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ABSTRACT Quantum information processing leverages the principles of quantum mechanics, utilizing
qubits, to improve computational and communicative tasks. In this realm, the quantum channel’s capacity is
pivotal in determining the efficiency and accuracy of quantum information handling, with its performance
being significantly influenced by channel noise. Our study aims to establish a holistic hybrid quantum noise
model to determine the quantum channel capacity. In this paper, we formulated amathematical expression for
this capacity and conducted simulations for both Gaussian and non-Gaussian inputs. A hybrid noise model
is constructed by convolution of Poisson-distributed quantum noise with classical additive white Gaussian
noise. We characterized the quantum-classical noise and the received signal using GaussianMixtureModels.
The maximum amount of quantum information that can be reliably transmitted over a quantum channel (per
use of the channel) is determined by its capacity, and entropy and related quantities like mutual information
play a role in calculating this capacity. Our formulation of quantum channel capacity is derived from the
mutual information shared between the transmitter and receiver, encompassing the entropies of the signals.
The quantum channel presents a higher capacity-to-signal-to-noise ratio for Gaussian inputs than non-
Gaussian ones.

INDEX TERMS Quantum communication, statistical quantum signal processing, qubit, Gaussian quantum
channel, quantum Poissonian noise, Gaussian noise, quantum Gaussian channel, Gaussian mixture models,
quantum entropy, quantum channel capacity.

I. INTRODUCTION
Quantum communication is the science of transferring
information using the principles of quantum mechanics,
primarily employing quantum states of particles like photons
for secure communication [1], [2], [3].

Quantum cryptography marks a significant advancement
over traditional cryptographic methods. Quantum key distri-
bution (QKD)is a method that ensures secure communication
by allowing the detection of eavesdropping attempts using
quantum principles such as superposition and entangle-
ment [4]. Quantum key distribution (QKD) protocols, such as
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BB84, exemplify this by using quantum properties to securely
distribute encryption keys, making eavesdropping detectable
due to the inherent nature of quantum states [1]. Quantum
communication offers secure key exchange using quantum
key distribution (QKD), utilizing the no-cloning theorem
and properties such as photon polarization or phase [5], [6].
QKD, operational over hundreds of kilometers via optical
fibers and quantum repeaters, detects eavesdropping and is
superior to classical cryptography [7], [8]. Additionally, the
scope of quantum communication extends beyond secure
data transfer. It includes applications like quantum teleporta-
tion [9], which involves transferring quantum states between
distant locations without the physical transfer of particles
(qubits).
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Quantum communication is crucial for the next generation
of secure communications and holds a foundational and
emerging component as quantum internet [10]. Continued
progress in capabilities like quantum repeaters and memories
could lead to large-scale quantum communication networks
and a quantum internet [11]. The progress of Quantum
Internet and quantum networks achieves full functionality
through stages like trusted repeater development, entangle-
ment distribution, and memory enhancement, culminating
in seamless integration with the existing Internet, including
management aspects [12]. In quantum networks, routing is
an important problem, i.e., the problem of finding the shortest
path in a network addressing the challenges of distributing
quantum entanglement across a network of quantum repeaters
with finite entangled qubit pairs and varying levels of
entanglement fidelity [13]. Quantum sensing represents an
advanced phase in integrated sensing, primarily focused
on the trade-off between fundamental detection probability
and achievable communication rates in communication
systems [14].
Beyond security, quantum communication is foundational

to the establishment of quantum networks, which are
envisaged to interconnect quantum computers [10]. These
networks, facilitating the sharing of quantum informa-
tion (qubits) across distances, are essential for distributed
quantum computing, enabling computational tasks that are
currently impractical with classical networks. Integrating
quantum communication with quantum information process-
ing is critical for this technological evolution. Quantum gates
and circuits play a crucial role in transforming classical
information into quantum states that can be processed in a
quantum information processing systemmore securely across
quantum networks [1]. Quantum communication focuses on
the transmission of quantum information, while quantum
information processing involves the manipulation and pro-
cessing of this information [15]. The synergy between these
fields is expected to develop powerful quantum computing
networks, mirroring the internet’s role for classical computers
today.

However, quantum communication, including quantum
information processing, faces challenges, including devel-
oping reliable quantum repeaters for long-distance com-
munication and managing quantum noise and decoherence.
Efforts are also underway to integrate these quantum systems
with existing infrastructure [2]. Despite these challenges,
the continuous research in this domain promises substantial
advancements in secure communication and the realization of
global quantum networks and distributed quantum computing
in the future.

Quantum noise, omnipresent in quantum computing,
arises from various sources such as environmental inter-
actions, qubit interactions, and imperfect controls, leading
to errors like dephasing and decoherence. Characterizing
and understanding its impact is challenging but crucial
for practical quantum computation [16]. Classical and

quantum noises are integral to a quantum channel’s noise,
with quantum noise often indistinguishable from classical
noise in functional scenarios [17]. Noise from vibrations
and material fluctuations interferes with communication
signals, causing information loss. Both types of noise are
essential in modeling noisy quantum channels, with classical
communication often affected by thermal and shot noise.
A standard model is the additive white Gaussian noise, which
imitates random natural processes and can distort signal
integrity, necessitating noise generators for system response
measurement. Quantum Poisson noises can be considerable
as follows: photon-counting shot noise [18], electron shot
noise [19], quantum projection noise [20], quantum walk
fluctuations [21], and more noises can be found in [22],
[23], [24], and [25]. However, the classical noises that can
be plugged into quantum noises are thermal noise [26],
current shot noise [27], phase noise [28], amplifier noise [29],
photodetector noise [30], and others ancillary noises are
discussed in [31], [32], and [33].

Entanglement brings noise into the quantum communica-
tion channel. Entangled qubits decohere in noisy channels,
losing entanglement through effects like sudden death [34].
Amplitude/phase damping also destroys correlations [35].
Furthermore, Gaussian states are vulnerable to thermal
noise-adding photons [36], contaminating entanglement [37].
Quantum noise disturbs states, destroying information and
entanglement through decoherence, dephasing, and photon
loss. Decoherence can render channels useless by destroying
information. The combined effect of these noises can
severely affect the accuracy and performance of the quantum
channel and overall quantum communication reliability.
Decoherence can be linked to a form of ‘‘quantum noise’’
arising from interactions with the environment, causing errors
and diminishing the reliability of quantum information in
communication or computation [38]. Decoherence presents
a formidable challenge in quantum communication, where
accurate transmission andmanipulation of quantum states are
paramount.

Addressing decoherence in quantum communication is a
crucial research effort. Several strategies and techniques are
being developed to mitigate its effects [39], [40], [41], [42],
[43]: Error correction codes and quantum error correction
protocols are utilized to counteract the consequences of
decoherence, protecting the delicate quantum information
and improving the dependability and effectiveness of quan-
tum communication systems [44]. Quantum error correc-
tion codes that utilize entanglement are being developed
to approach the quantum capacity [45]. The paper [46]
introduces a decoding method for quantum stabilizer codes
using the GRAND technique from classical codes, applied to
quantum BCH and polar codes. Reference [47] extends this
to quantum-GRAND for quantum random linear codes, using
quantum noise statistics for efficient error correction. Refer-
ence [48] compares classical and quantum error correction
codes, detailing the construction of QECCs from classical
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FIGURE 1. A noisy quantum channel model includes quantum noise Z1
and classical noise Z2 simultaneously under a single-channel link, the
channel matrix H = I is the identity matrix.

codes and their application to CSS and non-CSS codes. These
works highlight the evolution of error correction methods in
quantum computing, emphasizing adaptability and efficiency
in handling quantum noise and error rates.

Matching ultrafast decoherence timescales with slower
classical noise is challenging. Combining these mitigation
strategies aims to improve robustness against decoherence
in quantum communication. Approaches to match deco-
herence timescales: modeling via primary equations [49],
high-bandwidth colored noise, phase/frequency jitter noise,
discrete femtosecond noise injection [50], fast physical noise
sources, modeling loss via short channel correlations [51].
Independent classical and quantum noise combines to aGaus-
sian distribution [52]. Adding equivalent sources such as shot
noise preserves the power spectral density [53]. Uncorrelated
noise sums in signal-to-noise ratio [54]. Correlated noise
needs quantum treatment.

Combining classical and quantum noise poses challenges
because of their distinct timescales. Numerical simulations
with discrete time steps allow the concurrent influence of
both types of noise [55]. Classical noise models employ
analytical representations, while quantum noise uses Monte
Carlo sampling [56] or Lindblad operators [57]. Independent
noise sources in the primary / Langevin equations drive the
evolution of the density matrix of the system [58], [59].
Classical parameters modulate the characteristics of quantum
noise over time [15]. Decoherence must be considered, as it
is a rapid quantum process causing entanglement with the
environment and loss of quantum properties [38], [44].
This research developed a comprehensive hybrid noise

model that combines the classical and quantum noises
subsequently applied to estimate the capacity factor. It is
considered a scenario of quantum communication where the
sender and receiver are classical. We are more interested
in the architecture when both sender and receiver use
classical devices for communication, as it is a more practical
scenario because of the limited availability of quantum
computers. To avail quantum security in communication
links, classical information is coded in quantum states ( e.g.,
into the states of the photon ); hence, the single quantum
channel will be used to transport the quantum information.
On the receiver side, the received signal in the form of
quantum information will be delivered, and received quantum
information will be decoded into the classical signal by
measurement procedures. The maximum achievable data

TABLE 1. Notation.

rate, that is, the classical capacity of a quantum channel,
will be calculated through this process. On the other hand,
there is another use case where the sender and receiver
communicate with quantum devices, and the channel between
them is purely quantum. In that case, the investigated channel
capacity will be the quantum capacity of the quantum
channel. The literature has reported [15] classical capacity
of the quantum channel or quantum capacity of a quantum
channel. For that capacity, expression is derived from the
density matrices of qubit. However, the lack of the statistical
formulation of the quantum channel has been spotted [60],
and simulating results like how capacity varies to signal-
to-noise ratio have been unavailable so far [15]. The lack
of models for the probability distribution function of hybrid
quantum noise and quantum received signals was another
motivation behind this research Fig. 2 explains the direction
of the research pictorially. The contributions of this paper
are many-fold, involving introducing the statistical theory
of the hybrid quantum noise model considering quantum
Poissonian noise and classical additive white Gaussian noise
(AWGN), hence the mathematical expression for the capacity
of the Gaussian quantum channel. However, we worked on
the Gaussian quantum channels, but they do not necessarily
have Gaussian input. To compare these two cases, it is
essential to vary the input distribution to determine how
capacity will fluctuate with respect to the signal-to-noise ratio
for the Gaussian and non-Gaussian input for the Gaussian
quantum channel.

The main contributions of this paper are (I) Designing
a noisy quantum channel via modeling hybrid quantum
noise by considering it as a combination of quantum
Poissonian noise and classical additive white Gaussian noise,
(II) Proposed a closed-form solution for the capacity of
Gaussian quantum channel despite of Gaussian Mixture
(GM) Noise densities and GM output signal models,
(III) Compare the results from the capacity tendency (the
fluctuation of capacity or the growth / increasing/ decreasing
nature of the capacity with respect to the signal-to-noise
ration will be evaluated), for Gaussian and non-Gaussian
inputs, (IV) The statistical interpretation of quantum channels
has been introduced in this paper for the development of
statistical quantum signal processing. It also analyzes the
received signalmodels for Gaussian variate transmitted signal
and non-Gaussian inputs for the Gaussian quantum channel.
The model is studied in detail in the current article, and
particular emphasis is paid when comparing capacities for
Gaussian and non-Gaussian input for the quantum channel.
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FIGURE 2. The categorization of noise and capacity factor of Gaussian quantum channel.

II. QUANTUM CHANNEL MODEL ANALYSIS
Quantum information processing (QIP) is based on quan-
tum states for data manipulation [15]. Unlike classical
information processing, which uses classical bits based on
macroscopic properties, QIP employs quantum states with
qubits as basic units. These qubits are represented by quantum
state vectors, e.g., |ψ⟩ = α |0⟩ + β |1⟩, α, β ∈ C,
reflecting their probabilistic nature, hinging on quantum
phenomena like superposition and entanglement. Various
physical systems can generate quantum states, with light
consisting of photons ideal for long-distance communication.
Entangled single- and two-photon states are desirable but
challenging to prepare, making Gaussian states, such as
coherent states [61], a more practical choice. Gaussian states,
characterized by their Gaussian distribution in phase or Fock
space, have proven to be robust for numerous QIP tasks.
Quantum optical Gaussian states are pivotal in quantum
information experiments, facilitating progress in bright and
weak Gaussian light contexts. Extending discrete quantum

variables’ theoretical and experimental successes to contin-
uous variables is a compelling endeavor [37], [62]. Gaussian
states are central to this exploration, given the enhanced
capabilities of quantum optical systems [63], [64]. They
underpin properties, entanglement theory, communication
protocols, and emerging directions such as Gaussian cluster
states for quantum computing [65], [66].

A. GAUSSIAN CHANNEL
In mathematical terms, a quantum channel is defined as a
completely positive trace-preserving map ρ 7→ T (ρ) that
takes states, i.e., density operators ρ acting on some Hilbert
space H, into states. This research assumed that output
and input Hilbert spaces are identical for simplicity. Every
channel can be conceived as a reduction of unitary evolution
in a larger quantum system. So for any channel T there exists
a state ρE on a Hilbert space HE , and a unitary U such that

T (ρ) = trE [U(ρ ⊗ ρE )U
†] (1)
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The system labeled E serves as an environment, embody-
ing degrees of freedom, including observation, inducing a
decoherence process. The channel is then a local manifesta-
tion of the unitary evolution of the joint system. A Gaussian
channel [67], [68], [69], [70], [71] is now a channel of the
form as in Eq.(1), where U is a Gaussian unitary, determined
by a quadratic Bosonic Hamiltonian, and ρE is a Gaussian
state [68]. This restriction to quadratic Hamiltonian gives
a pretty good description of the physical system, such as
the lossy optical fiber. In this study, the quantum channel is
assumed to be Gaussian. However, the input states are not
necessarily taken to be Gaussian.

The simplest Gaussian channel is a lossless unitary
evolution governed by a quadratic Bosonic Hamiltonian:

ρ 7→ UρU†,U = ei/2
∑
k,l

HklRkRl

with H being a real and symmetric 2n × 2n matrix, R
represents the canonical coordinates for the quantum system
with n modes that is n canonical degrees of freedom [72],
[73]. Such unitaries correspond to a representation of the real
symplectic group Sp(2n,R), formed by those realmatrices for
which SσSt= σ , where the matrix σ defines the symplectic
scalar product [72], [73].

Such linear transformations preserve the commutation
relations, the relation between such a canonical transfor-
mation in phase space and the corresponding unitary in
Hilbert space is given by S = eHσ . Gaussian unitaries are
omnipresent in physics, particularly in optics, and this is the
reason why Gaussian channels play such an important role.
Notably, the action of ideal beam splitters, phase shifters, and
squeezers correspond to symplectic transformations.

Depending on the context, it is appropriate or transparent
to formulate a Gaussian channel in the Schrodinger picture
ρ 7→ TA,Z(ρ) or to define it as a transformation of covariance
matrices

γ 7→ AtγA+ Z (2)

This is the most general form of a Gaussian channel. A
serves the purpose of amplification, attenuation, and rotation
in phase space, whereas the contribution Z is a noise term
that may consist of quantum (required to make the mapped
physical) and classical noise. Interestingly, A can be any real
matrix, and therefore any map γ 7→ AtγA can be made
approximately, as long as ‘sufficient noise’ is added [72],
[73].

B. SYSTEM MODEL
According to (2), a single quantum link can be expressed
as γ 7→ γ + Z, where Z indicates the noise term consists
of the quantum and the classical part. In (2), consider
A D I as A can be any real matrix. The only condition
of the map above being a quantum channel is to ensure
sufficient noise is added [72], [73]. In terms of amathematical
equation, this unity quantum communication channel can
be expressed as Y = X + Z , where X , Y , and Z

correspond to the random variables of the transmitted signal,
received signal, and noise affecting the channel resulting from
different unwanted sources, respectively. Since we consider a
realistic quantum communication network carrying classical
information, we assume the communication links suffer from
classical and quantum noise components. We start with
the assumption that the hybrid quantum-classical noise is
additive in nature, such that Z = Z1 + Z2, where Z1 is the
Poisson distributed quantum shot noise and Z2 is the Gaussian
distributed white classical noise. More specifically, statistical
modeling of the signals in statistical signal processing, this
study develops similar techniques for statistical quantum
signal processing to express the transmitted signal, the
received signal, and the joint noise by random variables X ,
Y , and Z by the relation Y = X + Z to find a distribution
for the received signal. The same technique has been used
to statistically showcase the joint quantum noise using the
relation Z = Z1 + Z2. Figure 1 explains the theory in the
schematic diagram.

III. METHODOLOGY
In this section, we will discuss a brief overview of the current
research. Starting with the channel equation Y = X + Z ,
where X , Y , and Z correspond to the random variables of
the transmitted signal, received signal, and hybrid quantum
noise, the p.d.f. of the hybrid quantum noise will be the
convolutional product of the component Quantum Poissonian
noise and additivewhite Gaussian noise. This hybrid quantum
noise model will be convoluted with the (I) Gaussian and
(II) non-Gaussian input separately to get the received signal
models of each setup. In the meantime, the entropies of
received signals and the hybrid quantum noise will be
calculated to evaluate (I) the mutual information between
the Gaussian transmitted signal and the corresponding
received signal, and (II) the mutual information between
the non-Gaussian transmitted signal and the corresponding
received signal. Finally, the capacity of the Gaussian channel
will be calculated for (I) Gaussian and (II) non-Gaussian
input separately to compare their trends to the signal-to-noise
ratio. Fig. 3 explains the flow of the research methodology.

IV. QUANTUM NOISE MODEL
In terms ofmathematics, the classical additivewhiteGaussian
noise and quantum Poisson noise are jointly described as
Z = Z1 + Z2, where Z1 is the noise arising from quantum
fluctuations that have a Poissonian distribution and Z2 is the
classical counterpart which has a Gaussian distribution. The
statistical description of the hybrid classical-quantum noise
Z is calculated considering it as a convolution product of Z1
and Z2.

Quantum noise Z1 follows a Poisson distribution with
parameters λ, and classical noise Z2 follows a normal
distribution with parameters µZ2 and σZ2 . Mathematically,
Z1 ∼ P(λ), λ ≥ 0, λ ∈ {0, 1, 2, . . .} and Z2 ∼

N (µZ2 , σ
2
Z2
) where µZ2 and σ 2

Z2
are the mean and variance

of the distribution, respectively. The quantum-classical noise
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FIGURE 3. Flowchart of the research which is divided into four parts represented in the paper as follows: (1) Starting with the transmitted signal model
with Gaussian inputs in Section V-A → Received signal model in Section V-B → The entropy of the received signal in Section VI-B → Mutual information
b/w input and output signal → Capacity for the quantum channel in Section VII, (2) Section IV contains the hybrid quantum-classical noise model, and
Section VI-A shows the entropy of the noise, (3) For non-Gaussian input, focus on Section VIII → Receive signal model → The entropy of the received
signal in Section IX → Mutual information b/w input and output signal → Capacity for the quantum channel in Section X, (4) The comparison of
capacities for the quantum channels with respect to signal-to-noise ratio has been shown in Section XI.

is modeled as a convolution product of Poisson and Gaussian
distributions.

The probability mass function (p.m.f.) of Z1 is given by,

fZ1 (k) =
e−λλk

k!
(3)

where λ ≥ 0 and k ∈ {0, 1, 2, . . .}
The probability density function (p.d.f.) of Z2 can be

expressed as,

fZ2 (t) =
1

σZ2
√
2π

e
−

1
2

( t−µZ2
σZ2

)2
(4)

where µZ2 and σZ2 are the mean and standard deviation (s.d.)
of the corresponding distribution.
Z1 has a discrete distribution while Z2 has a continuous

distribution, but to develop the hybrid noise model, we need
to calculate their joint distribution. This is done by expressing
the p.m.f. of the discrete Poisson distribution in terms of the
p.d.f. of a continuous distribution and then calculating the
joint distribution of two continuous distributions.

The cumulative distribution function (c.d.f.) of the discrete
r.v. Z1 can be written as

FZ1 (t) =

∑
∀k∈RZ1

PZ1 (k)u(t − k) (5)

where RZ1 = {0, 1, 2, . . .}. Now, the p.d.f. of the above
function can be written as

fZ1 (t) =
dFZ1 (t)
dt

=

∑
∀k∈RZ1

PZ1 (t)
d
dt
u(t − k)

=

∑
∀k∈RZ1

PZ1 (t)δ(t − k) =

∑
∀k∈RZ1

e−λλk

k!
δ(t − k) (6)

where δ(x) =
d
dx u(x) is the Dirac delta function and u(·) is

the unit step function.
We know that if U is a discrete r.v. with p.m.f. pU : χ →

[0, 1], and χ is a discrete set (maybe countably infinite), then
the r.v. U can be thought of as a continuous r.v. with p.d.f.

fU (u) =

∑
∀us∈χ

pU (us)δ(u− us).

Now, if V is a continuous r.v., andW = U + V is a hybrid
r.v. then the p.d.f. of W can be computed from p.d.f.s of U
and V . Assuming U and V are independent r.v.s, the p.d.f of
W can be expressed as a convolution product of p.d.f.s fU and
fV . Therefore,

fW (w) =

∑
∀us∈χ

pU (us)fV (w− us).

For our case, from the expressions (4) and (6) the p.d.f. of Z
can be written as,

fZ (z) =

∑
∀k∈RZ1

fZ1 (k)fZ2 (z− k)

=

∞∑
k=0

e−λλk

k!
1

σZ2
√
2π

e
−

1
2

( z−k−µZ2
σZ2

)2
(7)

Hence, we evaluate the differential entropy of the r.v. Z given
by the formula:

h(Z ) = −

∫
χZ

fZ (z) log2 fZ (z) dz

where χZ is the support of fZ , i.e., the set on which fZ is
nonzero.

14676 VOLUME 12, 2024



M. Chakraborty et al.: Hybrid Quantum Noise Model to Compute Gaussian Quantum Channel Capacity

V. QUANTUM SIGNAL MODEL FOR GAUSSIAN INPUT
In quantum mechanics, a Fock state or number state is a
quantum state that is an element of a Fock space with a
well-defined number of particles (or quanta). These states
are named after the Soviet physicist Vladimir Fock. In
experimental practice, it is of general concern how robustly
quantum states can be manipulated. A pure quantum state
is symbolized by a ray in a Hilbert space over complex
numbers [74]. However, densitymatrices can represent mixed
states: positive semi-definite operators that act on Hilbert
spaces [75]. In practice, the preparation of single-photon or
two-photon entangled states (deterministically) is complex.
Single-photon sources are light sources that can emit light as
single particles or photons. They are distinct from coherent
light sources (e.g., lasers) and thermal light sources (incan-
descent light bulbs). The Heisenberg uncertainty principle
conveys that a state with an exact number of photons
of a single frequency cannot be created. However, the
Fock states or number states can be observed for a system
where the amplitude of the electric field is distributed
over a narrow bandwidth. Fock states play an important
role in the second quantization formulation of quantum
mechanics.In these circumstances, a single-photon source
rises to an effectively one-photon-number state. Photons from
an ideal single-photon source manifest quantum mechanical
characteristics.

A. QUANTUM TRANSMITTED SIGNAL MODEL
Mathematically, a state is Gaussian if its distribution function
in phase or its density operator in the Fock space is Gaussian.
Examples of Gaussian functions are well-known p.d.f.
of Normal distribution,Wigner function, etc. Here, we started
with the Normal distribution as an input distribution of
continuous-variable (CV) quantum information processing.
In our model, the input quantum signal X is in a Gaussian
state, and it can be characterized by Gaussian distribution
with parameters µX and σX ,

X ∼ N (µX , σ 2
X )

whereµX and σ 2
X are themean and variance of the distribution

respectively.
The probability density function (p.d.f.) fX of X can be

expressed as,

fX (x) =
1

σX
√
2π

e−
1
2

(
x−µX
σX

)2
(8)

where µX and σX are the mean and standard deviation
(s.d.) of the distribution. The quantum received signal can
be calculated as the convolution product of the Gaussian
distributed transmitted signal and the quantum noise signal.
As discussed above, important experiments of quantum
information processing are done with quantum light.

B. QUANTUM RECEIVED SIGNAL MODEL
The distribution of the transmitted signal X and the hybrid
quantum-classical noise Z are independent of each other,

their respective r.v.s are also independent. The input quantum
signal is considered in a Gaussian state and follows the
Gaussian distribution with p.d.f. fX , it is continuous, as it
is a probability density function. For considering CV signal
processing, it modified discrete p.m.f. fZ1 of Poisson quantum
noise to a continuous distribution and plugged it with p.d.f. fZ2
of classical Gaussian noise, which is also continuous; hence,
the final convolution product fZ is a continuous function. So
both fX and fZ are continuous, and X and Z are independent
of each other, having relation Y = X + Z . Therefore, the
p.d.f. fY of Y can be written as the convolution of fX and fZ
as follows:

fY (y) :=

∫
∞

−∞

fX (x)fZ (y− x) dx (9)

where Domain of X is given by DX = (−∞,∞). Consider
a range for qubits along a single direction on the surface of
the Bloch sphere, such as DX = [0, 2π ] in some restriction.
It is discussed in the appendix in detail. This is the same as
the range DX = [−π, π], which also represents a single
complete rotation on the surface of the sphere. However,
this study extends this idea by considering this range as
multiple rotations along the great circle; pictorially, it looks
like a spiral or a Helix structure. For the theoretical range
of the qubit on the Bloch sphere along a circular direction,
we can use DX = [−π, π] to represent a single rotation or
DX = (−∞,∞) for multiple rotations ([−π, π] × number
of rotation).

From using the expressions of (7) and (8) in (9), we have

fY (y) =

∫
∞

−∞

fX (x)fZ (y− x) dx

=

∫
∞

−∞

(
1

σX
√
2π

e−
1
2

(
x−µX
σX

)2)
×

( ∞∑
k=0

e−λλk

k!
1

σZ2
√
2π

e
−

1
2

( y−x−k−µZ2
σZ2

)2)
dx

=

∫
∞

−∞

∞∑
k=0

e−λλk

k!

(
1

σX
√
2π

e−
1
2

(
x−µX
σX

)2)

×

(
1

σZ2
√
2π

e
−

1
2

( y−x−k−µZ2
σZ2

)2)
dx (10)

Let

f (x) :=
1

σX
√
2π

e−
1
2

(
x−µX
σX

)2
(11)

and

g(x) =
1

σZ2
√
2π

e
−

1
2

( y−x−k−µZ2
σZ2

)2
=

1

σZ2
√
2π

e
−

1
2

( x−(y−k−µZ2
)

σZ2

)2
(12)

Define µf := µX , σf := σX , µg := y − k − µZ2 , and
σg := σZ2 .
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From (11) and (12) we can write

f (x) :=
1

σf
√
2π

e
−

1
2

( x−µf
σf

)2
(13)

and

g(x) :=
1

σg
√
2π

e
−

1
2

(
x−µg
σg

)2
(14)

From (13) and (14) the product of functions f and g can be
written as

f (x)g(x) =
1

2πσf σg
e
−

[
(x−µf )

2

2σ2f
+

(x−µg)2

2σ2g

]
(15)

Examine the term in the exponent in (15)

β :=
(x − µf )2

2σ 2
f

+
(x − µg)2

2σ 2
g

Expanding the terms in quadratics and collecting the terms
in the power of x gives,

β :=
(σ 2
f + σ 2

g )x
2
− 2(µf σ 2

g + µgσ
2
f )x + µ2

f σ
2
g + µ2

gσ
2
f

2σ 2
f σ

2
g

Dividing through the coefficient of x2,

β :=

x2 − 2
µf σ

2
g+µgσ

2
f

σ 2f +σ 2g
x +

µ2
f σ

2
g+µ2

gσ
2
f

σ 2f +σ 2g

2σ 2f σ
2
g

σ 2f +σ 2g

This is again quadratic in x; therefore, (15) is a Gaussian
function.

Let us consider,

ϵ =

(
µf σ

2
g+µgσ

2
f

σ 2f +σ 2g

)2
−

(
µf σ

2
g+µgσ

2
f

σ 2f +σ 2g

)2
2σ 2f σ

2
g

σ 2f +σ 2g

= 0

Adding this term to β gives,

β =

x2 − 2x
µf σ

2
g+µgσ

2
f

σ 2f +σ 2g
+

(
µf σ

2
g+µgσ

2
f

σ 2f +σ 2g

)2
2σ 2f σ

2
g

σ 2f +σ 2g

+

(
µ2
f σ

2
g+µ2

gσ
2
f

σ 2f +σ 2g

)
−

(
µf σ

2
g+µgσ

2
f

σ 2f +σ 2g

)2
2σ 2f σ

2
g

σ 2f +σ 2g

=

(
x −

µf σ
2
g+µgσ

2
f

σ 2f +σ 2g

)2
2σ 2f σ

2
g

σ 2f +σ 2g

+

(
µf − µg

)2
2(σ 2

f + σ 2
g )

=
(x − µfg)2

2σ 2
fg

+

(
µf − µg

)2
2(σ 2

f + σ 2
g )

(16)

where

µfg =
µf σ

2
g + µgσ

2
f

σ 2
f + σ 2

g
, σfg =

√√√√ σ 2
f σ

2
g

σ 2
f + σ 2

g

Substituting (16) in (15) we get,

f (x)g(x) =
1

2πσf σg
exp

[
−
(x − µfg)2

2σ 2
fg

]
exp

[
−
(µf − µg)2

2(σ 2
f + σ 2

g )

]
Multiplying by σfg

σfg
and rearranging gives,

f (x)g(x) =
1

√
2πσfg

exp
[
−
(x − µfg)2

2σ 2
fg

]
.

1√
2π (σ 2

f + σ 2
g )

exp
[
−
(µf − µg)2

2(σ 2
f + σ 2

g )

]
(17)

Finally from (15) we have,

f (x)g(x) =
Sfg

√
2πσfg

exp
[
−
(x − µfg)2

2σ 2
fg

]
(18)

where

Sfg =
1√

2π (σ 2
f + σ 2

g )
exp

[
−
(µf − µg)2

2(σ 2
f + σ 2

g )

]
,

µfg =
µf σ

2
g + µgσ

2
f

σ 2
f + σ 2

g
, σfg =

√√√√ σ 2
f σ

2
g

σ 2
f + σ 2

g

and the scaling factor Sfg is itself a Gaussian function on both

µf and µg with Gaussian RMS width
√
(σ 2
f + σ 2

g ).
Note that the product fg is a Gaussian function. However,

µfg and σfg need not be mean and s.d. of the distribution fg.
The µf (:= µX ), σf (:= σX ) and σg(:= σZ2 ) are free from y
while only µg(:= y− k−µZ2 ) depends on y. In the integrand
below, it is necessary to be careful that both Sfg and µfg
contain y and k .

Using these expressions (13), (14), and (15) in (7) gives
this result:

fY (y)

=

∫
∞

−∞

∞∑
k=0

e−λλk

k!

(
1

σf
√
2π

e
−

1
2

( x−µf
σf

)2)

×

(
1

σg
√
2π

e
−

1
2

(
x−µg
σg

)2)
dx

=

∫
∞

−∞

∞∑
k=0

e−λλk

k!
Sfg

σfg
√
2π

exp
[
−

(
x − µfg

)2
2σ 2

fg

]
dx (19)

=

∫
∞

−∞

∞∑
k=0

e−λλk

k!
1

σfg
√
2π

Sfg

× exp
[
−

1

2σ 2
fg

(
x −

µf σ
2
g + µgσ

2
f

σ 2
f + σ 2

g

)2]
dx
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=

∫
∞

−∞

∞∑
k=0

e−λλk

k!
1

σfg
√
2π

.
1√

2π (σ 2
f + σ 2

g )
exp

[
−
(µf − µg)2

2(σ 2
f + σ 2

g )

]

× exp
[
−

1

2σ 2
fg

(
x −

µf σ
2
g + (y− k − µZ2 )σ

2
f

σ 2
f + σ 2

g

)2]
dx

=

∫
∞

−∞

∞∑
k=0

e−λλk

k!
1

σfg
√
2π

.
1√

2π (σ 2
f + σ 2

g )
exp

[
−
(µf − (y− k − µZ2 ))

2

2(σ 2
f + σ 2

g )

]

× exp
[
−

1

2σ 2
fg

(
x −

µf σ
2
g + (y− k − µZ2 )σ

2
f

σ 2
f + σ 2

g

)2]
dx

(20)

Our target is to interchange the
∑

and
∫
.

From (19) consider,

fk (x) :=
e−λλk

k!
Sfg

σfg
√
2π

exp
[
−

(
x − µfg

)2
2σ 2

fg

]
Therefore, we have,

fY (y) =

∫
∞

−∞

∞∑
k=0

fk (x) dx

This is a special case of Fubini/Tonelli’s theorem, where
the measures are countable measures on N and the Lebesgue
measure on R (or, [0,∞)). In particular case:∫

∞

−∞

∞∑
k=0

fk (x) dx

with fk (x) being continuous functions ∀k ∈ {0, 1, 2, . . .}.
In deriving the expression for fY , it will be easier if one can

interchange the integral and the summation in the above case.
Another fundamental question will be to find if any necessary
and sufficient condition will allow swiping the integral and
summation for the above expression.

In particular, Tonelli’s theorem says if fk (x) ≥ 0 ∀k, x then∫ ∑
fk (x) dx =

∑ ∫
fk (x) dx (21)

without any further conditions needed. The monotone
convergence theorem can prove this. Fubini’s theorem says
that for a general function fk (·), if

∫ ∑
|fk (x)| < ∞

or
∑ ∫

|fk (x)| < ∞ (by Tonelli the two conditions are
equivalent), then∫ ∑

fk (x) =

∑ ∫
fk (x)

The dominated convergence theorem can prove this. We want
to use the condition of Tonelli’s theorem in (21). Hence,

we only need to check if fk (x) ≥ 0 ∀k, x We have

fk (x) =
e−λλk

k!
Sfg

σfg
√
2π

exp
[
−

(
x − µfg

)2
2σ 2

fg

]
Since the exponential function is always positive:

∴ exp
[
−

(
x − µfg

)2
2σ 2

fg

]
≥ 0 ∀x, k

For the part

σfg =

√√√√ σ 2
f σ

2
g

σ 2
f + σ 2

g
,

σf (:= σX ) and σg(:= σN2 ) are standard deviation of
distributions X and N2 respectively and

∴ σf ≥ 0 and σg ≥ 0 H⇒ σfg ≥ 0

Similarly, for the part

Sfg =
1√

2π (σ 2
f + σ 2

g )
exp

[
−
(µf − µg)2

2(σ 2
f + σ 2

g )

]
,

the expression

1√
2π (σ 2

f + σ 2
g )

≥ 0

as σf ≥ 0 and σg ≥ 0 and the part

exp
[
−
(µf − µg)2

2(σ 2
f + σ 2

g )

]
≥ 0

Being exponential function. ∴ Sfg ≥ 0
Let define

A :=
e−λλk

k!
, B :=

Sfg
√
2πσfg

, C := exp
[
−
(µf − µg)2

2(σ 2
f + σ 2

g )

]
(22)

Note that A and B do not contain x while only C contains
x. Since λ ≥ 0, k ∈ {0, 1, 2, . . .},

∴ A =
e−λλk

k!
≥ 0 ∀k, B =

Sfg
√
2πσfg

≥ 0 ∀k,

C = exp
[
−

(µf −µg)2

2(σ 2f +σ 2g )

]
≥ 0 ∀x, k

∴ fk (x) = A·B·C ≥ 0 ∀x, k

Hence, from Tonelli’s theorem in (21), it can be concluded
that the interchanging of

∑
and

∫
in (19) is possible. Hence,

from (19), we can write,

fY (y) =

∞∑
k=0

e−λλk

k!
Sfg

σfg
√
2π

∫
∞

−∞

exp
[
−

(
x − µfg

)2
2σ 2

fg

]
dx

(23)
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Remember both Sfg and µfg contain y and k . Now, for the part∫
∞

−∞

exp
[
−

(
x − µfg

)2
2σ 2

fg

]
dx

=

∫
∞

−∞

e
−

( x−µfg
√
2σfg

)2
dx

=

∫
∞

−∞

e−t
2√

2σfg dt =
√
2σfg

∫
∞

−∞

e−t
2
dt

=
√
2σfg

√
π =

√
2πσfg (24)

where t =
x−µfg
√
2σfg

,
√
2σfgt + µfg = x,

√
2σfgdt = dx and∫

∞

−∞
e−t

2
dt =

√
π .

Finally, putting expression (24) in (23) we get,

fY (y) =

∞∑
k=0

e−λλk

k!
Sfg

σfg
√
2π

√
2πσfg

=

∞∑
k=0

e−λλk

k!
Sfg

=

∞∑
k=0

e−λλk

k!
1√

2π (σ 2
f + σ 2

g )
e
−

1
2(σ2f +σ2g )

(µf −µg)2

=

∞∑
k=0

e−λλk

k!
1√

2π (σ 2
X + σ 2

Z2
)
e
−

(µX−y+k+µZ2
)2

2(σ2X+σ2Z2
)

=

∞∑
k=0

e−λλk

k!
1√

2π (σ 2
X + σ 2

Z2
)
e
−

(y−k−µX−µZ2
)2

2(σ2X+σ2Z2
)

(25)

In order to compare the p.d.f. of noise Z and p.d.f.
of received signal Y

fZ (z) =

∞∑
k=0

e−λλk

k!
1

σZ2
√
2π

e
−

(z−k−µZ2
)2

2σ2Z2

and

fY (y) =

∞∑
k=0

e−λλk

k!
1√

2π (σ 2
X + σ 2

Z2
)
e
−

(y−k−µX−µZ2
)2

2(σ2X+σ2Z2
)

It is worth noting that mathematically, both p.d.f.s have
similar types of expression; moreover, one is a scaled version
of the other.

Finally, the differential entropy of the received signal Y is
defined by

h(Y ) = −

∫
χY

fY (y) log fY (y) dy

where χY is the support of fY .
The following section shows the analytical derivations of

the differential entropies for quantum noise and received
signals. This leads to a closed-form solution of the mutual
information and, hence, an analytical expression of capacity.
Meanwhile, the upper and lower bounds of the entropies of

the received signal and joint quantum noise have been derived
by focusing theGaussianmixturesmodel for the noise and the
received signal.

VI. GAUSSIAN MIXTURE MODEL
Gaussian mixture models (GMMs) are weighted sums of
Gaussian components that approximate arbitrary probability
densities [76]. GMM parameters are estimated from data
using Expectation-Maximization or maximum a posteri-
ori [77]. GMMs model non-Gaussian uncertainties better
than single Gaussians. With enough components, they can
approximate any distribution [78]. Differential entropy of
GMMs lacks closed form, so bounds are proposed. A novel
approximation calculates entropy bounds represented by
Gaussian components [79]. Overall, GMMs flexibly model
complex multivariate densities using Gaussian components.

A Gaussian mixture model (GMM) is a weighted sum of
M component Gaussian densities as given by the equation,

f (x) =

L∑
i=1

wiN
(
x, µi, Ci

)
where wi are non-negative weighting coefficients with∑

i wi = 1 andN (x, µ,C) is a Gaussian density mean vector
µ, and covariance matrix C.

For a continuous-valued random vector x̄ ∈ RN with p.d.f.
f (x̄), the differential entropy is defined as

H (x̄) = E
[

− log f (x̄)
]

= −

∫
RN

f (x̄) log f (x̄)dx̄ (26)

The entropy of Gaussian mixtures can not be calculated in
the closed form due to the logarithm of a sum of exponential
functions. It can be visualized from the expression below

HZ = −

∫ ∑
i

wi
1

σ
√
2π

e−
1
2 (x−µ)

TC(x−µ)

×

(
log2

∑
i

wi
1

σ
√
2π

e−
1
2 (x−µ)

TC(x−µ)
)
dz

(27)

The exceptional case: For the special case of a single
density, where entropy is

H (x̄) =
1
2
log2

(
(2πe)N

∣∣∣ ∑ ∣∣∣) (28)

an approximate solution of (26). The expression (28) is an
upper bound for all Gaussian mixture random vectors with
some covariance matrix

∑
as in (28).

Independent of the entropy approximation method used,
it is generally tricky or even impossible to quantify the
deviation between the actual entropy value and its approx-
imation. Providing a close lower and upper bound of the
entropy value of a Gaussian mixture random vector makes it
possible to decide whether the approximation is meaningful.
Furthermore, as we will show, both bounds can be calculated
in closed form. Thus, the bounds themselves can be used to
efficiently approximate the true entropy value [76].
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Theorem 1: A lower bound HL(x̄) of (26) is given by

HL(x̄) = −

L∑
i=0

wi log2
( L∑
j=0

wjmi,j
)

(29)

with mi,j = N
(
µ̄i; µ̄j, Ci + Cj

)
where µi is the mean

vector and Ci is the covariance matrix of the corresponding
component of Gaussian mixture f (x̄).
Theorem 2: An upper bound HU (x̄) of (26) is given by

HU (x̄) =

L∑
i=0

wi log2
(

− log2 wi +
1
2
log2

(
(2πe)N

∣∣∣Ci∣∣∣))
(30)

A. IDENTIFYING NOISE MODEL AS GMM
Consider the p.d.f. of joint noise Z in (7),

fZ (z) =

∞∑
i=0

e−λλi

i!
1

σZ2
√
2π

e
−

1
2

( z−i−µZ2
σZ2

)2

=

∞∑
i=0

uiN
(
z, µ(z)

i , σ
(z)
i

2)
(31)

where ui =
e−λλi
i! ,

∑
∞

i=0 ui = 1, ui ≥ 0 ∀i and

N (z, µ(z)
i , σ

(z)
i

2
) is Gaussian density in dummy variable z,

mean µ(z)
i = µZ2 + i, and σ (z)

i
2

= σZ2
2 with standard

deviation σ (z)
i and variance σ (z)

i
2
.

In (31), the approximation of fZ (z) is taken as

fZ (z) =

R∑
i=0

e−λλi

i!
1

σZ2
√
2π

e
−

1
2

(
z−i−µZ2
σZ2

)2

=

R∑
i=0

uiN
(
z, µ(z)

i , σ
(z)
i

2)
(32)

Hence, this led to the compact form,

fZ (z) =

R∑
i=0

uiN
(
z, µ(z)

i , σ
(z)
i

2)
(33)

This is the Gaussian mixture in scalar variable z, the
coefficient ui ≥ 0 ∀i and

∑R
i=0 ui ≈ 1 for large R.

Corresponding Gaussian mixture in random vector z̄ ∈ RM

is

fZ (z̄) =

R∑
i=0

uiN
(
z̄, µ(z̄)

i ,
∑(z)

i

)
(34)

where z̄ is the random vector in RM , µ̄i(z) is the mean
vector, and

∑(z)
i is the covariancematrix of the corresponding

Gaussian density N .

B. IDENTIFYING RECEIVED SIGNAL MODEL AS GMM
Consider the p.d.f of the received signal in (25) given by:

fY (y) =

∞∑
i=0

e−λλi

i!
1√

2π (σ 2
X + σ 2

Z2
)
e
−

(y−i−µX−µZ2
)2

2(σ2X+σ2Z2
)

=

∞∑
i=0

e−λλi

i!
1√

2π (σ 2
X + σ 2

Z2
)
e

−
1
2

(
y−(i+µX+µZ2

)√
(σ2X+σ2Z2

)

)2

=

∞∑
i=0

viN
(
y, µ(y)

i , σ
(y)
i

2)
(35)

where vi =
e−λλi
i! ,

∑
∞

i=0 vi = 1, vi ≥ 0 ∀i and

N (y, µ(y)
i , σ

(y)
i

2
) is Gaussian density in dummy variable y,

mean µ(y)
i = µX + µZ2 + i, and standard deviation σ (y)

i =√
(σ 2
X + σ 2

Z2
) with variance σ (y)

i
2

In practical scenarios simulated over MATLAB, the p.d.f.
of hybrid noise in (7) has been approximated as f (z) in (32)
and has been used to formulate f (y) which is given by

fY (y) =

R∑
i=0

e−λλi

i!
1√

2π (σ 2
X + σ 2

Z2
)
e
−

(y−i−µX−µZ2
)2

2(σ2X+σ2Z2
)

=

R∑
i=0

viN
(
y, µ(y)

i , σ
(y)
i

2)
(36)

This is a Gaussian mixture in scalar variable y, and vi =
e−λλi
i! , vi ≥ 0 ∀i, and

∑R
i=0 vi ≈ 1 for large R.

CorrespondingGaussianmixture in random vector ȳ ∈ RM

is

fY (ȳ) =

R∑
i=0

viN
(
ȳ, µ̄i(y),

∑(y)

i

)
(37)

where ȳ is the random vector in RM , µ̄i(y) is the mean
vector, and

∑(y)
i is the covariancematrix of the corresponding

Gaussian density N .
Since fZ and fY are both Gaussian mixture densities, the

closed-form solution of the corresponding entropies HZ and
HY of the noise and the received signal can not be calculated
due to the logarithm of the sum and exponential function [76].
However, Theorems 1 and 2 provide the lower and the upper
bounds for each entropyHZ andHY . Let us call the upper and
lower bounds of HZ by UZ and LZ and the upper and lower
bounds of HY by UY and LY , respectively.

That is

LZ ≤ HZ ≤ UZ (38)

and

LY ≤ HY ≤ UY (39)

VOLUME 12, 2024 14681



M. Chakraborty et al.: Hybrid Quantum Noise Model to Compute Gaussian Quantum Channel Capacity

VII. CAPACITY FOR THE GAUSSIAN INPUT QUANTUM
CHANNEL
In [80], the mutual information I (X;Y ) between transmitted
signal X and received signal Y is defined as I (X;Y ) =

HX+HY−H (X ,Y ) and applying the chain rule for continuous
variables we have, H (X ,Y ) = H (Y |X ) − HX Therefore,
I (X;Y ) = HY − H (Y |X ) = HY − H (X + Z |X ) = HY −

H (Z |X ) = HY − H (Z ) = HY − HZ as transmitted signal
X and noise Z are independent. We rename H (Z ) as HZ for
notational easiness. Using (38) we will get,

−LZ ≥ −HZ ≥ −UZ
HY − LZ ≥ HY − HZ ≥ HY − UZ
UY − LZ ≥ HY − LZ ≥ HY − HZ = I (X;Y )

Therefore,

I (X;Y ) ≤ UY − LZ (40)

Hence,

C = max
f (x)

I (X;Y ) ≤ UY − LZ (41)

From Theorem 1, let us calculate LZ , the lower bound for
HZ , as follows:

LZ = −

R∑
i=0

ui log2
( R∑
j=0

ujN
(
µ̄i

(z)
; µ̄j

(z),
∑(z)

i
+

∑(z)

j

))
(42)

From Theorem 2, similarly we calculate UY , the upper
bound for HY , as follows:

UY =

R∑
i=0

vi log2
(

− log2 vi +
1
2
log2

(
(2πe)M

∣∣∣∑(y)

i

∣∣∣))
(43)

where ui = vi =
e−λλi
i! ∀i = 0(1)R.

From (40), using (42) and (43), we have,

UY − LZ

=

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
log2

(
(2πe)M

∣∣∣∑(y)

i

∣∣∣)
+ log2

( R∑
j=0

e−λλj

j!
N

(
µ̄i

(z)
; µ̄j

(z),
∑(z)

i
+

∑(z)

j

)))
(44)

From (41) and (44), the channel capacity would be,

C =

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
log2

(
(2πe)M

∣∣∣∑(y)

i

∣∣∣)
+ log2

( R∑
j=0

e−λλj

j!
N

(
µ̄i

(z)
; µ̄j

(z),
∑(z)

i
+

∑(z)

j

)))
(45)

This is the expression for the quantum channel capacity
when the noise Z and the received signal Y are random
vectors of dimensionM .

In scalar analogy, that is when the noiseZ and the received
signal Y are random variables with p.d.f.s (32) and (36)
respectively, the expression of capacity reduces to:

C =

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
. log2

(
2π.e.σ (y)

i

)
+ log2

( R∑
j=0

e−λλj

j!
.N

(
µi

(z)
;µj

(z), σ
(z)
i

2
+ σ

(z)
j

2)))
(46)

by puttingM = 1, and replacing
∣∣∣∑(y)

i

∣∣∣ by σ (y)
i , µ̄i(z) by µ

(z)
i ,

µ̄j
(z) by µ(z)

j ,
∑(z)

i by σ (z)
i

2
and

∑(z)
j by σ (z)

j
2
, where each

vector is replaced by its scalar analogue.

Again µ(z)
i = µZ2 + i ∀i, σ (z)

i
2

= σZ2
2

∀i, and σ (y)
i

2
=

σX
2
+ σZ2

2
∀i.

Therefore, the capacity is given by

C =

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
. log2

(
2π.e.

(
σX

2
+ σZ2

2))
+ log2

( R∑
j=0

e−λλj

j!
.N

(
µZ2 + i;µZ2 + j, 2σZ2

2
)))

=

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
. log2

(
2π.e.

(
σX

2
+ σZ2

2))
+ log2

( R∑
j=0

e−λλj

j!
.

1
√
2σZ2

√
2π

e
−

1
2

(
i−j

√
2σZ2

)2))
(47)

where

N
(
µZ2+i;µZ2+j, 2σZ2

2
)
=

1
√
2σZ2

√
2π

e
−

1
2

(
µZ2

+i−j−µZ2√
2σZ2

)2

.

VIII. QUANTUM SIGNAL MODEL FOR NON-GAUSSIAN
INPUT
A Gaussian quantum channel does not necessarily imply that
the input states are Gaussian [72], [73]. Considering this
fact, we consider an arbitrary distribution for the transmitted
signal. Hence, the input signal is approximated by its mean
and standard deviation E[X ] and σX , respectively. To invoke
the role of the mean and standard deviation of the input state’s
distribution in the actual scenario, the modified channel
equation is considered as follows:

Y ′
= µX + σXZ (48)
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where Y ′ and Z are the channel’s received signal and hybrid
quantum noise.

Mathematically, the sample space of X can be written as
SpX and the random variable takes values X = x1, x2, x2, . . . .
Since an arbitrary distribution of the transmitted signal X
has been considered, we approximate the transmit signal in
terms of its point estimate (or mean), µX . But to replace the
arbitrary input distribution fX by its mean value is insufficient,
as it will not specify the distribution. However, by fixing the
mean and standard deviation, one can specify the unknown
distribution [81] well. So we replaced the arbitrary input
distribution by the mean E[X ] and standard deviation σX . It is
a useful method when considering an unknown distribution
for calculations.

However, replacing fX by E[X ] is not meaningful as E[X ]
ranges from sample space of X , which is−(∞,∞), while the
mean value of fX comes from the range of fX which is [0, 1]
as fX is a p.d.f. A solution to this problem could be replacing
the sample space of the input signal by its expected value,
that is, x = E[X ] = µX ,∀x ∈ SpX . This approximation has
been made to get a mathematical expression for the output
signal and its visualization. Hence, starting with our channel
equation

Y ′
= µX + σXZ

and from (7) we have the p.d.f. of the hybrid quantum-
classical noise

fZ (z) =

∞∑
i=0

e−λλi

i!
1

σZ2
√
2π

e
−

1
2

(
z−i−µZ2
σZ2

)2

Theorem on change of variables: Given the probability
density function, fZ (z), for z, the probability density function
(p.d.f), fY ′ (y′) for Y ′

= aZ + b, (a ̸= 0), is

fY ′ (y′) =
1
|a|
fZ

(
z =

y− b
a

)
Putting a = µX and b = σX , we have the received signal

model as:

fY ′ (y′) =
1
σX

fZ
(
z =

y′ − µX

σX

)
=

1
σX

∞∑
i=0

e−λλi

i!
1

σZ2
√
2π

e
−

1
2

( y′−µX
σX

−i−µZ2
σZ2

)2

=

∞∑
i=0

e−λλi

i!
1

σXσZ2
√
2π

e
−

1
2

(
y′−µX−σX i−σXµZ2

σX σZ2

)2

(49)

The differential entropy of the received signal Y ′ is defined
by

h(Y ′) = −

∫
χY ′

fY ′ (y′) log fY ′ (y′) dy′

where χY ′ is the support of fY ′ .

IX. IDENTIFYING QUANTUM SIGNAL MODELS AS GMMS
FOR NON-GAUSSIAN INPUT
Consider the p.d.f of the received signal in (49) given by

fY ′ (y′) =

∞∑
i=0

e−λλi

i!
.

1
√
2πσX .σZ2

e
−

1
2

( y′−µX−σX i−σXµZ2
σX .σZ2

)2

=

∞∑
i=0

vi.N
(
y′, µ(y′)

i , σ
(y′)
i

2)
(50)

where vi =
e−λλi
i! ,

∑
∞

i=0 vi = 1, vi ≥ 0 ∀i and

N (y, µ(y′)
i , σ

(y′)
i

2
) is Gaussian density in dummy variable y,

mean µ(y)
i = µX + σX i + σXµZ2 , and standard deviation

σ
(y′)
i = σX .σZ2 with variance σ (y′)

i

2
.

In a practical scenario simulated in MATLAB, the p.d.f.
of the hybrid noise in (31) can be approximated as fZ (z)
in (32) and can be used to formulate fY (y) which is given by

fY ′ (y′) =

R∑
i=0

e−λλi

i!
.

1
√
2πσX .σZ2

e
−

1
2

( y′−µX−σX i−σXµZ2
σX .σZ2

)2

=

R∑
i=0

vi.N
(
y, µ(y′)

i , σ
(y′)
i

2)
(51)

This is a Gaussian mixture in the scalar variable y′, vi =
e−λλi
i! , vi ≥ 0 ∀i, and

∑
∞

i=0 vi ≈ 1 for large R.
The corresponding Gaussian mixture in a random vector is

given by: ȳ′ ∈ RM is

f ′
Y (ȳ′) =

R∑
i=0

vi.N
(
ȳ′, µ̄i(y

′),
∑(y′)

i

)
(52)

where ȳ′ is the random vector in RM , µ̄i(y
′) is the mean

vector and
∑(y′)

i is the covariancematrix of the corresponding
Gaussian density N .

As fZ and f ′
Y are both densities of the Gaussian mixture,

the closed-form solution of the corresponding entropies HZ
and H ′

Y of noise and the received signal cannot be calculated
due to the logarithm of the sum of an exponential function.
However, Theorem 1 and 2 provide the lower and upper
bound for each of the entropies HZ and HY ′ .
The upper bound and lower bound of HZ are given by UZ

and LZ in (38) and let the upper and lower bound of HY ′ be
given by UY ′ and LY ′ , respectively. That is:

LY ′ ≤ HY ′ ≤ UY ′ (53)

X. CAPACITY OF THE QUANTUM CHANNEL FOR
NON-GAUSSIAN INPUT
The mutual information I (X;Y ′) between the transmitted
signal X and the received signal Y ′ is defined as I (X;Y ′) =

HX + HY ′ − H (X ,Y ′) and applying the chain rule for
continuous variables we have, H (X ,Y ′) = H (Y ′

|X ) − HX
Therefore, I (X;Y ′) = HY ′ − H (Y ′

|X ) = HY ′ − H (X +

Z |X ) = HY ′ − H (Z |X ) = HY ′ − H (Z ) = HY ′ − HZ
as transmitted signal X and noise Z are independent. For
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the sake of notational easiness, we rename H (Z ) as HZ .
Using (53) and (38), we will get,

−LZ ≥ −HZ ≥ −UZ
HY ′ − LZ ≥ HY ′ − HZ ≥ HY ′ − UZ
UY ′ − LZ ≥ HY ′ − LZ ≥ HY ′ − HZ = I (X;Y ′)

Therefore,

I (X;Y ′) ≤ UY ′ − LZ (54)

Hence,

C̃ = max
f (x)

I (X;Y ′) ≤ UY ′ − LZ (55)

From Theorem 1, as we calculated LZ , the lower bound for
HZ in (42),

LZ = −

R∑
i=0

ui. log2
( R∑
j=0

uj.N
(
µ̄i

(z)
; µ̄j

(z),
∑(z)

i
+

∑(z)

j

))
From Theorem 2, similarly calculate UY ′ , the upper bound

for HY ′ ,

UY ′ =

R∑
i=0

vi. log2
(

− log2 vi +
1
2
. log2

(
(2π.e)M

∣∣∣∑(y′)

i

∣∣∣))
(56)

where ui = vi =
e−λλi
i! ∀i = 0(1)R. From (42) and (56),

we have,

UY ′ − LZ

=

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
. log2

(
(2π.e)M

∣∣∣∑(y′)

i

∣∣∣)
+ log2

( R∑
j=0

e−λλj

j!
.N

(
µ̄i

(z)
; µ̄j

(z),
∑(z)

i
+

∑(z)

j

)))

(57)

From (55) and (57), the channel capacity would be,

C̃ =

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
. log2

(
(2π.e)M

∣∣∣∑(y′)

i

∣∣∣)
+ log2

( R∑
j=0

e−λλj

j!
.N

(
µ̄i

(z)
; µ̄j

(z),
∑(z)

i
+

∑(z)

j

)))
(58)

This is the expression for the quantum channel capacity
when the noise Z and the received signal Y ′ are random
vectors of dimensionM .

FIGURE 4. Quantum Noise model as a convolution of AWGN and
Poissonian quantum noise.

In scalar analogy, that is when the noise Z and the received
signal Y ′ are random variables with p.d.f.s (32) and (51)
respectively, the expression of capacity reduces to:

C̃ =

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
. log2

(
2π.e.σ (y′)

i

)
+ log2

( R∑
j=0

e−λλj

j!
.N

(
µi

(z)
;µj

(z), σ
(z)
i

2
+ σ

(z)
j

2)))
(59)

by putting M = 1, and replacing
∣∣∣∑(y′)

i

∣∣∣ by σ (y′)
i , µ̄i(z) by

µ
(z)
i , µ̄j(z) by µ

(z)
j ,

∑(z)
i by σ (z)

i
2
and

∑(z)
j by σ (z)

j
2
, where

each vector is replaced by its scalar analogue.

Again µ(z)
i = µZ2 + i ∀i, σ (z)

i
2

= σZ2
2

∀i, and σ (y′)
i

2
=

σX
2σZ2

2
∀i.

Therefore, the capacity

C̃

=

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
. log2

(
2π.e.

(
σX

2σZ2
2))

+ log2
( R∑
j=0

e−λλj

j!
.N

(
µZ2 + i;µZ2 + j, 2σZ2

2
)))

=

R∑
i=0

e−λλi

i!

(
− log2

(e−λλi
i!

)
+

1
2
. log2

(
2π.e.

(
σX

2σZ2
2))

+ log2
( R∑
j=0

e−λλj

j!
.

1
√
2σZ2

√
2π

e
−

1
2

(
i−j

√
2σZ2

)2))
(60)

where

N
(
µZ2 + i;µZ2 + j, 2σZ2

2
)

=
1

√
2σZ2

√
2π

e
−

1
2

(
µZ2

+i−j−µZ2√
2σZ2

)2

.
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FIGURE 5. Received signal in case of Gaussian input, considered as a
convoluted function of the quantum noise field and Gaussian transmitted
signal for the Gaussian quantum channel.

XI. NUMERICAL ANALYSIS
A. NOISE MODEL VISUALISATION
To visualize the models, consider the two following
functions:

fZ (z) =

∞∑
n=0

e−λλn

n!
1

σZ2
√
2π

e
−

1
2

( z−n−µZ2
σZ2

)2
and

f̃Z (z) =

R∑
n=0

e−λλn

n!
1

σZ2
√
2π

e
−

1
2

( z−n−µZ2
σZ2

)2
Theoretically, the density function fZ is the actual p.d.f.
of Z and the function f̃Z is an approximated p.d.f. of Z
shown in Fig. 4. The figure shows the hybrid quantum
noise model for parameter λ = 10, and the sample sizes
of the underlying component noises Z1 and Z2 are 20 for
each distribution (Poisson and Gaussian). Each simulation
in MATLAB randomly selects two sample spaces for the
Poisson distribution (with parameter λ = 10) and the
Gaussian distribution (with parameters µZ2 = 0 and σZ2 =

1), returning a joint sample space for Z .
Let A and B be two sets, and f : A → B and g : A → B

are two functions.Mathematically, two functions are identical
if f (a) = g(a) ∀ a ∈ A. In particular, the domains of the
functions fZ and f̃Z are the same as they are the same sample
space of Z , and fZ (z) = f̃Z (z) ∀z ∈ Z . Therefore the actual
p.d.f.fZ of Z can be well approximated by the function f̃Z
in Fig. 4. From here onwards, we will refer f̃Z by fZ . Since
the noise model is identified as GMM, we can infer that
the p.d.f. can be approximated as a mixture of the finite
number of Gaussian densities [76]. In Fig. 4, we characterize
the joint quantum-classical noise by plotting the function
−fZ (z) log2 fZ (z) and fZ (z). This will be used to calculate
the mutual information I (X;Y ), along with the entropy of
received signal Y and hence the channel capacity of the
quantum channel.

FIGURE 6. Received signal in case of non-Gaussian input, considered as a
convoluted function of quantum noise field and non-Gaussian
transmitted signal for Gaussian quantum channel.

B. OUTPUT SIGNAL MODEL’S VISUALISATION
1) RECEIVED SIGNAL MODEL’S VISUALISATION FOR
GAUSSIAN DISTRIBUTED TRANSMITTED SIGNAL FOR
GAUSSIAN QUANTUM CHANNEL
The p.d.f. of the received signal fY is given in Fig. 5, which
is the convolution product of the p.d.f.-s of the Gaussian
transmitted signal and mixed quantum noise. Therefore,
we computed the approximate density function for the
received signal Y . Since the output signal model is identified
as GMM, we can infer that the p.d.f. can be approximated
as a mixture of the finite number of Gaussian densities [76].
We also characterized the function −fY (y)log2fY (y) shown in
Fig. 5 whose integral is the entropy of the received signal Y .

2) RECEIVED SIGNAL MODEL’S VISUALIZATION FOR A
NON-GAUSSIAN DISTRIBUTED TRANSMITTED SIGNAL FOR
GAUSSIAN QUANTUM CHANNEL
The p.d.f. of the received signal fY ′ is given in Fig. 6,
we approximated the probability distribution of the trans-
mitted signal X by the mean of the sample space of X ,
and based on that we calculated the approximate density
function for the received signal Y ′. Since the received signal
model is identified as GMM, we can infer that the p.d.f.
can be approximated as a mixture of the finite number of
Gaussian densities [76]. We also characterized the function
−fY ′ (y′)log2fY ′ (y′) shown in fig. 6 whose integral is the
entropy of the received signal Y ′.

C. CAPACITY COMPARISONS WITH RESPECT TO
SIGNAL-TO-NOISE RATIO
1) VISUALISATION OF THE CAPACITY TREND WITH SNR
FOR A GAUSSIAN QUANTUM CHANNEL IN CASE OF
NON-GAUSSIAN DISTRIBUTED TRANSMITTED SIGNAL
In Fig. 7 the capacity of the noisy quantum channel
for the non-Gaussian distributed transmitted signal with
respect to signal-to-noise ratio (SNR) and the logarithm of
signal-to-noise ratio (log2(SNR)), are illustrated. The capac-
ity increases with SNR and the logarithm of SNR,
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FIGURE 7. The channel capacity of the Gaussian quantum channel for the
non-Gaussian input transmitted signal.

FIGURE 8. The channel capacity of the Gaussian quantum channel for the
Gaussian input transmitted signal.

as expected. However, in the next subsection, we will visu-
alize the tendency of the capacity of the Gaussian quantum
channel in the case of non-Gaussian input transmitted signal,
and these will lead to comparing the capacities for Gaussian
and non-Gaussian inputs for the Gaussian quantum channel.

2) VISUALISATION OF THE CAPACITY TREND WITH SNR FOR
GAUSSIAN QUANTUM CHANNEL IN CASE OF GAUSSIAN
DISTRIBUTED TRANSMITTED SIGNAL
Fig. 8 shows the capacity of the noisy quantum channel
as functions of SNR and the logarithm of SNR in the
case of Gaussian distributed input. It can be observed that
the capacity increases with SNR and and the logarithm of
SNR, as expected. However, in the next section, we would
like to compare the tendency of the capacities of the
Gaussian quantum channels in either case of Gaussian and
the non-Gaussian transmitted signal.

3) COMPARISON OF THE CAPACITY TENDENCIES OF
GAUSSIAN QUANTUM CHANNEL IN CASE OF GAUSSIAN
AND NON-GAUSSIAN DISTRIBUTED TRANSMITTED SIGNAL
The capacity figures, Fig. 7 and Fig. 8 show the capacities
of single Gaussian Quantum channels for non-Gaussian and

Gaussian transmitted signals, respectively, with respect to
(I) signal to noise ratio and (II) the logarithm of SNR.
To conclude, the Gaussian transmitted signal gives better
capacity (the highest achievable data transmission rate) for
the quantum channel shown in Fig. 8, meanwhile, the non
Gaussian transmitted signal for the Gaussian channel gives a
bit lesser capacity rate (shown in Fig. 7) than the Gaussian
inputted transmitted signal with respect to signal to noise
ratio. In compare to the logarithm of SNR as well, Gaussian
input signal gives better capacity than the non-Gaussian input
for the same channel, for the Gaussian quantum channel,
which matches with standard results for capacity with respect
to SNR for classical communication.

XII. CONCLUSION
This research advances statistical quantum signal processing
by modeling Gaussian quantum channels. It has developed
representations for hybrid quantum noise channel models
and output signals in these channels. Despite using Gaussian
mixture models to characterize the quantum noise statistics,
closed-form solutions are derived for the channel capacities
with Gaussian and non-Gaussian inputs. The capacity
expressions quantitatively demonstrate that Gaussian input
distributions yield the highest achievable data rates for
Gaussian quantum channels across varying signal-to-noise
ratios. This research thus makes several vital contributions:
(i) graphical depictions of hybrid quantum noise, (ii) sta-
tistical frameworks to describe quantum Gaussian channels,
and (iii) analytical capacity solutions that confirm the
advantage of Gaussian signaling in this setting. Overall,
the modeling and analyzing of quantum Gaussian channels
from a statistical signal processing perspective provides
new insights into optimizing information transfer through
quantum networks.

APPENDIX
APPROXIMATING THE QUBIT BY A SINGLE VARIABLE
FUNCTION

• Assumption related to joint quantum noise effects:
Classical communication theory finds that the bits
will remain within a specific region of the actual
position [82] due to a specific range of noise power,
which is practically observed. Although the bit may
travel beyond this region, in that case, the noise power
would be extremely high, which is not usually observed
in practice. The quantum noise can generally be
observed when the classical noise has been suppressed.
We are simultaneously considering the classical and
quantum noise. Considering the above noise power
theory is a straightforward choice, as the classical noise
is integrated with the quantum system, and its effects
should be reflected in the calculations. In connection
with control theory, we can infer that within a specific
(practical) range of the joint noise power, the qubit will
not move far beyond its actual position due to the joint
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FIGURE 9. (a) Case I: Representation of a pure state qubit on the Bloch
sphere, and (b) Case II: Representation of a mixed state qubit inside the
Bloch sphere.

noise effect. This works for both the pure state and the
mixed state qubits.

• Representation of a qubit: Case I: A pure state qubit
can be represented by a point (θ, φ) on the Bloch sphere:
A qubit on the Bloch sphere can be viewed as a pure-
state qubit. It can be represented by a vector (θ, φ) on
the surface of the sphere, and it can be represented by
a bivariate function ζ (θ, φ), it is clear from the notation
that ζ is bivariate function, whose arguments are θ and
φ, which we call variables x1 and x2 respectively. Let us
consider the pure-state qubit, and wewill discuss how its
position is affected by the noise power. Since the pure
qubit is lying on the surface of the Bloch sphere, the
qubit can be represented as a vector (θ, φ) of dimension
2. We assume that within a certain noise power the qubit
will remain within a complete strip along the surface of
the Bloch sphere. In particular, we consider a circular
path along the surface of the sphere, which will be the
path of the qubit if the qubit is rotated by varying θ
while keeping φ constant. Now consider a strip along
the surface of the sphere that contains the path circle
of the qubit in the middle, then the distance from the
qubit on the circle to the edges of the strip will be
δ on each side. Hence, the breath of the strip will be
2δ shown in Fig. 9(a). We consider that if the qubit
experiences a certain (practically feasible) range of noise
power, then the position of the qubit will not end up far
beyond the indicated region (the strip). Mathematically,
we considered (θ, φ) 7→ (θ̃ , φ ± δ) where θ̃ ∈ [0, 2π ].
To reduce the computational complexity of the problem,
we infer that δ will be so small that the second variable
φ can be considered constant with respect to θ .
Case II: A mixed qubit can be represented by a point
(θ, φ, r) inside the Bloch sphere: A qubit inside the
Bloch sphere can be viewed as a mixed-state qubit.
It can be represented by a vector (θ, φ, r) inside the
sphere, and it can be represented by a multivariate
function ζ̃ (θ, φ, r), whose arguments are θ , φ and r ,
which we call variables x1, x2 and x3 respectively. Let
us consider the mixed state qubit, and we will discuss
its position affected by the noise power. When we
are dealing with the qubit that lies inside the Bloch
sphere, the mixed state qubit can be represented as a

vector (θ, φ, r), where r is the distance of the qubit
from the center of the sphere. In connection to classical
communication theory, we assumed that within a certain
(feasible) range of noise power, the qubit would remain
within a torus/tunnel-like object (whose cross section is
square) inside the Bloch sphere. Consider a circular path
inside the sphere, which will be the path of the qubit
if one rotates the qubit by varying θ while keeping φ
and r constant. Now consider a torus/tunnel-like object
(whose cross section is square) inside the sphere that
contains the path circle of the qubit in the middle; the
distance from the qubit on the circle to the sides of
the tunnel will be δ on each side of the cube. Therefore,
the area of the cross-sectional region (which is a square)
will be 2δ x 2δ shown in Fig. 9(b). We consider that
if the qubit experiences a certain (practically feasible)
range for the noise power, then the position of the qubit
will not go far beyond the indicated region (the torus/
tunnel). Mathematically, we considered (θ, φ, r) 7→

(θ̃ , φ ± δ1, r ± δ2) where θ̃ ∈ [0, 2π ]. To reduce the
complexity, we can infer that the cuboid region can
be approximated by the cube region discussed above.
Hence we have, (θ, φ, r) 7→ (θ̃ , φ± δ, r± δ) where θ̃ ∈

[0, 2π ]. We expect that δ will be so small that the second
and third variables φ and r can be considered constant
concerning the first variable θ . Therefore, we have
(θ, φ, r) 7→ (θ̃ , φ, r) where θ̃ ∈ [0, 2π ].

• In summary, this approximation can be done by varying
any of the variables θ and φ at a time, considering the
other variables as constant concerning the said variable.
In our case, we varied θ , considering the remaining
variables as constant.
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