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ABSTRACT Existing supervised learning-based methods performed high-resolution visual correspondence
using a decoder module. However, in self-supervised learning-based methods, it is difficult to use a decoder
module that is easily influenced by labels. This paper will introduce a self-supervised learning-based visual
correspondence method for high-resolution representation without decoder module. To this end, the paper
proposed four modules. Each module has an output of the original resolution and distributes the role of
the decoder module to perform high-resolution representation. The first module is the pattern boosted
quantization module, which learns pattern information along with color information to create high-resolution
pseudo labeling. The second module is the backbone module, which is created by applying aggregation
to the backbone network to simultaneously handle semantic features and high-resolution features. The
third module is the appearance module, which learns appearance information using the features of the
high-resolution embedding space. The fourth module is the correspondence module, which gradually
reconstructs a high-resolution visual correspondence using low-resolution input. It was confirmed using
subtraction image that the proposed method improves the performance about representation of thin objects
and object boundaries. Video segmentation performance was evaluated on the DAVIS-2017 val dataset using
the J&F mean, yielding 65.4%.

INDEX TERMS Decoder module, high-resolution representation, pseudo labeling, self-supervised learning,
visual correspondence.

I. INTRODUCTION
Visual correspondence is the problem of predicting where
a specific point of a reference image is located in a
target image. It is a core method related to various fields,
including image matching [1], [2], key point matching [3],
[4], tracking [5], [6], [7], stereo vision problem [8], colorizing
[9], and video segmentation [10], [11], [12], [13], [14],
[15]. Different methods of solving the problems of long-
term prediction, occlusion, and drift using self-supervised
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learning have recently been proposed [10], [11], [12], [13],
[14], [15]. However, the high-resolution representation could
not efficiently be handled due to the high computational
complexity of the affinity matrix. In other words, it cannot
distinguish clear boundaries between objects and cannot
express objects composed of high frequencies (e.g., thin
threads) [16], [17], [18], [19], [20], [21]. On the other
hand, supervised learning-based methods efficiently solved
high-resolution representation problems using a decoder
module. The problem is that it is difficult to use a
decoder module that is directly affected by labels in self-
supervised methods. In addition, performing high-resolution
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representation without using a decoder module significantly
increases memory usage because it increases the compu-
tational complexity of the affinity matrix. To solve this
problem, a method is needed that can use memory efficiently
while maintaining high-resolution features. The proposed
method will target the original resolution representation of
the input image, unlike existing methods [12], [13] that use
a resolution representation with stride 4 for high resolution
representation.

Various modules have been presented to solve these issues.
The first module is the pseudolabeling module that adds
the Walsh–Hadamard pattern [22] to the Lab color space.
It uses a mixture of pattern and color information to express
an object’s intrinsic characteristics. The second module is a
network architecture aggregation for creating high-resolution
features. The third module is the appearance module that
learns the appearance using high-resolution features. The
fourth module is the correspondence module that performs
resolution reconstruction using the fractal structure of the
affinity matrix.

The usage of pseudolabeling is an important and con-
troversial issue in the topic of visual correspondence
through self-supervised learning. Reference [11] performed
pseudolabeling by applying k-means clustering on the ab
channel of the Lab color space, consequently inspiring sub-
sequent papers to utilize pseudolabeling and influencing the
development of a more sophisticated pseudolabeling process.
References [12] and [13] approached it as a regression
problem by randomly selecting only one channel among
the ab channels. Reference [14] solved the correspondence
problem using cycle consistency, taking advantage of the fact
that if the first frame is predicted in backward time, and
then predicted again in forward time, it always has the same
features as the first frame. The abovementioned methods
have the advantage of being less influenced by hypotheses
from human bias by avoiding to perform pseudolabeling.
In contrast, existing methods that use cycle consistency have
the disadvantage of limiting the affinity matrix size because
they continuously predict the affinity matrix as long as the
length on the time axis. Conversely, methods implementing
pseudolabeling have relatively less restrictions on the affinity
matrix size because usage of the time axis information is
not necessary. Therefore, methods requiring pseudolabeling
are advantageous when learning high-resolution features by
being able to use a relatively large affinity matrix. However,
the existing Lab color-based pseudolabeling method does
not consider the object’s pattern and does not give weight
to high-frequency information, making it insufficient for
expressing high-resolution features and clear boundary
information. To better learn high-resolution features, the
Walsh—Hadamard pattern is added along with the Lab color
space and clustered with k-means.

Visual dense correspondence is a pixel-to-pixel matching
method for objects existing in the reference and target images.
This problem deals with object motion; thus, objects must be

understood. To do this, methods for separately dealing with
the appearance and motion features are studied [23], [24],
[25]. This approach was similar to the concept of recognizing
salient objects by integrating a dorsal pathway for motion
perception and a ventral pathway for semantic perception in
neuroscience [26]. Reference [27] constructed the appearance
module and correspondence module by sharing embedding
features from the backbone. In this approach, the corre-
spondence module learns motion for visual correspondence,
while the appearance module mitigates the degradation of
appearance caused by the correspondence module by using
a narrow search range for the affinity matrix. However,
information loss occurred because the appearance module
did not use the feature map of the spatial resolution
corresponding to the spatial resolution of the quantized
image. The proposed method enhances the performance of
the appearance module by generating high-resolution feature
maps through aggregation [28], [29], [30], [31], [32], [33] in
the existing network architecture.

In visual correspondence, the optimal trade-off between
the subsampling of the embedding space and the matching
range must be found because the amount of memory used
for the affinity matrix is proportional to the square of the
feature sampling due to the affinity matrix being calculated
as the inner product of the reference and target frames.
Accordingly, most methods use the coarse subsampling of the
reference and target features to prevent unrealistic memory
usage. However, these methods impair the feature details.
References [12] and [13] calculated the inner product only
within the region of interest of the window size using
restricted attention. Their approach had the advantage of
maintaining the feature details because the affinitymatrix was
calculated at a relatively high resolution by narrowing the
search area. In contrast, the motion beyond the search area
had not been understood due to the narrow search space.

The proposed method uses coarse subsampling on
restricted attention to simultaneously address the search area
limitation and loss of feature details and obtain a wide search
range. It uses the fractal structure of the affinity matrix on the
correspondence module to restore the feature details.

Another important topic when dealing with visual corre-
spondence is the drift problem that refers to the phenomenon
of leaving mismatched traces according to the object
trajectory. Reference [13] argued that schedule sampling
and bidirectional learning of cycle consistency [10] alleviate
the drift problem. However, cycle consistency does not
only reduce the flexibility of the model selection by using
excessive memory, but also encounters overfitting of the
motion information by recursively using the prediction
result of the backbone [12]. Reference [14] alleviated the
drift problem by not recursively using backbone prediction.
However, the high-resolution representation cannot be dealt
with due to the high cycle consistency cost. Solving the
drift problem requires the proposed method to learn about
the relationship between two density correspondences. In the
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performed test, a more diverse density correspondence is used
to alleviate the drift problem.

The study contributions are as follows:

1) Pattern-boosted quantization is proposed. Using this
module, the representation power is increased by
clustering the consistent pattern information of the
quantized image.

2) The feature representation of the embedding space is
improved by using aggregation on the backbone.

3) The feature representation is modified using the
appearance module to better understand the high-
resolution appearance.

4) A high-resolution reconstruction is performed by
proposing the fractal structure of the affinity matrix
on the correspondence module. The drift problem is
alleviated by learning the relationship between multi-
density correspondences.

5) The visual correspondence performance on various
datasets is evaluated. Video segmentation performance
was evaluated on the DAVIS-2017 val dataset [34]
using the J&F mean, yielding 65.4%

The remainder of this paper is organized as follows:
Section II introduces the preliminary work; Section III
provides a detailed description of the proposed method;
Section IV evaluates the method performance by conducting
experiments on various datasets. The contributions of each
module are considered through an ablation study; and
Section V briefly summarizes.

II. PRELIMINARY WORK
This section explains the deep learning-based semisupervised
video object segmentation methods. Note that the terms
traditionally used in the video object segmentation (VOS)
field are presented to prevent terminological confusion.
In unsupervised video object segmentation, segmentation
is performed without providing any annotation information
from the user in the test stage. Conversely, in semisupervised
video object segmentation, the region of interest (mask)
of the first frame is given by the test stage user, and the
subsequent frames are segmented by referring to the region.
The VOS fields are classified depending on how the region
of interest is given during the test stage. Meanwhile, general
machine-learning methods are divided into supervised and
unsupervised learning depending on the presence or absence
of annotation for learning in the training stage. To avoid
confusion in the terms used in the VOS field, unsupervised
video object segmentation is referred to as automated video
object segmentation or zero-shot video segmentation, and
semisupervised video object segmentation is referred to as
semiautomated object segmentation or one-shot video seg-
mentation. We use the automatic video object segmentation
or semiautomatic video object segmentation terminology in
the paper as suggested by [35].
Visual correspondence is the problem of predicting where

the specific point of the reference image is in the target

image. It must respond to the changes in an object’s shape
and appearance over time; hence, the object’s inherent
characteristics must be understood. Accordingly, visual cor-
respondence methods have often been introduced as a family
of semiautomatic VOS. Their performance is measured using
evaluation methods in the field. Before introducing the
proposed paper, we will first demonstrate the necessity of the
proposed method by explaining the existing semiautomatic
VOS using supervised and unsupervised learning.

A. SEMIAUTOMATIC VOS USING SUPERVISED LEARNING
The semiautomatic VOS using supervised learning is studied
in fields that require a precise performance, such as long-term
memory and pixel-level representation using annotation
information during the training time. As such, it is generally
divided into online fine-tuning-, propagation-, and matching-
based methods.

1) ONLINE FINE-TUNING-BASED METHODS
Online fine-tuning-based methods use transfer learning [36]
and comprises two steps: 1) the process of learning general
features at training time; and 2) the process of learning
the target appearance at inference time [35], [37]. Each
step shares the same backbone network and is gradually
fine-tuned to understand the target object [38]. The backbone
network is generally initialized with pre-trained parameters
learned from ImageNet and learns objectness by fine-tuning
it with object segmentation datasets on the train [37]. Some
studies learned motion information [39] or instance-level
semantic information [40] to boost the performance. Learning
in the training step is called ‘‘offline learning,’’ while that in
the inference step is called ‘‘online learning.’’ Online fine-
tuning-based methods relatively reduce the burden of model
overfitting due to their structural simplicity [35]. However,
they encounter the problem of a long inference running
time [41]. Various online fine-tuning-based methods [38],
[39], [40] alleviate this problem by omitting the decoder or
refining the module and performing resolution reconstruction
by aggregation. This approach is deemed to allow an accurate
contour expression in the inference time with a relatively few
trainable parameters and limited data [38].

2) PROPAGATION-BASED METHODS
Propagation-based methods predict the object of interest
(mask) of the current frame by propagating the mask of the
previous frames [42]. This method assumes that the target
object has a high relationship with the object of interest in
the previous frames [37]. However, video objects do not
only have continuous changes, they can also be vulnerable
to the occlusion, rapid motion, multiple instance, and drift
problems [43], [44], [45], [46], [47]. Propagation-based
methods have been developed to reinforce the insufficient
spatio-temporal context for the object of interest [35]. These
methods are classified into short-term temporal propagation-
based methods that utilize additional information along with
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a single previous mask and long-term temporal propagation-
based methods that use multiple previous masks to under-
stand the context information [37]. The additional context
information used in the former includes optical flow [44] and
reinforcement learning [45] and is often fine-tuned through
estimation to alleviate the error accumulation [46], [47],
[48]. Long-term temporal propagation-based methods, such
as bilateral neural network, generative adversarial network,
and RNN are also being employed [49], [50], [51], [52], [53].
Propagation-based methods are easy to use with a decoder
module because they do not require a time-consuming online
learning process.

3) MATCHING-BASED METHODS
Matching-based methods predict a target object from the
object of interest (mask) of the reference frames bymeasuring
the similarity of the embedding space for the reference and
target frames. This approach is classified into implicit and
explicit matching [37]. Implicit matching [46], [48], [54]
is a method of implicitly inferring the similarity between
frames through fully connected or convolutional layers.
In comparison, explicit matching [55], [56], [57], [58], [59] is
the procedure of explicitly calculating the similarity between
pixels through an affinity matrix.

The embedding space of a matching-based method
implicitly learns the object’s appearance information; thus,
it has robust characteristics against occlusion or appear-
ance change [60]. Reference [55] efficiently constructed a
memory bank from multiple reference frames, making it
easy to learn context for a long period. It has recently
showed an excellent performance, even on long-time video
datasets [59]. Matching-based methods have a fast inference
time because they do not require online learning [55]. They
also have the advantage of easily using a decoder module
(i.e., refine module) for the high-resolution representation.
With the above background, these methods have recently
been receiving the greatest attention in the semiautomatic
VOS field [35].

B. SEMIAUTOMATIC VOS USING UNSUPERVISED
LEARNING
Semiautomatic VOS using supervised learning requires a
dataset of a pixel-wise annotation. Creating this dataset
is time-consuming and labor-intensive and requires expert
participation. Attempts of solving this problem have required
the investigation of unsupervised-based methods that do
not use any annotations at training time. The achievement
of self-supervised learning with unsupervised learning is
particularly notable. We will focus herein on the introduction
of self-supervised learningmethods. The semiautomatic VOS
using self-supervised learning is divided into pseudolabeling-
and nonpseudo-labeling based methods. The former com-
prises methods that learn user-designed definitions to extract
useful features from unlabeled datasets, whereas the latter
do not learn user-designed features from unlabeled data and

solve the problem using the dataset’s own characteristics. For
example, a cycle consistency method learns the relationships
between objects on the time axis [10], [14], and a contrastive
learning method narrows the distance of positive pairs and
increases that of negative pairs [61].

1) PSEUDOLABELING-BASED METHODS
Like the explicit matching-based methods, this type of
method estimates the target mask by calculating the relation-
ship between the reference and target frames using the affinity
matrix. Instead of using labeled data at the training time, they
are learned through pseudolabeling, which provides labels
generated from the features of the input itself. Reference [11]
created the qt−1 pseudolabeling by selecting the ab channels
in the Lab color space and quantizing it with k-means
clustering. This method calculated the affinity matrix by
applying the matrix inner product between ft−1, which is the
embedding space of the reference frame, and ft , which is that
of the target frame, and then normalizing it with softmax. The
affinity matrix for the global area is represented by A∗.

q̂t = A∗(ft−1, ft ) · qt−1 (1)

Lossc = min
θ
L(qt , q̂t ) (2)

Ref. [13] proposed restricted attention to solve the
low-resolution embedding space problem. The affinitymatrix
using restricted attention calculates only the similarity within
a limited area from the sample of interest in the reference
frame. This is based on the following characteristic: the
objects between the adjacent frames smoothly move in
the space and time axis. Similar to [12], [55] augmented
the memory from multiple reference frames to improve
one’s understanding of objects over long-term periods, hence
the robust characteristics against the drift and occlusion
problems.

2) NONPSEUDO-LABELING-BASED METHODS
These methods perform visual correspondence using only the
features between the reference and current frames. Widely
used methods include cycle consistency and contrastive
learning. Cycle consistency takes advantage of the fact that
when an object of interest is predicted backward pass on
the time axis, and then predicted forward pass, it returns to
the initial area of interest. Reference [10] implemented cycle
consistency for image patches. Reference [14] constructed
cycle consistency using the affinity matrix to be multiplied
through a backward pass, and then multiplied again through
a forward pass, similar to the identity matrix. In contrastive
learning, the distance for the positive pairs is narrowed down,
while that for the negative pairs is increased. Reference [61]
achieved a good performance by setting the relationship
between the adjacent frames on the time axis to positive
pairs. The advantage of the cycle consistency method is
that it contains information about the time axis order. It can
also exclude the human bias caused by pseudolabeling.
A matrix multiplication operation between affinity matrices
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should be performed depending on the cycle consistency
configuration, which limits the embedding space. Contrastive
learning relies on semantic features to learn the relationships
between adjacent frames as positive pairs. Hence, nonpseudo-
labeling-based methods have a relatively low-resolution
representation compared to pseudolabeling-based ones.

III. PROPOSED METHOD
CorrFractal is a visual correspondence method that is based
on self-supervised learning for high-resolution representa-
tion. It comprises the methods shown in Fig. 1. It is a
pattern-boosted quantization method for creating a quantized
image, including the object’s general characteristics. The
backbone module provides high-resolution features to the
appearance and correspondence modules through aggrega-
tion. The appearance module learns the appearance infor-
mation of the high-resolution features. The correspondence
module learns the object motion by calculating the similarity
for multiple resolutions and simultaneously performs a high-
resolution reconstruction.

FIGURE 1. Flowchart of the proposed method. The proposed method
consists of four modules. Each module outputs the original resolution
equal to the resolution of the input frame. In the training stage, both
appearance loss and correspondence loss are used to learn. However,
in the inference stage, only the estimate value of the correspondence
module is used.

Each module comprising CorrFractal is configured to
output the original resolution. For example, the embedding
spaces Ft−1 = φ(It−1; θ ) and Ft = φ(It ; θ ) are calculated
using the reference It−1 and current It frames, respectively.
For all notations in this paper, we will use the uppercase to
represent the original resolution and the lowercase to denote
the lower one.

A. PATTERN-BOOSTED QUANTIZATION
The existing pseudolabeling-based method is superior over
the existing non-pseudolabeling-based one in terms of the

FIGURE 2. Diagram of the pattern boosted quantization. The resolution of
pseudo labeling is the same as the resolution of the input frame. The
Walsh–Hadamard filter is useful for boosting pattern features and
boundary features.

high-resolution representation; hence, the proposed method
adopts the pseudolabeling-based approach. The existing
pseudolabeling-based methods use color information as an
important clue for understanding objects [11], [12], [13]
because it is one of the important clues expressing the
object’s inherent characteristics. A natural environment,
however, depicts cases of similar color information for the
background and the object [11]. In particular, the number
of sampling is limited when quantization is performed. This
makes it more difficult to distinguish between the object
and the background. According to neuroscience, the ventral
pathway plays an important role in understanding objects.
The important clues used by the ventral pathway also include
color, contour, and pattern information [62], [63], [64],
[65]. Based on neuroscience research results, pattern and
color information are selected as clues for implementing
pseudolabeling

Fig. 2 illustrates a flowchart of the pattern-boosted quan-
tization. The color information was extracted by selecting
only the ab channels in the Lab color space, as previously
used [11], [13]. Meanwhile, the pattern information was
extracted by creating it through the application of convolution
using an RGB frame and aWalsh—Hadamard filter. Creating
various mixed patterns from the color and pattern information
required the random selection of channels, their concatena-
tion, and the application of the k-means clustering to make
Qt−1 and Qt , which are pattern-boosted quantization for the
reference and target frames. Through the Walsh—Hadamard
filter, pseudolabeling learns not only similar patterns inside
the object, but also the object’s contour information using
high-frequency patterns

B. NETWORK ARCHITECTURE
The semiautomatic VOS based on self-supervised learning
has a relatively lower-resolution representation than the semi-
automatic VOS based on supervised learning. Reference [12]
presented feature representation based on stride 4. Other
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FIGURE 3. Overview of the network architecture and appearance and correspondence modules. (a) Backbone module uses
aggregation to create high resolution features. (b) Appearance module directly calculates high-resolution features using a narrow
search range, as depicted in (d). (c) Correspondence module cannot directly calculate high-resolution features because it uses a
wide search range as depicted in (e).

methods have a lower-resolution feature representation.
A decoder module (i.e., refine module) used in supervised
learning is an easy approach for the high-resolution feature
representation. However, self-supervised learning methods
do not provide exemplary labeling; therefore, decoder
modules directly affected by labeled data cannot be used.

In generative adversarial networks [66], methods are used
to gradually increase the resolution from low-resolution
images to generate high-resolution ones [67], [68]. These
methods aim to stabilize high-resolution learning with the
help of low-resolution images. Online fine-tuning-based
methods use aggregation to solve problems with long
inference times. These methods claim to express accurate
contours with few trainable parameters and limited data.

The proposed method requires semantic features because
it must express the motion between the reference and target
frames. High-resolution features should also be maintained.
Aggregation is a good approach for solving this problem.
Fig. 3(a) shows the network architecture of the proposed
method. The aggregation method depicted in the figure
comprises a very simple method. Our own experiments
for the proposed method found no significant performance
difference in the complex forms of aggregation [29]; thus,
it was constructed in as simple a form as possible. Element-
wise sum was used to efficiently create high-resolution
features from the necessary channels extracted from each
stage [28]. Ft−1 and Ft generated from the backbone were
employed to extract the motion matching for objects and
the information for the resolution reconstruction through a
multiresolution subsampling in the subsequent module.

C. APPEARANCE MODULE
The appearancemodulewas developed to alleviate themotion
overfitting by learning high-resolution appearance features.
These features can be learned by calculating the similarity for
a low-resolution embedding space like the matching-based

methods (explicit matching), through a decodermodule, or by
the direct calculation of the similarity from a high-resolution
embedding space. The proposed method chooses to directly
calculate the similarity from the high-resolution embedding
space. The problem here is that the computational complexity
of the affinity matrix is calculated as (fw × fh)⊺ · (fw ×

fh), where fw is the embedding space width, and fh is
the embedding space height. This means that the memory
consumption becomes more depleted as the resolution
increases. To solve this problem, [13] suggested restricted
attention that calculates only the similarity of the local region
for the sample of interest.

The appearance module uses restricted attention to cal-
culate Q̂t−1, which is the visual correspondence for the
reference frame. Fig. 3(b) depicts the appearance module.
Like a general affinity matrix, the affinity matrix Aa uses
Ft , which is the embedding space of the current frame,
and Ft−1, which is the embedding space of the reference
frame, as the input values. However, unlike the general
affinity matrix, Aa calculates the visual correspondence for
the reference frame; hence, the window size, which is the
local search range, should be very small for it to be more
influenced by the reference features. In the proposed method,
the window size is set to 3 × 3 to acquire the effect of
regularization. Consequently, the appearance module obtains
a very narrow search area, lowering the memory burden of
calculating the original resolution features. The appearance
module is used through Qt−1, a pseudolabeling composed
of the original resolution. The high-resolution appearance
features can then be learned. The proposed method is used to
improve the correspondencemodule performance by learning
the appearance module as a sibling structure.

D. CORRESPONDENCE MODULE
The correspondence module plays the most important role
of predicting where the region of interest (mask) of the
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FIGURE 4. Diagram of the chain module. The chain module has a chain
structure by recursively receiving input values for the features and
pseudo labeling of the reference frame. The features of the target frame
act as an attractor.

reference frame is located in the current frame. Fig. 3(c)
briefly depicts the correspondence module. Unlike the
affinity matrix of the appearance module, the affinity matrix,
Ac, of the correspondence module cannot directly deal
with the high-resolution feature map, Ft−1, Ft and pseudo
labeling, Qt−1, because it basically requires a relatively
wide search area by performing a motion-related feature
matching. Existing methods calculate the affinity matrix
on the low-resolution feature map to solve the search area
problem. However, the low resolution-based method infers
inaccurate boundary results by losing feature details, which
consequently results in the accumulation of correspondence
errors caused by incorrect pixel matching. The correspon-
dence module solves this problem by first calculating the
low-resolution predicted value q̂t using low-resolution input
and gradually reconstructing the high resolution. Fractal
affinity and multi-density correspondence methods are used
accordingly.

1) FRACTAL AFFINITY
Fractal affinity gradually calculates the high-resolution
similarity by connecting matrices in a chain form. Achieving
this requires the shape of each affinity input to be maintained
and an attractor to exist. The relevant equation is as follows:

(f nt−1, q
n
t−1) = Chain(f n−1

t−1 , qn−1
t−1 ,F∗

t ) (3)

Fractal affinity receives f n−1
t−1 and qn−1

t−1 , F
∗
t as the input

and outputs f nt−1 and qnt−1; f
n−1
t−1 is the reference frame of

the embedding space for the n− 1th chain; qn−1
t−1 is a pseudo

labeling of the n − 1th chain; F∗
t is the current frame of the

embedding space resized according to different input sizes.
Additionally; f nt−1 is the reference frame of the embedding
space for the next chain; and qnt−1 is the pseudolabeling of
the next chain.

The resolution is gradually increased by performing an
upsampling after calculating each chain. At this time, the
current frame, F∗

t , is directly received from the backbone and

resized according to the reference frame embedding space.
The last chain module deals with the original resolution of a
pseudolabeling; thus, F∗

t has the Ft value, and Q̂t infers the
original resolution. The window size on restricted attention
for a lower resolution has a constant value, while that on
restricted attention for the original resolution has a 1×1 value.
The proposed method solves the memory problem in this
manner using a small window at a high resolution and a
relatively large window at a low resolution.
The fractal affinity structure widens the search area of

the window size when performed at the same resolution.
This assumes that the embedding space values are linearly
distributed. The proposed method defines this structure as a
chain module.

q′

t−1 = Ac(ft−1, ft ) · qt−1 (4)

f ′

t−1 = Ac(ft−1, ft ) · ft−1 (5)

q′′

t−1 = Ac(f ′

t−1, ft ) · q′

t−1 (6)

f ′′

t−1 = Ac(f ′

t−1, ft ) · f ′

t−1 (7)

This configuration can reduce the memory consumption of
the affinity matrix proportional to the square of the window’s
range, but implies the possibility of finding incorrect matches
if it fails to search for similar features in the initial chain.
Therefore, arbitrarily increasing the number of chains can
actually reduce the performance. The proposed method
suggests the appropriate number of chains through the
experiments.

2) MULTIDENSITY CORRESPONDENCE
We have dealt with a method for the high-resolution
reconstruction from low-resolution features through fractal
affinity. However, fractal affinity basically performs feature
matching based on the affinity matrix; thus, a reconstruction
cannot be performed on areas where the features have been
severely damaged by down-sampling from the backbone.
In other cases, expressing the object motion becomes difficult
when only the local similarity is matched considering the
high-resolution features. An incorrect matching may be
induced if the object of interest is outside the window
radius. The proposed method alleviates this problem by using
multiresolution features as the correspondence module input.
Fig. 5(a) depicts a diagram of the multi-density corre-

spondence of the training process. ChainL , ChainR, and
ChainH are composed of the fractal affinity. Ft acts as an
attractor. ChainL and ChainR have the same window sizes
and gradually increase the resolution. ChainH has a window
size of 1× 1 and reconstructs the original resolution. During
training, the proposed method calculates the similarity for a
multiresolution split into two branches from the backbone
as input for the correspondence module. ChainL0 receives
input that is downsampled to a low resolution, while ChainL1
receives input that is downsampled to the middle resolution.
At this time, ChainL0 and ChainL1 select a subsampling rate
using the probability distribution to learn the relationshipwith
various resolutions. The proposed method experimentally
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FIGURE 5. Diagram of the correspondence module. (a) Learning
relationships for the training stage. (b) Learning relationships for the
inference stage.

selects two Gaussian distributions with means of µ1 and µ2
and a standard deviation of σ for sub-sampling.

The resulting values for ChainL0 and ChainL1, (f L0t−1, q
L0
t−1)

and (f L1t−1, q
L1
t−1) are resized to match the resolution. ChainR0

and ChainR1 are applied. f R0t−1 and f
R1
t−1 are then concatenated

to make f R0,R1t−1 . qR0t−1 and qR1t−1 are concatenated to make
qR0,R1t−1 . For simplicity, the proposed method represents
ChainR as a single subsampling chain. However, if the image
handled by ChainL is very small, a gradual upsampling must

be performed using more chains. The denominator value
of subsampling is usually smaller than the window search
range when compared to the spatial resolution of the previous
chain’s image. (f Rt−1, q

R
t−1, f

R
t ) calculates the affinity matrix

through AR, which has a 3 × 3 window size and applies the
softmax to the attention mechanism from each resolution.
In this way, we learn the relationship for the fractal affinity
between L0 and L1 which have different spatial resolutions.
We denote this structure as ChainL0∼L1.

ChainL0∼L1 = AR(f R0,R1t−1 , f Rt ) · qR0,R1t−1

= (f R0∼R1t−1 , qR0∼R1t−1 ) (8)

A generalized visual correspondence for the spatial
resolution can be learned by applying random sampling with
different Gaussian distributions to ChainL0 and ChainL1.
However, a problem exists when selecting a specific subsam-
pling in the test. The simplest method selects the expected
value of the Gaussian distribution as the representative
subsampling for ChainL0 and ChainL1. This method means
that consistent subsampling is performed, regardless of the
object characteristics. Consequently, this allows the objects
and the backgrounds to be contained within a single sample,
which is one of the causes of the drift problem.
The proposed method solves this problem by simulta-

neously calculating the relationships with various spatial
resolutions in the test. For example, if ChainL0 selects a static
sampling rate, ChainL1 compensates for the mismatched part
of ChainL0 with an attention mechanism. If ChainL0∼L1
is assumed to be a single ChainL that possesses the
characteristics of both ChainL0 and ChainL1, the relationship
withChainL2 can also be calculated. In this case, the proposed
method is expressed as ChainL0∼L2 (Fig. 5(b)). Additional
chain modules are used to express the abundant relationships
between the spatial resolutions in the test.

ChainL0∼L2 = AR(f R0∼R1,R2t−1 , f Rt ) · qR0∼R1,R2t−1 (9)

The loss function of the proposed method is defined as
follows: Lossa is the appearance loss, while Lossc is the
correspondence loss. α1 and α2 are each defined as 0.5, The
final loss is determined by Lossa and Lossc.

Lossa = min
θ
L(Qt−1, Q̂t−1) (10)

Lossc = min
θ
L(Qt , Q̂t ) (11)

Loss = α1Lossa + α2Lossc (12)

In the test, only Q̂t , which is the predicted correspondence
value, is used following the method of [27]. Although
the appearance module is not involved in the inference,
it improves the visual correspondence performance by
learning helpful information as a sibling structure, as in [69].

E. IMPLEMENTATION PLATFORM
The proposed method uses ResNet-18 [70] as the backbone.
Three branches of aggregation are noted (Fig. 3(a)). Each
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branch comprises the output of the first convolution layer
and the second and fourth stages. The last stage has 1/4
spatial resolution of the input frame. Pooling layers exist
in the second and fourth stages. The embedding space is
created through an elementwise-sum of the three aggregation
branches by upsampling. The first convolution layer has
the same spatial resolution as the input image; thus, the
embedding space also has the same spatial resolution. The
window size for the affinity matrix of the appearance
module is 3 × 3, while that for the affinity matrix of the
correspondence module is 11 × 11.

1) TRAINING
The proposed method performs scratch learning using the
YouTube-VOS [71] and OxUvA datasets [72]. The model
comprises a base model that uses the It−1 frame as the
reference frame and a full model that employs the reference
frame as I0, I5, It−1, It−3 and It−5. The OxUvA dataset is used
to learn the base model, while the YouTube-VOS dataset is
utilized to learn the full model. The image frame is resized to
256×256×3. The proposed model is trained for five epochs
using the Adam optimizer. The initial learning rate is 2e−4

and reduced by half at two, three, and four epochs. ChainL
subsamples two values selected by the Gaussian distribution
as the denominator and learns the relationship between the
two spatial resolutions as ChainL0∼L1.

2) INFERENCE
The proposed method considers the relationship between six
resolutions as at test time for multi-density correspondence.
Therefore, a subsampling of 1/2, 1/3, 1/4, 1/6, 1/12, and 1/18
is performed for eachChainL and estimated asChainL0∼L5 to
express the relationship between various spatial resolutions.

F. DATASET DETAILS
We have utilized various datasets for diverse purposes.
For training, we employed the OxUvA and YouTube-VOS
datasets. Additionally, for evaluating different objectives,
we utilized the DAVIS-2017 dataset, VIP dataset [73],
and JHMDB dataset [74]. In the subsection, we will
provide detailed explanations for each dataset, along with
descriptions of their purposes and evaluation methods.

1) OXUVA DATASET
OxUvA dataset is provided for evaluating single-object
tracking algorithms, consisting of 366 sequences spanning
14 hours of video. The dataset involves target objects
periodically disappearing and is characterized as a long-term,
large-scale tracking dataset with an average duration of more
than 2 minutes. The proposed method utilizes this dataset for
training on the base model.

2) YOUTUBE-VOS DATASET
YouTube-VOS dataset is provided for semiautomatic video
object segmentation. The training set provides 3471 videos

with dense object annotation, 65 categories, and 5945 unique
object instances. The validation set and test set are provided
by categorizing them into seen categories and unseen
categories. The proposed method utilizes this dataset for
training on the full model.

3) DAVIS-2017 DATASET
DAVIS-2017 dataset is provided for automatic video object
segmentation and semiautomatic video object segmentation.
The train set and test set are provided in both 480p resolution
and 1080p resolution. The DAVIS-2017 val dataset provides
instance segmentation for 30 videos.The proposed method
utilized this dataset to evaluate the performance of semiau-
tomatic video object segmentation during the inference stage
on the base model and full model. The evaluation method
used J (mean) for measuring region similarity and F(Mean)
for calculating object boundary similarity

4) VIP DATASET
VIP dataset provides information on 19 parts for 50 videos
to capture semantic part details. For performance evaluation,
the dataset employs mIOU (mean Intersection over Union),
which calculates the intersection area of predicted results and
ground truth (GT) areas. The proposed method utilizes this
dataset to assess the performance of part segmentation on full
model.

5) JHMDB DATASET
JHMDB dataset serves as an action recognition dataset,
providing information on 15 keypoints related to humans
across 268 videos. J-HMDB utilizes PCK@τ (Probability
of Correct Key-point) to measure whether the ground truth
(GT) exists within a bounding box of size τ proportional
to human size, for performance evaluation. The proposed
method employs this dataset for keypoint matching on full
model.

IV. EXPERIMENTS
We performed experiments on key point matching and part
and object segmentations to evaluate the label propaga-
tion. If the label of the first frame is given at the test
time, we conducted the experiments to examine how the
high-resolution representation affects the performance when
subsequent frames are propagated. An ablation studywas also
performed to confirm the module performance.

A. OBJECT SEGMENTATION
We experiment on the DAVIS-2017 dataset at 480p resolution
to evaluate the VOS performance. Table 1 shows the
experiment results on the Youtube-VOS. A full model
applying a memory bank was used in this experiment. Instead
of fine-tuning the memory by dividing it into short- and
long-term memories as in [12], we learned all terms at once.
As shown in Table 1, the proposed method did not show the
best performance under self-supervised learning. However,
we focused on solving the high-resolution representation
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FIGURE 6. Comparison of the qualitative results on DAVIS 2017 dataset.

FIGURE 7. Qualitative results of the part segmentation and the key point
matching.

in the self-supervised learning methods because it was a
problem that needed to be solved. Fig. 6 compares the results
with those obtained by [12], who solved the spatial resolution
well among the existing methods applying self-supervised
learning. The proposed method created subtraction images
by performing an xor bit operation on the target mask and
ground truth to evaluate the qualitative results for the high-
resolution representation. Fig. 6(a) depicts images predicting
the target mask presented in [12], while (b) illustrates the
subtraction images depicted in the same reference. Fig. 6(c)
shows images predicting the target mask of the proposed
method, while (d) displays its subtraction images. The
proposed method reduced the errors in the early video clips
by preciselymatching the object boundaries. Accordingly, the
error accumulation caused by the boundaries was minimized.

It had a representation, even for thin objects (e.g., rope). The
proposed method alleviated the drift problem by learning the
relationships for the multi-spatial resolution

B. PART SEGMENTATION AND KEY POINT MATCHING
The proposed method used the VIP dataset to evaluate the
part segmentation and the JHMDB dataset to evaluate the
key point matching. Fig. 7(a) and Table 2 present the part
segmentation results. The proposed method described the
object’s boundary relatively well, but the matching inside
the object was relatively weak. Fig. 7(b) and Table 2 show
the key point matching results. Similar to part segmentation,
the performance tended to deteriorate due to the inability to
estimate the object’s internal area on the heat map.

C. ABLATION STUDY
An ablation study was performed on a base model using
only a single reference image on the OxUvA dataset. Table 3
shows the J&F mean results according to the module
settings. A is the appearance module. P is the pattern-boosted
quantization module. B is the backbone module adopting
aggregation. C is the proposed correspondence module. The
performance of the proposed method gradually improved
with the addition of each module.

Fig. 8 compares the quantized image for the input
frame using only the ab channels and the image with
patterns added to the ab channels. Fig. 8(a) depicts the
input frame; (b) is the pseudolabeling using only the ab
color channels; and (c) is the pseudolabeling using the ab
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TABLE 1. Quantitative results for the video object segmentation on the DAVIS 2017 dataset.

TABLE 2. Quantitative results for the part segmentation and the key
point matching on the VIP and JHMDB dataset.

TABLE 3. Quantitative results for the J&F (mean) according to the
configuration of each module.

TABLE 4. Comparison of the quantitative results of the J&F (mean)
according to the µ1 and µ2 settings of Gaussian distribution for the
multi-density correspondence.

color channels and the Walsh—Hadamard filter. For an
equal comparison, a 16-channel quantization was used for
both methods. The experiments showed that the method

TABLE 5. Comparison of the quantitative results of the J&F (mean)
according to the σ settings of the Gaussian distribution for the
multi-density correspondence.

TABLE 6. Comparison of the quantitative results according to the number
of affinity matrices contained in a single chain module.

with added patterns generally represented the objects better.
The pattern-boosted quantization module exhibited a high
tendency of grouping similar textures within objects into a
single clustering. By contrast, the method that used color
only resulted in a relatively larger over-segmentation. In other
words, in a situation where clustering channels are limited,
the region that must be segmented cannot be properly
segmented because it is already consuming resources due
to incorrect segmentation. The pattern-boosted quantization
module provided additional clues, even when the background
and the object were similar by expressing the object’s
boundary

We conducted two experiments to obtain the hyperparame-
ters for the subsampling in the multi-density correspondence.
The first experiment focused on the J&F mean depending on
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FIGURE 8. Comparison of pseudolabeling results.

FIGURE 9. Comparison of the Gaussian distributions according to
standard deviation for multi-density correspondence.

the denominator values,µ1 andµ2, for the static subsampling
(Table 4). The second experiment aimed to calculate the J&F
mean according to the standard deviation of the Gaussian
distribution with µ1 and µ2 (Table 5). In the first experiment,
the highest J&F mean was obtained when µ1 was 4, and µ2
was 8. Thus, in Table 5, µ1 was set to 4 and µ2 was set to 8.
Each Gaussian distribution was truncated (Fig.9) to avoid the
distribution being concentrated between µ1 and µ2.
In our experiment, it was difficult to find a general

regularity for µ1 and µ2 in Table 4, which we analyzed
the problem related to motion matching and representation.
When low-resolution subsampling was performed by µ2, the
object motion was expressed well, but the object details were
damaged. When relative high-resolution subsampling was
performed by µ2, estimating the object motion can easily be
a failure, but the object detail was expressed well. As a result,
static subsampling found it difficult to adapt in complex
environments. Table 5 shows that the value of the J&F mean
is higher when the standard deviation value is above a certain
level than when it is very small. This means that learning the
relationships between various resolutions helps improve the
performance.

Table 6 measures the J&F mean depending on how many
affinity matrices were composed within the chain module.
The experiments showed that the best performance was
achieved when there were two affinity matrices.

V. CONCLUSION
The proposed method in this work represents a visual cor-
respondence method for the high-resolution representation
on self-supervised learning without decoder module. For
this purpose, the proposed method presented four modules.
The pattern-boosted quantization module created efficient
pseudo labeling by learning the pattern information along
with the color information. The pseudo labeling made by
the pattern-boosted quantization not only allocated similar
patterns inside an object to a single area, but also sensitively
responded to the contour and provided clues to distinguish the
background. The backbone module used aggregation to make
high-resolution features while preserving the semantic fea-
tures. The appearance module learned high resolution-based
appearance using the embedding space generated from the
backbone network. This module utilized a small search
range on the affinity matrix for memory efficiency. The
correspondence module performed motion matching while
gradually increasing the spatial resolution. Although the
embedding space of the reference frame employed low-
resolution information, the embedding space of the current
frame received high-resolution features directly from the
backbone network and played the role of an attractor. The
correspondence module also alleviated the drift problem
by learning the relationships between various resolutions.
Each module cooperated with each other to achieve a high-
resolution representation. As a result, the proposed method
demonstrated a good performance for the high-resolution
representation by performing visual correspondence on
object boundaries and thin objects.

This paper was developed for high-resolution representa-
tion in self-supervised learning without a decoder module.
However, the following issues have been identified: Firstly,
overfitting occurs at the boundaries of objects. Secondly,
there is a high memory consumption of multiple density
correspondence during the training stage, resulting in slow
learning. Thirdly, there is a very high memory consumption
of multiple density correspondence during the inference
stage, leading to slow execution. To address the first issue,
we are currently researching setting the resolution of all chain
modules to be the same during the training stage, aiming to
alleviate overfitting to high-resolution features. To tackle the
second and third issues, we are exploring additional mapping
methods.
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