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ABSTRACT Predicting outage areas for affected customers in a disaster requires real-time meteorological
data, which can be challenging to obtain and process with high quality. In particular, missing or inaccurate
data can occur in certain regions or during extreme weather events. Therefore, a Convolutional Neural
Network-Long Short-TermMemory (CNN-LSTM) based algorithm is proposed to improve the accuracy and
reduce the prediction time in the outage region. Ground-based automated weather observatories are used to
obtain real-time weather data, including extreme weather data. These data are pre-processed to enhance data
quality and accuracy by removing duplicates, filling in missing values, handling anomalies, normalizing
input variables, and reducing dimensionality. Based on the results of the data pre-processing, the outage
rate was calculated for different types of meteorological disasters and the geographical characteristics of the
outages were analyzed. This analysis provides insights into the impact of different types of meteorological
disasters on power outages and helps improve the accuracy of predictive models. The proposed algorithm
employs a CNN neural network to capture spatial and temporal information from raw meteorological data
by stacking convolution and pooling layers. The extracted features are then organized and output by fully
connected layers, laying the foundation for subsequent time series modeling. An LSTM network is further
utilized to construct a prediction model for the outage area, which takes as input the feature extraction results
of the meteorological data. By integrating the temporal dimension information of meteorological data, the
model outputs accurate predictions for the outage area. The experimental results demonstrate a consistent
outcome with the actual test results, achieving high prediction accuracy with a short prediction time of 4.3 s
and a maximum non-outage detection rate of 2 %. Therefore, the proposed algorithm proves to be significant
for accurate and fast prediction of outage areas for affected customers in real world applications.

INDEX TERMS Affected customers, CNN-LSTM, convolutional layer, pooling layer, prediction of power
outage areas.

I. INTRODUCTION
Stable power supply is crucial for economic development and
residents’ livelihoods. Power interruptions, especially large-
scale blackouts, not only cause significant economic losses to
power companies but also can disrupt critical infrastructure
and result in substantial losses for the country and its people,
even leading to public crises [1], [2]. In recent years, the fre-
quency of extreme weather events has increased, making the
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extensive coverage of power grids more susceptible to natural
factors. To ensure efficient emergency responses for affected
customers [3], [4], [5], it is necessary to forecast blackout
areas and identify precise geographical locations. Therefore,
stable power production and supply are vital for maintaining
social stability, residents’ well-being, and national security,
and should be given adequate attention.

In order to improve the disaster resistance of the power
grid, scholars in related fields have conducted research on
power outage area prediction. Reference [6] proposed a statis-
tical learning basedmethod for predicting power outage space
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under typhoon disasters, taking into account factors such as
power grid, meteorology, and geography. After collecting and
processing data, a power outage space prediction model was
constructed using multiple algorithms. However, this method
only considers factors such as power grid, meteorology, and
geography, and other potential influencing factors may not
have been fully considered, which affects the accuracy of
the model’s prediction. Reference [7] addresses the difficulty
of predicting power outage events, analyzes the application
scenarios of probability models in this field, and proposes
a comprehensive model including admittance models and
fault probability models. The experimental results show that
this method can effectively predict power outage events and
provide reference for power grid structure design. However,
this study mainly focuses on the estimation of the probability
of power outage events, and further expansion and improve-
ment may be needed for the prediction of specific affected
customer power outage areas. Reference [8] proposed a
power outage classification and prediction method based on
Bagging ensemble learning. This paper applies the Bagging
ensemble model to predict power outage problems. Firstly,
based on the geographical location relationships of differ-
ent regions, construct spatial location matrices for different
regions, and use Quick Response (QR) matrix decomposition
to construct spatial features. Then, the Bagging ensemble
learning framework is used to randomly resample the data,
train different basic classifiers, and integrate the classifiers
based on the combination strategy. Finally, this paper uses
ensemble learning models to predict data. This algorithm has
good performance. Reference [9] proposed an algorithm for
predicting natural disaster power outages using synthetic dis-
tribution systems. This algorithm generates a comprehensive
power system layout for any American city based solely on
public data, and then uses a vulnerability function to simu-
late the power outage of a single building under hazardous
loads. This algorithm provides amore localized building level
estimate of the likelihood of power loss caused by natural
disasters. However, the above two algorithms require a longer
time to predict customer power outage areas, resulting in
lower prediction efficiency.

CNN-LSTM combines the spatial feature extraction capa-
bility of CNN for time series data with the temporal modeling
capability of LSTM for dynamic changes over time. This
method can capture the spatial features of time series data
while handling the temporal dynamics. This combination
offers high prediction accuracy and stability. Therefore, this
paper proposes a CNN-LSTM based algorithm for predicting
the power outage area of affected customers. The algorithm
utilizes meteorological data obtained from ground automatic
weather observation stations, and applies data preprocessing
and analysis to determine the geographical characteristics of
power outages. It employs CNN neural networks to extract
effective features, and then utilizes LSTMnetworks to predict
power outage areas of affected customers. Through simula-
tion experiments, the algorithm can quickly and accurately
predict the power outage area of affected customers, laying

a foundation for the stable operation of the power grid in
affected areas.

II. PREDICTION OF POWER OUTAGE AREAS FOR
AFFECTED CUSTOMERS
A. METEOROLOGICAL DATA ACQUISITION
Ground automatic meteorological observation stations are
specialized equipment for collecting meteorological data,
with high measurement accuracy and precision. This makes
the meteorological data obtained through these observation
stations more reliable and can serve as the basic data for
experiments. The use of ground automatic meteorological
observation stations can collect relevant initial data, in addi-
tion to real-time meteorological data obtained through direct
observation (rainfall; maximum, average, and minimum
temperatures; maximum, average, and minimum humidity;
average wind speed, etc.), there are also extreme meteorolog-
ical data. This paper obtains meteorological data from both
real-time and extreme meteorological aspects.

1) REAL TIME METEOROLOGICAL DATA
Meteorological factors are variable at various times of the
day and exhibit real-time volatility. Ground meteorological
observation stations update meteorological data every hour,
including station number (Station_Id_C), year (Year), month
(Mon), day (Day), and hour (Hour). The 20 meteorological
elements can be divided into 4 categories, specifically wind
speed, pressure, humidity, and temperature.

Among them, the wind speed elements include: 2-minute
average wind speed (WIN_SAvg_2mi), meters per sec-
ond; Maximum wind speed (WIN_S-Max), meters per
second; Maximum wind speed (WIN_S_Inst-Max), meters
per second; 2-minute average wind direction (angle) (WIN-
DAvg_2mi), degrees (degrees); Wind direction (angle)
and degree (◦) of maximum wind speed; Wind direction
(angle) and degree (◦) of maximum wind speed (WIN-
D_INSTMAX); Wind power, level.

The atmospheric pressure elements include: sea level pres-
sure (PRS-Sea), hPa; Air pressure (PRS), hPa; Maximum
pressure (PRS.Max), hPa; Minimum air pressure (PRSMin),
hPa.

Humidity factors include: water vapor pressure (VAP),
hundred pascals (hPa); Precipitation (PRE_1h), millimeters;
Relative humidity (RHU), percentage (%); Minimum relative
humidity (RHU-Min), percentage (%); Horizontal visibility
(VIS), meters.

Air temperature elements include: apparent temperature
(tigan), Celsius (◦C); Temperature (TEM), Celsius (◦C);
Maximum temperature (TEM-Max), degrees Celsius (◦C);
Minimum temperature (TEM-Min), Celsius (◦C).
Based on the above analysis, meteorological factors are

obtained, including four indicators: actual temperature, tem-
perature and humidity index, cold and humidity index, and
human comfort. The calculation formula for the four compre-
hensive meteorological indicators is as follows: T represents
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Celsius temperature, Rh represents relative humidity, and V
represents wind speed.

Real temperature refers to the conversion of human per-
ception under different V ,Rh,T conditions to a comfortable
temperature situation under static and saturated atmospheric
conditions. The calculation formula is:

Te = 37 −
37 − T

0.68 − 0.14Rh+ 1/(1.76 + 1.4V 0.75)
− 0.29T (1 − Rh) (1)

The temperature and humidity index reflects the com-
prehensive sensory level of the human body under the two
meteorological factors [10] Rh,T , and its calculation formula
is:

THI = 1.8T + 32 − 0.55(1 − Rh)(1.8T − 26) (2)

The cold humidity index is an indicator to measure the
degree of coldness, and its calculation formula is:

Ee = (33 − T )(3.3
√
V − V/3 + 20)e0.005|Rh−40%| (3)

The comfort index of the human body is an evaluation
index for the comprehensive perception of meteorological
factors acting on the human body, reflecting the comfort of
the human body under the joint action of multiple meteoro-
logical factors [11]. Its calculation formula is:

k = 1.8T − 0.55(1.8T − 26)(1 − Rh) − 3.2
√
V + 3.2 (4)

2) EXTREME METEOROLOGICAL DATA
Meteorological disaster factors are the main cause of power
outages and faults among affected customers. According to
the types of disasters caused by meteorological factors, they
can be divided into the following causes:
S1 : Power outage failure caused by lightning for affected

customers;
S2 : The harm of mountain fires caused by drought to the

power grid, resulting in power outages for affected customers;
S3 : Low temperature caused line icing, resulting in power

outages for affected customers;
S4 : Wind deviation of transmission lines caused by strong

winds, resulting in power outages for affected customers;
S5 : Geological disasters caused by rainstorm, such as

flood and collapse, directly or indirectly damage the power
grid and cause power failure of affected customers [12].

a: LIGHTNING STRIKE FACTOR
Calculate the risk component of power outage losses for
affected customers caused by lightning strikes [13]:

S1 = Nthunder1 × Pthunder1 × Lthunder1 (5)

In the formula,Nthunder1 represents the number of lightning
strikes per year in the region,Pthunder1 represents the probabil-
ity of lightning damage caused by power outages of affected
customers, and Lthunder1 represents the power outage loss rate
caused by lightning damage.

b: MOUNTAIN FIRE FACTOR
Mountain fires (also known as forest fires) caused by dry
weather usually occur in the winter and spring seasons (the
first quarter of each year) in Yunnan. The causes of fires
include human activities, lightning, spontaneous combustion,
etc. The probability of their occurrence is closely related
to the level of forest fire risk. Forest fires have a signifi-
cant impact on the power system, characterized by difficulty
in rescue, long duration of harm, and generally permanent
faults. According to statistics, in the first quarter of 2010,
China Southern Power Grid experienced 262 faults and trips
on lines with voltage levels above 220kV, including 128 trips
and power outages caused by wildfires, accounting for 48.9%
of the total number of trips and power outages. Calculate the
risk component of power outage losses for affected customers
caused by wildfires [14]:

S2 = Nfire2 × Pfire2 × Lfire2 (6)

In the formula, Nfire2 represents the number of occurrences
of wildfire events, Pfire2 represents the probability of wildfire
damage caused by power outages of affected customers, and
Lfire2 represents the power outage loss rate of wildfire dam-
age.

c: ICING FACTOR
Icing is a complex process, and the amount of icing is related
to the conductor radius, Supercooled water drop diameter,
air volume, wind speed, wind direction, air temperature,
icing time and other factors. Icing leads to a doubling of
the weight of the transmission line, an increase in sag, and
subsequently a flashover accident; During the ice melting
period, ice flashover is easily formed, and continuous arc
may burn the insulator, causing a decrease in the insulation
strength of the insulator; Iced wires are prone to galloping,
which can cause damage to towers, wires, ground wires,
hardware and components, and may also cause serious acci-
dents such as frequent trips, power outages, broken wires,
and tower collapses. Calculate the risk component of power
outage losses for affected customers caused by icing [15]:

S3 = Nice3 × Pice3 × Lice3 (7)

In the formula, Nice3 represents the number of occurrences
of icing events, Pice3 represents the probability of icing dam-
age caused by power outages of affected customers, and Lice3
represents the power outage loss rate of icing damage.

d: WIND BIAS FACTOR
The reclosing rate of wind bias tripping is very low, which is
due to the continuity of wind during reclosing, which reduces
the gap between the conductor and the tower. At the same
time, there is a high possibility of operating overvoltage in the
system during reclosing, so the second breakdown may occur
when the gap distance is large. Calculate the risk component
of power outage losses for affected customers caused by wind
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bias:

S4 = Nwind4 × Pwind4 × Lwind4 (8)

In the formula, the number of occurrences of Nwind4 wind
bias events, Pwind4 represents the probability of wind bias
damage caused by power outages of affected customers, and
Lwind4 represents the power outage loss rate of wind bias
damage.

e: RAINSTORM FACTOR
Due to increased rainfall, it is easy to cause floods to collapse,
leading to secondary disasters such as mudslides and land-
slides, which have a significant impact on the transmission
line towers and lead to regional power outages. Calculate
the risk component of power failure loss of the affected
customers caused by rainstorm:

S5 = Nrain5 × Prain5 × Lrain5 (9)

where, Nrain5 is the number of rainstorm events, Prain5 is the
probability of rainstorm damage caused by power failure of
the affected customer, and Lrain5 is the rate of power failure
loss caused by rainstorm damage.

B. METEOROLOGICAL DATA PREPROCESSING
Although sufficient meteorological observation data has been
obtained in this paper, due to uneven distribution of meteo-
rological observation stations, sudden network instability of
observation station monitoring equipment, equipment fail-
ures, and other issues, the obtained meteorological data is
missing or omitted in time, causing certain interference to
the later analysis of meteorological data. In addition, the
data collected by the meteorological observation station may
have outlier, wrong values, duplicate values and other prob-
lems that do not conform to the current situation. Therefore,
in order to ensure the accuracy and rationality of meteoro-
logical data, and facilitate the later prediction and analysis of
meteorological data, it is necessary to carry out relevant data
preprocessing work on the collected original meteorological
data. The data preprocessing work includes the following
steps:

(1) Delete duplicate values
Due to the presence of a series of duplicate values in the

collected meteorological dataset, this column has no signif-
icance for predicting future power outage areas. Therefore,
this column has been deleted.

(2) Fill in missing measurement values
Due to sudden failures, signal interruptions, and recording

negligence inmeteorological data collection equipment, there
is a phenomenon of data missing in the dataset. The larger the
amount of data, the higher the probability of this phenomenon
occurring, and auxiliary methods need to be used to fill in the
data. Due to the use of Python language tools in this paper,
the isnull function in the Pandas library is used to determine
missing values, and the final function is used to fill in the
median values of the missing data.

(3) Handling outlier
Some element values recorded by meteorological obser-

vation stations are large or small, which obviously deviate
from the actual situation. This is called outlier. However,
in the face of massive datasets, using manual processing will
inevitably result in excessive workload. Therefore, the use of
mathematical means and the use of computers to deal with
outliers is undoubtedly a very necessary and practical way.

According to the characteristics of the original meteoro-
logical data set selected in this paper, the Rayda criterion is
selected to detect outlier. Assuming that the meteorological
element data set X follows normal distribution, the outlier is
judged according to the following formula:

P(|x − u| > 3δ) ≤ 0.0027 (10)

In the equation, x represents the original meteorological
dataset data, u represents the mean, and δ represents the
standard deviation. The Laida rule indicates that if the value
of x exceeds the interval of (u− 3δ, u+ 3δ), the data can be
treated as abnormal data. In this paper, the mean value is used
to fill in the outlier detected by the Laida rule.

(4) Normalized input meteorological element variables
If the values of these different meteorological elements are

directly input into the network model, it will cause the model
to crash. Therefore, in order to avoid the occurrence of this
phenomenon, this paper needs to use a normalized calculation
equation to scale the values of each data to the 0-1 range, and
the formula is as follows:

x ′
=

x − xmin

xmax − xmin
(11)

In the formula, x represents the original meteorological
dataset data, x ′ represents the cleaned sample data, and
xmax, xmin represents the maximum and minimum values of
each meteorological element in the original dataset. After
unified normalization processing of meteorological data sam-
ples, it can be ensured that each data is within the 0-1 range.

(5) Dimension reduction processing
The massive amount of data increases the complexity and

computational complexity of the model algorithm. There-
fore, the Principal Component Analysis (PCA) algorithm
is selected to extract the main feature components, retain
only the main components, and recombine these new feature
components into a new set of principal component variables,
reducing the dimensionality of the model input data, remov-
ing useless noise data from the meteorological dataset, and
achieving the effect of compressing the dataset size, improve
model prediction accuracy and efficiency.

Assuming that the original meteorological datasetsample
has m sample data, i.e. (x1, x2, x3, . . . , xm), each sample con-
tains n attribute variables, and the entire dataset is represented
by Xm∗n.

The steps of the principal component analysis algorithm
are as follows:
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(1) Standardize sample data processing. Centralize each col-
umn of meteorological element data in meteorological
dataset X to obtain a standardized matrix A;

(2) Calculate the covariance matrix R:

R =
1
m
AAT (12)

(3) For the covariance matrix R, solve the characteristic
equation

∣∣λE − R
∣∣ = 0 to obtain the eigenvalues λ and

w;
(4) Sort the eigenvalues of the covariance matrix λ1 ≥ λ2 ≥

λ3 ≥ . . . ≥ λn, select the k eigenvalues with the
highest numerical value, and organize the corresponding
eigenvectors w1,w2,w3, . . . ,wk for each eigenvalue;

(5) Output projection matrix P, which maps the original
meteorological dataset matrix to a new sample space.

Y = PTX (13)

C. ANALYSIS OF REGIONAL CHARACTERISTICS OF POWER
OUTAGES CAUSED BY METEOROLOGICAL DISASTERS
AMONG AFFECTED CUSTOMERS
Based on the meteorological data processed above, analyze
the regional characteristics of power outage failures by cal-
culating the power outage failure rates under different types
of meteorological disasters.

Firstly, calculate the failure rate of power outages for
affected customers based on the type of meteorological
disaster:

λx =
nx
Tx

(14)

In the formula, nx is the number of power outages caused
by category x meteorological disasters, and Tx is the duration
of category x meteorological disasters.

Due to varying climate characteristics in different regions,
the impact of meteorological disasters differs across seasons.
Therefore, it is necessary to conduct an associated assess-
ment between the risk of power outage faults in different
transmission lines and meteorological disasters. This aims to
clarify the sensitivity of different transmission lines to various
meteorological factors. Line meteorological sensitivity refers
to the degree of sensitivity of a transmission line to a specific
meteorological factor, expressed as the ratio of power outage
faults caused by a specific meteorological factor to the total
number of line faults.

ρx =
nkx
nx

(15)

In the formula, nkx represents the number of power outage
failures of line k under meteorological condition x.

Obtain the meteorological disaster factors that cause the
highest number of power outages and faults on the line:

MFW = argmax ρ(x) (16)

In the equation, argmax ρ(x) represents the set of all inde-
pendent variables x that maximize the function ρx , that is,

the set of meteorological disaster factors that maximize the
meteorological sensitivity of the region.

Calculate the difference between the number of power out-
ages on a certain line under certain meteorological conditions
and the average number of power outages of the same voltage
level in the area:

Ekx = nkx − nx (17)

In the formula, nx represents the average number of power
outage failures of a certain voltage level line in the region
under meteorological condition x.

D. PREDICTION OF POWER OUTAGE AREAS BASED ON
CNN-LSTM
CNN has excellent feature extraction capabilities that allow it
to capture local features in images or data. This is crucial for
feature extraction in power system data analysis and enables
a more accurate identification of the factors leading to power
outages. LSTM, on the other hand, is a type of recurrent
neural network suitable for sequential data and capable of
modeling temporal dependencies. In the context of power
systems, time is a critical factor as various factors such as
weather, load, and grid state change over time. By introducing
an LSTM, it becomes possible to better model time-series
data and predict outage regions. Therefore, a CNN-LSTM
hybrid model is used in this study to improve the prediction of
outage areas. By utilizing CNN for spatial feature extraction
and LSTM for modeling temporal dependencies, it becomes
possible to more accurately capture the factors that cause
power outages and enhance the modeling capabilities for
time series data. In addition, the parallel computing capa-
bility of CNN-LSTM facilitates faster training and inference
processes, leading to improved efficiency in outage area pre-
diction.

The CNN neural network uses local connections and
shared weights to extract effective features from the original
meteorological data through alternating stacking of convolu-
tional and pooling layers. Finally, the extracted features are
sorted and output by the fully connected layer. The specific
process is as follows:

(1) Convolutional layer
The convolutional layer [16], also known as the CNNmete-

orological data feature extraction layer, utilizes convolution
operations to extract the original data features, which further
highlights the original information features. For example, the
convolutional layer slides a 3×3 convolution kernel horizon-
tally over the input data to extract corresponding feature maps
from the raw data information. The formula for this process
is:

m = σ (
3∑

k=1

3∑
l=1

wk,lxk,l + b) (18)

where, m is the feature map of meteorological data, σ is the
nonlinear activation function, w is the weight coefficient, k
and l respectively represent the rows and columns that the
convolution kernel slides on the original.
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FIGURE 1. Prediction results of power outage areas for affected customers using four algorithms.

Meteorological data map each time, x is the data at the
corresponding position, and x is the offset.
(2) Pooling layer
The pooling process, also known as the downsampling

layer, is generally connected after the convolutional layer and
is a process of secondary extraction of meteorological data
features. Convolutional layers can use the combined action
of multiple convolutional kernels to learn various features of
meteorological data. The expression for maximum pooling is:

si = max {m1,m2, . . . ,mn} (19)

where,m is the value of different meteorological data charac-
teristics in the pooling window area. Assuming that it is a n
dimension column vector, the maximum pooling is to extract
the maximum value in m.
After maximum pooling, the original n×nmeteorological

data features are compressed into si and the redundant fea-
tures of the data are reduced, so the input data of the next layer
of neural network becomes less, thus reducing the calculation

amount of data in the transmission process and reducing
the risk of overfitting of the training network. In CNN net-
works [17], pooling layers are generally connected behind
convolutional layers, and the two are alternately stacked.
Construct a feature extraction layer.

(3) Fully connected layer
The fully connected layer generally appears behind several

convolutional and pooling layers. Its function is to integrate
the local meteorological data features extracted from convo-
lutional and pooling layers into a complete and dense feature
vector. The fully connected layer process is:

y = σ (ws+ b) (20)

where, σ is the nonlinear activation function, w is the weight
coefficient, b is the offset, and y is the output data result of
the full connection layer.

Based on the meteorological data feature extraction results
of the CNN neural network, the LSTM network is used to
predict the power outage area of affected customers.
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The core components of LSTM are three gate unit struc-
tures, namely forgetting gate ft , input gate it , and output gate
ot .

At time t , the LSTM memory unit has three inputs: the
input value xt of the current network, the output value ht−1
of the previous memory unit, and the unit state Ct−1 of the
previous time; There are two outputs of the LSTM memory
unit: the output value ht of the memory unit at the current
time and the unit state Ct at the current time. The prediction
process of power outage areas for affected customers in the
LSTM network is as follows:

(1) Firstly, a prediction model for power outage areas of
affected customers based on LSTM network is constructed:

ft = δ(Wf · X + bf ) (21)

In the formula, Wf is the weight matrix of LSTM, and bf
is the offset of LSTM.

(2) The input gate determines how much information is
saved to the cell state at the current moment. The input gate
outputs the output value of the sigmoid function between
0 and 1. If the input gate output is 0, it indicates that the
corresponding information has not been updated. If it is 1,
it indicates that the corresponding information needs to be
updated. This paper uses the meteorological data feature
extraction results of the CNN neural network as input sample
xt to input into the disaster stricken customer power out-
age area prediction model, generating a numerical value it
between 0 and 1 to determine how much information the
memory unit needs to retain. Meanwhile, a tanh layer will
determine the candidate memory state C ′

t through the output
ht−1 of the previous state and the input xt of the current state:

C ′
t = tanh(Wc [ht−1, xt ] + bc) (22)

(3) Forgetting gate ft is responsible for controlling whether
to continue saving the long-term state C , which is jointly
determined by the input value xt at time t and the output value
ht−1 of the previous hidden layer [18]:

ft = σ (Wf [ht−1, xt ] + bf ) (23)

In the formula, Wf is the weight matrix of the forgetting
gate ft at time t , and bf is the offset.

(4) The output gate determines what information needs
to be output from the memory unit. Similar to the input
gate, a sigmoid function is used to determine how much
information Ct needs to be output from the memory unit. The
expression is:

ot = σ (Wo [ht−1, xt ] + bo) (24)

The information Ct of the memory unit is multiplied by ot
and activated through a tank layer to obtain the output infor-
mation of the current LSTM block, which is the predicted
result of the affected customer’s power outage area:

ht = ot · tanh(Ct ) (25)

III. SIMULATION EXPERIMENT ANALYSIS
In order to verify the effectiveness of the CNN-LSTM based
algorithm for predicting the power outage area of affected
customers in practical applications, a distribution line in a
certain area was selected as the experimental object for exper-
imental testing.

Before the experiment, collect the initial meteorological
data using ground automatic weather observation stations.
Specifically, collect temperature data of 8 GB, humidity data
of 12 GB, wind speed data of 6 GB, and precipitation data
of 10 GB. Set the parameters of the CNN-LSTM model as
follows:

- Number of convolutional layers: 2
- Filter size: 3 × 3
- Pooling operation: Maximum pooling
- Number of LSTM layers: 1
- Number of units per LSTM layer: 128

Using the CNN-LSTM based algorithm for predict-
ing the power outage area of affected customers, refer-
ence [6] algorithm, reference [8] algorithm, and reference [9]
algorithm proposed in this paper, the power outage area of
affected customers is predicted, and the predicted results are
compared with actual test results. The comparison results are
shown in Figure 1.

According to Figure 1, it can be seen that the CNN-LSTM
based algorithm for predicting the power outage area of
affected customers proposed in this paper is consistent with
the actual test results. However, the results of the refer-
ence [6] algorithm, reference [8] algorithm and reference [9]
algorithm for predicting the power outage area of affected
customers are significantly different from the actual test
results. The above results indicate that our method has under-
gone detailed processing in data preprocessing and feature
construction, which helps to extract effective features from
the data. However, the methods in references [6], [8], and [9]
only consider a single influencing factor during prediction,
which affects the accuracy of the prediction. This further
demonstrates that the algorithm proposed in this paper has
high accuracy in predicting the power outage areas of affected
customers and good prediction results.

Using the CNN-LSTM based algorithm for predict-
ing the power outage area of affected customers, refer-
ence [6] algorithm, reference [8] algorithm, and reference [9]
algorithm proposed in this paper, a comparison was made of
the time used for predicting the power outage area of affected
customers. The comparison results are shown in Figure 2.

According to Figure 2, as the number of experiments
increases, the prediction time of affected customer power
outage areas for the three algorithms increases. When the
number of experiments reaches 10, the proposed CNN-LSTM
based algorithm for predicting the power outage area of
affected customers takes 4.3 seconds, while the algo-
rithms in reference [6] algorithm, reference [8] and [9]
take10seconds,11.1 seconds and 12.3 seconds, respectively.
From this, it can be seen that the algorithm in this paper
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FIGURE 2. Comparison results of four algorithms for predicting the time
of power outage areas for affected customers.

FIGURE 3. Non disaster misjudgment rates using different methods.

takes the shortest time to predict the power outage area of
affected customers and has the highest prediction efficiency.
It has been proven that compared with the algorithms in
references [6], [8], and [9], our method combines the spatial
feature extraction ability of CNN for time series data and the
modeling ability of LSTM for dynamic changes in the time
dimension, fully leveraging the advantages of both, resulting
in better prediction efficiency.

In addition to focusing on accurate prediction of power
outage areas for disaster affected customers, it is also possible
to consider the prediction model mistakenly predicting non
disaster customers as power outage areas for disaster affected
customers. This indicator can be defined as the non disaster
misjudgment rate. By measuring this indicator, the error rate
of the model in identifying non disaster areas can be evalu-
ated. The comparison results of the four methods are shown
in Figure 3.

Analyzing Figure 3, it can be seen that in multiple itera-
tions, the non disaster misjudgment rate of the CNN-LSTM
based disaster affected customer power outage area predic-
tion algorithm proposed in this paper is lower than that of
the algorithms in references [6], [8], and [9]. The maximum
non disaster misjudgment rate of the method in this paper is
2%. Because the CNN-LSTM based algorithm for predict-
ing the power outage area of affected customers proposed
in this paper preprocesses and processes the original data
with features. This preprocessing and feature construction

process helps to extract effective information from the data
and reduces the misjudgment rate of non disaster predictions.

IV. CONCLUSION
This paper is based on CNN-LSTM and conducts research on
the prediction algorithm for power outage areas of affected
customers. According to this study, the proposed method is
able to accurately predict the outage areas of disaster-affected
customers and achieves consistent results in comparison
with actual test results. This algorithm can be used as a
reliable forecasting tool to help relevant departments and
institutions better understand the outage and take appropri-
ate measures to ensure the power supply needs of affected
customers. The prediction time of this algorithm is sig-
nificantly reduced to 4.3 seconds. This means that outage
prediction results can be obtained more quickly in emergency
situations, enabling timely rescue and restoration measures
to minimize the outage time for affected customers and
improve disaster response efficiency. After applying the pro-
posed method, the maximum non-disaster misjudgment rate
is 2 percent. This means that the algorithm can better distin-
guish between disaster-hit and non-disaster-hit areas, reduce
prediction errors in non-disaster areas, provide more accurate
outage prediction results, and enable relevant departments
to take more targeted response measures. In summary, the
CNN-LSTM based algorithm for predicting outage areas for
affected customers has achieved good results in terms of
prediction accuracy, prediction time and misjudgment rate,
demonstrating its important significance and potential in
practical applications. This algorithm can provide reliable
and efficient decision support for relevant departments and
agencies to respond to disaster situations and ensure the
power supply needs of affected customers.
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