows MPI applications to operate on
multiprocessing or multi-core systems with great scalability,
flexibility, and performance.

16704

Fig. 6 shows the parallel functions that are assigned to
each processing unit, as well as their execution sequence
and communication. Prior to transmitting data to other
slave processors, the master processor must first configure
the data to be transmitted, such as network settings (e.g.,
weights, links, width, and length), and then initialize the hop
count value, which is then transferred to slave processors.
MPI collective operations exploit to realize communication
between processors in the same communicator group. These
operations imply a barrier synchronization across all group
members. Configuration settings are distributed to all slave
processors at the same time using broadcast communication.
Second, all processors get a width and length array partition,
called a chunk. The number of network communication nodes
divided among all the processors in a system. Each processor
determines where it will begin processing in the width and
length arrays after the data chunk has been calculated. This
starting point is called step which is determined by the
product of the logical number of processors (rank) and
chunk size. Third, for each hop count iteration, each CPU
initializes and then updates local width and length arrays
according to the chunk size. Before increasing hop iteration,
each processor broadcasts and receives other local arrays
via collective communication to be aggregated in its buffer.
To gather all the updated local arrays at width and length
arrays, allgather communication is performed. All processors
converge on a synchronization barrier to do another iteration
of the hop count. Finally, once all hop iterations have been
completed, the master processor updates the length and width
arrays and performs post-processing on them. In order to
select the path with the lowest maximum-power value, the
master processor initially computes the maximum power for
the paths from a given source to destination node resulting at
each hop count.

VI. EVALUATION METHODOLOGY

A. EXPERIMENTAL SETUP

To evaluate our MPI parallel implementation, we carry
out experiments using a virtual cloud cluster at Electron-
ics Research Institute (ERI) HPC/cloud center of excel-
lence [41]. The ERI HPC/cloud system is divided into
two main platforms, HPC and OpenStack cloud which are
controlled by Bright Computing Linux Cluster Manager
version 8.1 [42]. The ERI HPC/cloud system has addi-
tional units (such as storage, UPS...... ) which allow the
system to operate efficiently with full monitoring by the
administrators. The ERI cloud platform is implemented with
Bright OpenStack Liberty release [43] with kernal based
virtual machine (KVM) hypervisor which is managed by
Bright Computing Manager. The cloud platform consists
of eight servers as shown in Fig. 7. One server acts as a
controller with two 8-core processors (Intel(R) Xeon ES5-
2640), each running at 2.4 GHz, where each processor has
20 threads. The remaining seven servers act as compute
servers. Five compute servers have two processors (Intel(R)

VOLUME 12, 2024



S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

Master/Slave Slave

Length array |« -

MPI_Init
Setup network !
parameters and —
L hop count

hop count

MPI_Init

~| Weight array
[
-

-~»| Length array

MPI_Comm_size

Define (chunk)

. number of
Number of destination ~~>
processors(size) | vertices

iterations
MPI_Comm_rank Y

Logical number
of the processor |- N
(rank) chunk(step)

point of I

Number of
comml}nlca_tlon Send previous MPI Bcasj
Renicesin arrays and data -
network Y
: to slaves

P Width array

Number of
- comm.siee Define (chunk) Vertices in
number of network
Number of destination |«
processors(size) | vertices
iterations
MPI_Comm_rank
Logical number Define the start
of the e

point of

P

"iterative" three nested loops T

Before

p
(rank)
Local Width local Local Length
array arrays > array

- Chunk

Local Width Intialize local Local Length
S ]
array arrays array

"iterative" three nested loops

maximum Caculate maximum
power array <———-| power for all paths at
T all hops

select the smallest
maximum power

. MPI_finalize

Before
increment-—---------- o increment
hops l l hops
send local Receive
arrays to other local |-~ Width array
slaves ey L L L T arrays ]
l | MPI_Allgather |- l » -
‘ Widtanay “‘" vj Send local ’ Y
Receive other arrays to other
] local arrays slaves and
Length array <« S

. MPI_finalize

FIGURE 6. MPI master-slave model for parallel multi-hop routing.

Xeon E5-2670), each running at 2.6 GHz, where each
processor has 16 threads. One compute server has two
10-core processors (Intel(R) Xeon E5-2640), each running at
2.4 GHz, where each processor has 20 threads. The remaining
compute server has two 8-core processors (Intel(R) Xeon
E5-2680), each running at 2.7 GHz, where each processor
has 16 threads as shown in Table 2. The internal network
has 10GB Ethernet switches. The Non-Uniform Memory
Architecture (NUMA) design is used in a distributed-memory

VOLUME 12, 2024

multiprocessing system, where memory access time relies on
the location of the memory relative to the processor. Under
NUMA, a processor can access its local memory faster than
non-local memory (local memory to another processor or
shared memory between processors) [44]. Our MPI parallel
implementation on the virtual cloud cluster operates on eight
VMs provisioned and managed by the bright OpenStack
hypervisor [42]. This virtual cluster is characterized by the

following:

16705



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

Compute 6 Compute 7
Network S/IW Network S/W
Compute SIW Compute SIW

Hypervisor Hypervisor

Controller

apls

‘Scheduler
Rabbit

Databases

CoreSync
Communications
Service

Management vl:

Storage vlan 3 (Dell Switch) 10GB

Internal vian 4 (Dell Switch) 10GB

Public vian 1 (Dell Switch! 10GB
i N O N N R S
ent vian 2 (Dell Switch) 10GB

y
Storag

Compute 1 Compute 2 Compute 3 Compute 4 Compute 5
Network S/W Network S/W Network S/W Network S/W Network S/W
Compute S/W Compute S/W Compute S/W Compute SIW Compute S/IW

Hypervisor Hypervisor Hypervisor Hypervisor Hypervisor
Bright igm
Management + F
Interface ¥ 1

Database

FIGURE 7. ERI Cloud system.

« Each virtual machine has 32 VCPUs to nearly meet the
specifications of HPC slave servers, 7.8 GB RAM, and
Centos 7.

o Virtual machines are interconnected using the same
network (OpenStack private network).

« MPICH package is installed on all VMs

To begin, we set up passwordless ssh communication between
VMs. Then, we configure Network File System (NFS)
protocol services [45] on NFS-server (one of VMs) and NFS-
clients (other VMs) to use the NFS shared folder between
VMs. NFS is a stateless distributed file system protocol to
allow users and applications to access and process remote
data in the server as if it were local data. Finally, we mount
the shared folder and install the MPICH (Message passing
interface Chameleon) packages version 3.2.1 [46] on the
same shared folder.

B. PERFORMANCE METRICS

We test our parallel implementation using deployment
parameters that are classified into two main categories
(application, computing platform).

1) Communication Network densification (Application
parameter): Our parallel application runs for different
network sizes which indicate the number of communi-
cation nodes (N). The memory requirements for various
network sizes are shown in Table 3.

2) Cores per node (Computing platform parameter): The
number of processors or cores running on a single
compute node in a computing cluster is represented
by this parameter. High-performance computing (HPC)
servers or cloud-based virtual machines (VMs) are used
to distribute MPI tasks. To keep things simple, an HPC
server or cloud-based virtual machine is referred to as a
node. The term cores per node refers to the number of

16706

Head Node(s)

TABLE 2. Technical specifications for ERI-Cloud servers.

SPECs Controller server Compute server
Physical 2X(Intel (R) Xeon (R)
server/processors | CPU E5-2640 0 @ 2.4 o 5 Compute servers
GHZ, 25MB cache, 8 2X(Intel (R) Xeon
cores, 20 threads) (R) CPU E5-26700
@ 2.6 GHZ, 20MB
cache, 8 cores, 16
threads)
o 2 Compute servers
2X (Intel(R)
Xeon(R) CPU
E5-2640 v4 @
2.40GHz,25 MB
cache, 10 cores, 20
threads)
Memory DDR3 128GB RAM, | DDR3 128GB RAM,
NUMA architecture NUMA architecture
Interconnect 2X 10GB Ethernet per | 1X 10GB Ethernet per
controller server compute servers
System Centos 7 and Hypervisor | Centos 7 and Hypervisor
software(OS) KVM KVM

TABLE 3. Data sizes and their system memory requirements.

Data size | Network size (Number of communication nodes) | System memory footprint (GB)
Small 512 527

Medium 1024 6.31
Large 2048 7.44

processors or cores or virtual compute units (VCPU)
that may be found on a HPC server or cloud VM,
respectively. There are two techniques for distributing
MPI tasks:

o The Uniformly Distributed Scenario (UDS): When
using MPI tasks, the MPI tasks (processes) are
distributed in a round-robin fashion among avail-
able nodes by default (i.e. one task is assigned to

VOLUME 12, 2024



S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

each node when several tasks are being executed
simultaneously) as shown in Fig. 8(a).

o The Consolidated Distributed Scenario (CDS):
Prior to moving on to the next node, each node is
loaded with MPI jobs until its processors or cores
are fully utilized as shown in Fig. 8(b). Because
most nodes have 32 processing units, the number
of MPI tasks that may run concurrently on a single
node is limited to 32.

The UDS has the benefit of spreading computing effort
for MPI tasks as the number of nodes increases, then
reducing the computation time. However, the remote
memory communication overhead across nodes is a
drawback in this scenario. With more MPI tasks, the
CDS requires less remote memory transfer. Unlike the
previous scenario, CDS has the drawback of inter-node
memory access overhead. It is possible for the memory
on a single node to become overloaded, resulting in a
slowdown. Table 4 illustrates the distribution of nodes
and cores per node against MPI jobs in two scenarios
(UDS, CDS).

TABLE 4. MPI tasks distribution in UDS and CDS scenarios.

Rank Rank

Caches Caches

Main memory Main memory

Node 1 Node 2

(a) The Uniformly Distributed Scenario (UDS)

Rank Rank

0 1 Core Core

Caches Caches

Main memory Main memory

VII. RESULTS AND ANALYSIS

A. VIRTUAL CLUSTER ON THE CLOUD

Our parallel multi-hop routing protocol implementation is
evaluated by measuring the relative execution time (compu-
tation time and communication time) and speed up compared
to the serial implementation.

o The computation time is the sum of measured time
for updating local width, length arrays for each hop
count iteration by all processing elements (p). Then, the
relative computation time is the computation time for
processing elements to the total time taken on a single
processing element in microseconds.

o The communication time is the sum of measured time
for all-to-all gathering local arrays for each hop count

VOLUME 12, 2024

Node 2

(b) The Consolidated Distributed Scenario (CDS)

FIGURE 8. Two MPI tasks (Rank 0, Rank 1) distribution example for both

iteration between processing elements (p). Then, the
relative communication time is the communication time
for processing elements to the total time taken on a single
processing element in microseconds.

o Speedup is defined as the ratio of the total time (7f)
taken on a single processing element to the total time
(Tp) required to solve the same problem on a parallel
computer with identical processing elements (p).

MPI UDsS CDS
Tasks | Number of nodes | Number of cores per node | Number of nodes | Number of cores per node Node 1
1 1 1 1 1
2 2 1 1 2
4 4 ! ! 4 scenarios.
8 8 1 1 8
16 8 2 1 16
32 8 4 1 32
64 8 8 2 32
128 8 16 4 32
256 8 32 8 32

In Fig. 9 and Fig. 10, the x-axis is the independent variable in
our experiments which indicates the number of running MPI
tasks. Then, the number of nodes and the number of cores
per node are explicitly presented by Table. 4. The y-axis is
the dependent variable that represents relative execution time.
The results are semi logarithmic-scaled for the x-axis only,
using base-10 logarithm.

The relative execution time is shown in Fig. 9 for
small data size in UDS and CDS scenarios. Due to the
virtualization overhead and latency overhead among nodes
(VMs), increasing the number of MPI tasks up to 8 causes
a slight increase in the relative communication time for
UDS. Then, the communication time increases significantly
when the number of MPI tasks exceeds 32. The percentage
of change rate in communication time from 8 MPI tasks

16707



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

to 64 MPI tasks represents more than 100% increase due
to communicating large number of nodes. Also, increasing
the number of VMs requires high access for the physical
cores. Therefore, the virtualization overhead increases due
to massive context switches and small data transfers among
VMs.

For CDS, the change rate of communication time decreases
by 50% for up to 32 MPI tasks since one VM can still tolerate
running MPI tasks with insignificant virtualization overhead.
Because the number of running MPI tasks on the cloud server
exceeds the number of physical cores, the communication
time increases as the number of MPI tasks exceeds 32. The
virtualization effect and inter-VM communication becomes
significant to access the memory among MPI tasks starting
at 32 MPI tasks. The higher the number of utilized VMs per
server, the higher the virtualization overhead.

This virtualization overhead becomes more significant
when the number of running MPI tasks exceeds the number
of physical cores in the cloud server. From these results,
we observe that the rate of change of CDS communication
time for small data sizes can be reduced by nearly 50%
at 32 MPI tasks. In both scenarios, the computation is
performed in a fraction of the time, which means 100 times
faster than the serial execution. After running 32 MPI tasks,
UDS takes less time to compute than CDS because the
overhead of context switches increases across MPI tasks
running on the same server.

Fig. 10 shows the relative execution time in both scenarios
(UDS, CDS) for large data size. For UDS, the communication
time decreases up to 32 MPI tasks, unlike small data size.
The communication to computation ratio is lower in large
data size since each node spends more time processing than
communicating. The change rate in communication time
from 8 MPI tasks to 64 MPI tasks represents only a 40%
increase, since each MPI task handles a significant volume
of data. Beyond 64 MPI tasks, the communication time
increases significantly like small data size because of more
virtualization overhead.

For CDS, the change rate of communication time decreases
by nearly 70% up to 32 MPI tasks. The communication time
increases dramatically as the number of MPI tasks exceeds
32, in a similar manner as for small data size. At 256 MPI
tasks, the computation time is more than 100 times faster in
both scenarios (UDS and CDS). After running 32 MPI tasks,
UDS takes less time to compute than CDS because increasing
the number of MPI-tasks on the same cloud-server causes
more memory overhead. Besides, each node handles a subset
of data than distributing the computational job among them.
From the results, we observe that the virtualization overhead
in large data is less than that in small data because of the lower
communication to computation ratio. Therefore, using a large
data size can enhance execution time in both UDS and CDS.

For various data sizes in the UDS and CDS, Figs 11(a)
and 11(b) illustrate the overall speed up while increasing
the number of MPI tasks and nodes. For UDS, the speed
up scales sub-linearly up to 8 nodes per 8§ MPI tasks for all

16708

data sizes. We observe that all data sizes have their peak at
8 nodes per 32 MPI tasks. Beyond 64 MPI tasks, the speed
up drops since the context switches increase among MPI
tasks running on the same cloud-server VMs. Accordingly,
the network virtualization overhead increases. The large data
size achieves the best speed up of 9.8x while running 32 MPI
tasks per 8 VMs since the communication overhead for large
data size is limited due to infrequent communication of nodes.
Therefore, large data is less latency-sensitive than other data
sizes.

For CDS, the speed up is almost linear up to 8 MPIs
per VM. While running 16 MPI tasks per one VM, the
small data size requires less memory on the same server.
The number of MPI tasks surpasses the number of physical
cores in any server when using MPI tasks up to 32. The
huge context switches for large and medium data sizes have
less overhead than small data size. However, the medium
data size has the best speed up of 15.8X on one VM since
it is less memory-sensitive than the large data size. With
increasing the number of VMs from 2 to 64 MPI tasks,
the larger data has less latency overhead and virtualization
overhead than other data sizes. We observe that the memory
overhead noticeably affects the performance scaling in the
CDS scenario for large data size. Also, large data size
achieves more speed up than other data sizes in the UDS
scenario, since the communication overhead is limited due to
infrequent communication of nodes (less latency). Therefore,
for medium data size, the CDS scenario is the best fit
achieving a net speed up of 15.5x. For large data size, it is
better to adopt UDS task distribution scenario.

To efficiently utilize all capabilities of cloud computing,
a set of experiments with different configurations are per-
formed, to show the best behavior of our parallel implemen-
tation on the OpenStack virtual platform. Table. 5 shows the
experiment cases with five different configurations. Fig. 12
shows the relative execution time of VMs configurations on
the same server or different servers with a variety of assigned
VCPUs per VM to run 32 MPI tasks for large data size.
We select 32 MPI tasks to compare the utilization of one
VM with other configurations that are represented in cases as
shown in Table 5. The case 2 uses 4 VMs on the same cloud
server while case 3 uses 4 VMs on different cloud servers.
The case 4 uses 2 VMs on the same cloud server while
case 5 uses 2 VMs on different cloud servers. All cloud VMs

TABLE 5. Different experiments for VMs configurations.

Experiments Number of VMs Number of VCPUs
1 1 32
2 4 (same cloud server VMs) 8
3 4 (different cloud server VMs) 8
4 2 (same cloud server VMs) 16
5 2 (different cloud server VMs) 16

VOLUME 12, 2024



S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

1000
g 100
= .
c 10 [
2 o
3 1 m | EComputation time
§ /- (uos)
v g1 | Computation time
z nA N (cos)
Tz 0.01 2 Z z 7 O Communication
€ 1 I % I é time(UDS)
7 b
0.001 - 2 2 ; 2 B Communication
AN N N time(CDS)
7 Z I # I Z
0.0001 - 28 8 A |
1 2 4 8 16 32 64 128 256
MPI tasks

FIGURE 9. Small data size relative execution time in UDS and CDS.

10

0.1

Relative execution time

0.001

0.0001
16

MPI tasks

32 64 128 256

B Computation time (UDS)

Computation time (CDS)
@ Communication time{UDS)

[ Communication time(CDS)

= = =

FIGURE 10. Large data size relative execution time in UDS and CDS.

are in the same internal network in all cases. We observed
that the best configuration case in relative execution time is
case 1 and the worst configuration case is case 2 because the
communication time increases while increasing the number
of VMs per cloud server. Accordingly, the context switches
increase among MPI tasks running on the same cloud-server
VMs and the memory-access overhead in case 2. Therefore,
case 1 has the least communication time in all cases. In the
different cloud-server VMs configurations (case 3, case 5),
the virtualization effect in communication time is less than
other cases (case 2, case 4), while increasing the number of
VMs. This is due to the low latency for large data transfers.
The computation time decreases using a smaller number
of VCPUs that does not exceed the number of physical
cores in any running cloud server. Therefore, case 1 is the
worst computation time due to using 32 VCPUs in one
cloud server VM. Also, case 3 and case 5 achieve the best
computation time in all cases because of the smaller number

VOLUME 12, 2024

of used VCPUs. Therefore, we conclude that our MPI parallel
protocol uses collective communication operations among
MPI tasks that require low latency. Therefore, it experiences
higher virtualization overhead when running on the same
cloud server, and this overhead increases as the number
of VMs per server increases. For large data size, the best
recommendation for VMs configurations is to be on different
cloud servers with a suitable number of VCPUs regarding
the physical cores in cloud servers while using more than
one VM. For small data size, the communication time is
more significant on the same cloud server than large data size
because the number of running MPI tasks on the same cloud
server exceeds the number of physical cores as shown in
Fig. 9. Accordingly, the virtualization overhead increases due
to massive context switches and small data transfers among
VMs. Then, the best recommendation is to use the small data
size case while using a number of VCPUs less than physical
cores in the cloud server.

16709



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

——512 —=-1024 2048

=
N

=
[=]

(1]

N
NI .\

] v .
1/1 2/2 4/4a 8/8 8/16 8/32 8/64 8/128 8/256
Number of VMs/MPI tasks

Net speed up

(a) Overall speed up in the UDS scenario.

—+=512 -=-1024 2048

16
o 14 A
512 /—\
T 10 ~\\
g 10 27 \\
> 7 \\
3¢ o \ &
: = \
0 S \Q " -

1/1 1/2 1/4 1/8 1/16 1/32 2/64 4/128 8/256
Number of VMs/MPI tasks

(b) Overall speed up in the CDS scenario.

FIGURE 11. The overall speedup vs MPI tasks per VMs for various data
sizes.

0.14

0.12

0.1

0.08

Y\
ANMMMIMINN

AN\

Z
& % Communication time

/

B Computation time

Relative execution time

Experiments

FIGURE 12. Relative execution time of different VMs configurations using
the large data size (2048).

B. HPC AND CLOUD COMPUTING RESULTS COMPARISON
The major purpose of this section is to compare the
performance of virtual platforms on OpenStack private cloud,
the most popular open-source cloud platform, to conventional
parallel platforms (HPC) results presented in [19]. To this
end, we compare the performance of a virtual cluster of
several VMs running the MPI implementation to the HPC
system described in [19], as to better understand the impact
of network latency on performance. Then, we evaluate the

16710

scalability of both platforms and set recommendations for
them to be utilized by our 5G parallel protocol. To compare
performance and scalability for various network sizes and
MPI task distribution scenarios (UDS and CDS), Fig. 13 and
Fig. 14 are shown, respectively.

In Fig. 13, for all data sizes up to 32 MPI tasks, we notice
that HPC and the cloud perform similarly in terms of speed
up. However, HPC has better speed up since the cloud has
the virtualization overhead besides latency overhead. The
large data size is the most dominant data size to achieve
peak speed up for both platforms in the UDS scenario. The
speed up of HPC is double the speed up of the cloud for the
large data size up to 32 MPI tasks. The large data size is
less latency-sensitive than other data sizes, especially when
increasing the number of physical cores per node and the
number of nodes at running 128 MPI tasks. We observe that
HPC could efficiently utilize more resources in terms of the
number of cores and nodes as compared to the cloud, due
to the absence of any virtualization overhead in the UDS
scenario, especially for the large data size. Large data size
could efficiently utilize the cloud resources (nodes and cores)
in UDS up to 8 VMs with achieving a speed up of 9.8x. The
peak speed up in HPC is four times the peak speed up in the
cloud. The peak cloud speed up is 9.8x when running 32 MPI
tasks, and the HPC speedup is 37.4x when running 128 MPI
tasks.

In Fig. 14, we observe that the peak speed up of HPC
and the cloud occurs with medium data size when running
one node in the CDS scenario. Beyond 32 MPI tasks per
node, only HPC achieves speed up when increasing the
number of nodes up to 4 in the case of large data size.
The cloud results are inferior to the HPC results due to
network virtualization and context switches overhead among
MPI tasks of VMs deployed in the cloud server. In a CDS
scenario and large data size, HPC could utilize additional
resources, such as more nodes and cores. We also observe
that the medium data size case achieves the best speed up
of 15.5x in the cloud when running 32 MPI tasks per VM
(CDS). Finally, we could conclude that choosing the best
platform for our parallel implementation protocol is highly
dependent on changing the application parameters (network
size), and accordingly the computing platform parameters
(MPI tasks distributing scenarios). HPC outperforms the
cloud in terms of scalability, while achieving speed up for
large data size. We also conclude that cloud computing could
be utilized by medium data size without distributing MPI
tasks (CDS per VM) to achieve a peak speed up of 15.5x.
In terms of efficient utilization of all capabilities, large data
size can utilize cloud resources up to 8 VMs with achieving
a peak speed up of 9.8x in UDS scenario per 32 MPI tasks.
The virtual cloud cluster could enhance the performance for
medium and large data size using fewer resources (one VM)
as compared to HPC. Therefore, the cloud outperforms HPC
since it utilizes less hardware resources in 5G BBU pool
deployment, as well as the ability to assign cloud processing
resources closer to mobile users and real-time applications

VOLUME 12, 2024



S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

40
™
35
N
[
30
R N
o
2 : m512Cloud
k] N = 1024Cloud
8 2 \
7] ﬁ 02048 Cloud
2 15 N CI512HPC
N
10 : 1024HPC
&
5 § ) £ 2048HPC
%
i
0 4 S T

a/a
Number of Nodes/MPI tasks

8/8 8/16

8/32

8/64 8128 8/256

FIGURE 13. The overall speed up vs MPI tasks per nodes for HPC and cloud platforms using UDS

scenario.
30
25 N
sl
N
|
o 20 N N = 512Cloud
= ) |
@ 2 N N W 1024Cloud
9 15 - N N
P 44
“ 7 i N N O 2048doud
7] 7 7 N N
Z 10 & ' N N . E512HPC
87 H
£ 44
i 52 52 1024HPC
Wz Az Az
RN 4 5
5 ::g: i W K12048HPC
. 44 44
N M WL
47 7% ]
NN 47 L

1/a
Number of Nodes/MPI tasks

/8 1/16

1/32 2/64 4f128 8/256

FIGURE 14. The overall speed up vs MPI tasks per nodes for HPC and cloud platforms using CDS

scenario.

at the network edge. Then, MNOs have the benefits of
cloudification and virtualization of 5G network resources for
C-RAN.

VIIl. CONCLUSION AND FUTURE WORK

This paper highlights the potential usefulness of utilizing
cloud computing in an attempt to speed up 5G routing
protocols and satisfy the needs of 5G UDNs. Cloud com-
puting provides many advantages for 5G networks, such as
centralized processing and management, elastic provisioning,
and dynamic scalability upon-demand. The major objective
of this research is to compare the performance of virtual
cluster on the cloud to the conventional HPC platform
and set recommendations for adopting both platforms. One
of the most significant findings in this paper is that the
best routing speed-up achieved using our cloud computing
implementation was 15.5x, and was recorded using a few
hardware requirements (one VM) for a medium network size
of 1024 nodes. By comparing the results of our protocol for

VOLUME 12, 2024

both platforms with the original serial algorithm, we conclude
that there is a marked improvement in running bigger network
sizes with less execution time. To set recommendations for
the adoption of cloud computing and HPC platforms to be
highly utilized in terms of speed up, scalability, and resources
or infrastructure requirements in 5G deployment, a set of
experiments are done using different application and system
parameters (network size, number of cores and nodes).
We conclude that our parallel protocol is a latency-sensitive
application, and cloud virtualization adds more overhead.
Accordingly, the cloud outperforms HPC that it could be
deployed at the edge of medium to large networks to serve
mobile users and real-time applications, yielding a peak speed
up with a few hardware requirements (one VM). We also
found that the location of VMs and the number of VCPUs
per VM in the cloud server play a crucial role in determining
the latency and virtualization overhead for different network
sizes. Therefore, deploying virtual cloud clusters necessitates
enhancing the cloud resource management to reduce network

16711



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

virtualization overhead, especially for our parallel 5G routing
protocol. We conclude that our HPC cluster implementation
surpasses that of a virtual cloud cluster in terms of routing
speed-up of 37x for a large network size with 2048 nodes.
Therefore, HPC is more suitable than the cloud in terms of
higher linear parallel performance, scalability, and platform
utilization at the core network of 5G.

In the future work, various parallel implementations, such
as shared memory (OpenMP) and hybrid multiprocessing
programming, may be useful to assess the performance
gains in both platforms. Also, cloud computing is efficient
when multi-core processor speeds increase, MPICH software
versions facilitate the in-compute server communication, and
the container virtualization is used to reduce the latency of
the VM virtualization layer.

ACKNOWLEDGMENT

This work was supported in part by the Cloud Computing
Center of Excellence through the Science and Technology
Development Fund (STDF), Egypt, under Grant 5220; and
in part by the Distributed and Networked Systems Research
Group Operating through the University of Sharjah, United
Arab Emirates, under Grant.

REFERENCES

[1] M. Nazir, “Cloud computing: Overview & current research challenges,”
I0OSR J. Comput. Eng., vol. 8, no. 1, pp. 14-22,2012.

[2] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and
R. Buyya, “HPC cloud for scientific and bus. Applications: Taxonomy,
vision, and research challenges,” ACM Comput. Surveys, vol. 51, no. 1,
pp. 1-29, Jan. 2019.

[3] P. Mvelase, H. Sithole, S. Masoka, and M. Bembe, “Hpc in the cloud
environment: Challenges, and theoretical analysis,” in Proc. Int. Conf. Sci.
Comput. (CSC), 2018, pp. 94-101.

[4] A. Gupta, L. V. Kale, F. Gioachin, V. March, C. H. Suen, B.-S.
Lee, P. Faraboschi, R. Kaufmann, and D. Milojicic, “The who, what,
why, and how of high performance computing in the cloud,” in Proc.
IEEE 5th Int. Conf. Cloud Comput. Technol. Sci., vol. 1, Dec. 2013,
pp- 306-314.

[5] M. Peng, Y. Li, Z. Zhao, and C. Wang, “System architecture and key
technologies for 5G heterogeneous cloud radio access networks,” IEEE
Netw., vol. 29, no. 2, pp. 614, Mar. 2015.

[6] P. T. Dat, A. Kanno, and T. Kawanishi, ‘“Radio-on-radio-over-fiber:
Efficient fronthauling for small cells and moving cells,” IEEE Wireless
Commun., vol. 22, no. 5, pp. 67-75, Oct. 2015.

[7] Cisco. (2020). Ciso Annual Internet Report(2018-2023). [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html,

[8] W.Feng, Y.Li, D. Jin, L. Su, and S. Chen, “Millimetre-wave backhaul for
5G networks: Challenges and solutions,” Sensors, vol. 16, no. 6, p. 892,
Jun. 2016.

[9] M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul
challenges and emerging research directions: A survey,” IEEE Access,
vol. 4, pp. 1743-1766, 2016.

[10] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks:
A survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2522-2545,
4th Quart., 2016.

[11] X. Xu, M. Liu, J. Xiong, and G. Lei, “Key technology and application
of millimeter wave communications for 5G: A survey,” Cluster Comput.,
vol. 22, no. S5, pp. 12997-13009, Sep. 2019.

[12] S. Chen, E. Qin, B. Hu, X. Li, and J. Liu, “Ultra-dense network
architecture and technologies for 5G,” in Proc. 5G Mobile Commun.,
Cham, Switzerland: Springer, 2017, pp. 403-429.

16712

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

R. N. Mitra and D. P. Agrawal, ““5G mobile technology: A survey,” ICT
Exp., vol. 1, no. 3, pp. 132-137, Dec. 2015.

A. Gupta and R. K. Jha, “A survey of 5G network: Architecture
and emerging technologies,” IEEE Access, vol. 3, pp.1206-1232,
2015.

M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A comprehensive
survey of RAN architectures toward 5G mobile communication system,”
IEEE Access, vol. 7, pp. 70371-70421, 2019.

R. T. Rodoshi, T. Kim, and W. Choi, “Resource management in cloud
radio access network: Conventional and new approaches,” Sensors, vol. 20,
no. 9, p. 2708, May 2020.

M. F. Hossain, A. U. Mabhin, T. Debnath, F. B. Mosharrof, and K. Z. Islam,
“Recent research in cloud radio access network (C-RAN) for 5G
cellular systems—A survey,” J. Netw. Comput. Appl., vol. 139, pp. 31-48,
Aug. 2019.

M. Saad, “Joint optimal routing and power allocation for spectral effi-
ciency in multihop wireless networks,” IEEE Trans. Wireless Commun.,
vol. 13, no. 5, pp. 2530-2539, May 2014.

S. A. Aboulrous, A. A. El-Moursy, M. Saad, A. Abdelsamea, S. M. Nassar,
and H. Abbas, ‘“‘Parallel multi-hop routing protocol for 5G backhauling
network using HPC platform,” in Proc. 15th Int. Conf. Comput. Eng. Syst.
(ICCES), Dec. 2020, pp. 1-6.

T. K. Vu, M. Bennis, M. Debbah, and M. Latva-Aho, “Joint path
selection and rate allocation framework for 5G self-backhauled mm-wave
networks,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2431-2445,
Apr. 2019.

S. M. Nejakar and P. G. Benakop, “Energy efficient routing protocol for
improving lifetime in 5G networks,” in Proc. 2nd Int. Conf. Emerg. Trends
Sci. Technol. Eng. Syst. (ICETSE, May 2019, p. 8.

D. Dev Misra, K. K. Sarma, U. Bhattacharjee, P. K. Goswami, and
N. Mastorakis, “Optimal routing in the 5G ultra dense small cell network
using GA, PSO and hybrid PSO-GA evolutionary algorithms,” in Proc.
24th Int. Conf. Circuits, Syst. Commun. Comput. (CSCC), Jul. 2020,
pp. 39-44.

S. W. AbuSalim, R. Ibrahim, M. Z. Saringat, S. Jamel, and J. A. Wahab,
“Comparative analysis between Dijkstra and bellman-ford algorithms
in shortest path optimization,” in Proc. Conf. Ser. Mater. Sci.
Eng., vol. 917, Sep. 2020, Art.no.012077. [Online]. Available:
https://doi.org/10.1088%2F1757-899x%2F917%2F1%2F012077

S. Vakilinia and H. Elbiaze, “Latency control of ICN enabled 5G
networks,” J. Netw. Syst. Manage., vol. 28, no. 1, pp.81-107,
Jan. 2020.

H. Riasudheen, K. Selvamani, S. Mukherjee, and I. R. Divyasree, “An
efficient energy-aware routing scheme for cloud-assisted MANETSs in 5G,”
Ad Hoc Netw., vol. 97, Feb. 2020, Art. no. 102021.

P. Liu, G. Xu, K. Yang, J. Ge, and Z. Kuang, “Joint routing and mobile
VM selection algorithm in multihop C-RAN networks,” Int. J. Commun.
Syst., vol. 31, no. 7, May 2018, Art. no. e3402.

O.L. A. Lopez, H. Alves, R. D. Souza, and M. Latva-aho, “Hybrid wired-
wireless backhaul solutions for heterogeneous ultra-dense networks,” in
Proc. IEEE 87th Veh. Technol. Conf. (VIC Spring), Jun. 2018, pp. 1-5.
B. Tian, Q. Zhang, Y. Li, and M. Tornatore, “Joint optimization of
survivability and energy efficiency in 5G C-RAN with mm-wave based
RRH,” IEEE Access, vol. 8, pp. 100159-100171, 2020.

R. Dogra, S. Rani, H. Babbar, and D. Krah, “Energy-efficient routing
protocol for next-generation application in the Internet of Things and
wireless sensor networks,” Wireless Commun. Mobile Comput., vol. 2022,
pp. 1-10, Mar. 2022, doi: 10.1155/2022/8006751.

X. Wang, J. Hu, H. Lin, S. Garg, G. Kaddoum, M. J. Piran, and
M. S. Hossain, “QoS and privacy-aware routing for 5G-enabled industrial
Internet of Things: A federated reinforcement learning approach,” IEEE
Trans. Ind. Informat., vol. 18, no. 6, pp. 4189-4197, Jun. 2022.

L. H. Binh and T.-V.-T. Duong, “An improved method of AODV
routing protocol using reinforcement learning for ensuring QoS
in 5G-based mobile ad-hoc networks,” ICT Exp., Jul. 2023, doi:
10.1016/j.icte.2023.07.002.

H. Alqahtani, L. Niranjan, P. Parthasarathy, and A. Mubarakali,
“Modified power line system-based energy efficient routing protocol
to improve network life time in 5G networks,” Comput. Electr.
Eng., vol. 106, Mar. 2023, Art.no.108564. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790622007790

VOLUME 12, 2024


http://dx.doi.org/10.1155/2022/8006751
http://dx.doi.org/10.1016/j.icte.2023.07.002

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

IEEE Access

[33] B. Popa and D. Popescu, “Analysis of algorithms for shortest path
problem in parallel,” in Proc. 17th Int. Carpathian Control Conf. (ICCC),
May 2016, pp. 613-617.

[34] G. Hajela and M. Pandey, ‘“Parallel implementations for solving
shortest path problem using bellman-ford,” Int. J. Comput.
Appl., vol. 95, no. 15, pp.1-6, Jun. 2014. [Online]. Available:
https://doi.org/10.5120%2F16667-6659

[35] F. Busato and N. Bombieri, “An efficient implementation of the bellman-
ford algorithm for Kepler GPU architectures,” [EEE Trans. Parallel
Distrib. Syst., vol. 27, no. 8, pp. 2222-2233, Aug. 2016.

[36] P. Heywood, S. Maddock, R. Bradley, D. Swain, I. Wright, M. Mawson,
G. Fletcher, R. Guichard, R. Himlin, and P. Richmond, “A data-parallel
many-source shortest-path algorithm to accelerate macroscopic transport
network assignment,” Transp. Res. Part—C, Emerg. Technol., vol. 104,
pp. 332-347, Jul. 2019.

[37] S. Yadav and A. Khan, “SP async: Single source shortest path in
asynchronous mode on MPL,” 2021, arXiv:2103.12012.

[38] D. Pliatsios, P. Sarigiannidis, S. Goudos, and G. K. Karagiannidis,
“Realizing 5G vision through cloud RAN: Technologies, challenges, and
trends,” EURASIP J. Wireless Commun. Netw., vol. 2018, no. 1, p. 136,
Dec. 2018.

[39] M. Peng, Y. Li, J. Jiang, J. Li, and C. Wang, “Heterogeneous cloud
radio access networks: A new perspective for enhancing spectral and
energy efficiencies,” IEEE Wireless Commun., vol. 21, no. 6, pp. 126-135,
Dec. 2014.

[40] S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call graph
execution profiler,” ACM SIGPLAN Notices, vol. 39, no. 4, pp. 49-57,
Jun. 2004.

[41]1 ERL (2015). Scientific Cloud Computing Center of Excellence. [Online].
Available: http://www.eri.sci.eg/?q=en/Cloud_Center

[42] (2015). Bright  Openstack.  [Online].  Available:
brightcomputing.com/OpenStack

[43] Rackspace Cloud Computing. (2018). Liberty., The Twelve Release
of Openstack. [Online]. Available: https://www.openstack.org/software/
liberty/

[44] A. Ali and K. S. Syed, “An outlook of high performance computing
infrastructures for scientific computing,” Adv. Comput., Elsevier, vol. 91,
pp. 87-118, 2013.

[45] G. Arnold, “Internet protocol implementation experiences in PC-
NFS,” in Proc. ACM Workshop Frontiers Comput. Commun.
Technol.-(SIGCOMM), Aug. 1988, pp.8—-4. [Online]. Available:
https://doi.org/10.1145%2F55482.55485

[46] MPICH. (1992). High-Performance Portable MPI . [Online]. Available:
http://www.mpich.org/

http://info.

SOMAYA A. ABOULROUS received the B.Sc.
degree in computer science and engineering from
Menofia University, Cairo, Egypt, in 2014, the
M.Sc. degree (Scientists for Next Generation—
SNG) from the Academy of Scientific Research
and Technology (ASRT), Cairo, and cooperated
with the Electronics Research Institute (ERI),
in 2016, and the M.Sc. degree in computer
and systems engineering from Ain Shams
University, in 2022. Her research interests
include performance optimization, high-performance computing, and cloud
computing.

VOLUME 12, 2024

AMANY ABDELSAMEA received the B.Sc.
degree from the Faculty of Engineering at
Shoubra, Benha University, in 1999, and the
M.Sc. and Ph.D. degrees from the Faculty of
Engineering, Cairo University, in 2006 and 2017,
respectively. She is currently a Researcher with the
Electronics Research Institute. In 2022, she was a
part-time Instructor with New Cairo Technological
University, Egypt. Her research interests include

" high-performance computing, parallel computing,
distributed computing, cluster computing, grid computing, cloud computing,
green computing, and big data analytics.

ALl A. EL-MOURSY (Senior Member, IEEE)
received the Ph.D. degree in high-performance
computer architecture from the University of
Rochester, Rochester, NY, USA, in 2005. He was
g with the Software Solution Group, Intel Corpora-
o tion, Santa Clara, CA, USA, until 2007. In 2007,
he joined the Electronics Research Institute, Giza,
Egypt. He has also participated with the IBM Cairo
@ﬁ Technology Development Center, Egypt, as a
: Visiting Research Scientist, from February 2007 to
January 2010. In September 2010, he joined the Department of Electrical
and Computer Engineering, University of Sharjah, Sharjah, United Arab
Emirates, as an Assistant Professor, where he was promoted to an Associate
Professsor, in January 2017, and a Full Professor, in January 2023. His
research interests include high-performance computer architecture, multi-
core multi-threaded micro-architecture, power-aware micro-architecture,
simulation and modeling of architecture performance and power, workload
profiling and characterization, parallel programming, high-performance
computing, parallel computing, the IoT architecture, and cloud computing.

MOHAMED SAAD (Senior Member, IEEE)
received the Ph.D. degree in electrical and
computer engineering from McMaster University,
Hamilton, ON, Canada, in 2004. He was a
Researcher with the Department of Electrical and
Computer Engineering, University of Toronto,
Canada, and the Advanced Optimization Labo-
ratory, Department of Computing and Software,
McMaster University. He is currently a Professor

! with the Department of Computer Engineering and
the Assistant Dean of Graduate Studies with the College of Computing and
Informatics, University of Sharjah, United Arab Emirates. His research inter-
ests include networking, communications, and optimization, with current
activity focused on the optimal design of wireless and wired communication
networks and optimal network resource management. He was a recipient
of the Best Paper Award from the IEEE Symposium on Computers and
Communications, Riccione, Italy, in June 2010; the University of Sharjah
Annual Incentive Award for Distinguished Faculty Members, for Excellence
in Research, in April 2010 (University-Wide); the two Best Teaching Awards
from the IEEE Women in Engineering Society, University of Sharjah,
in 2007 and 2009; and the Natural Sciences and Engineering Research
Council of Canada (NSERC) Post-doctoral Fellowship, from 2005 to 2006.
He is an Associate Editor of Frontiers in Communications and
Networks.

16713



IEEE Access

S. A. Aboulrous et al.: Parallel Deployment and Performance Analysis of a Multi-Hop Routing Protocol

FADI N. SIBAI received the B.S. degree in elec-
trical engineering from The University of Texas
at Austin, Austin, TX, USA, and the M.S. and
Ph.D. degrees in electrical engineering from Texas
A&M University. From 1990 and 1996, he was
an Assistant Professor of electrical engineering
with The University of Akron. From 1996 to 2006,
he managed programs and engineering teams
with Intel Corporation, Santa Clara, CA, USA.
From 2006 to 2011, he directed the Computer
Systems Design Program and the IBM Cell Competence Center, UAE
University. From 2011 to 2019, he was with Aramco. He received the
IBM’s Highest Research Award from UAE University. In 2022, he joined
the College of Engineering and Architecture, Gulf University for Science
and Technology, Kuwait, as the Associate Dean. Previously, he served as
the acting Dean with the School of Engineering, American International
University, and the Dean of the College of Computer Engineering and
Science, Prince Mohammad bin Fahd University. He has authored or
coauthored more than 230 publications and technical reports and served
on the organizing or program committees for more than 20 conferences.
He holds PMP, CISSP, CCNA, and CQRM certifications. He is a member
of PMI, (ISC)2, and Eta Kappa Nu.

SALWA M. NASSAR received the Ph.D. degree
in the field of parallelism in programming lan-
guages from the Department of Electronics and
Communication, Faculty of Engineering, Cairo
University, in 1984. Her professional experience
started, in 1974, by being a Research Assistant,
with the Department of Computer and Systems,
Electronics Research Institute. She became an
Instructor and an Assistant Professor with the
Department of Computer and Systems, Electronics
Research Institute. She taught at the American University in Cairo (AUC),

16714

from 1987 to 1997. She became an Associate Professor, in 1991, and
a Full Professor, in 1996. She was the Head of the EU information
Point InP. She is an Ex-ERI President and the PI of the Cloud Center
of Excellence and the Head of the HPCloud Group, ERI. She had
50 publications. She has led a number of European and USA-funded projects.
Her research interests include parallel processing, parallel logic languages,
modeling and simulation of parallel programs, distributed systems, computer
networks, parallel applications, parallel virtual machines, grid computing,
cluster computing, and cloud computing. She is a member of the IEEE
Computer Society, the Information Technology Academia Collaboration
(ITAC) Steering Committee, and a Juror in the Egypt. She received the
WSIS-Award, in 2006, organized by the MCIT, Egypt, in 2006.

HAZEM ABBAS (Senior Member, IEEE) received
the B.Sc. and M.Sc. degrees in electrical and
computer engineering from Ain Shams University,
Cairo, in 1983 and 1988, respectively, and the
Ph.D. degree from Queen’s University, Canada,
in 1993. He was the Chairperson with the Depart-
ment of Computer and Systems Engineering, Ain
Shams University, and the Dean of the Faculty
of Media Engineering and Technology, German
University, Cairo. He was with the Royal Military
College of Canada, Kingston, ON, Canada, the IBM Toronto Laboratory,
and Mentor Graphics. He is currently a Professor in computer and
systems engineering. His research interests include machine learning and
computational intelligence. He chaired the IEEE Signal Processing Chapter
in Cairo.

VOLUME 12, 2024



