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ABSTRACT The directions and gains of the paths with significant power can reconstruct mm-wave channel
estimation, attributed to spatial sparsity resulting from severe propagation loss. Leveraging this feature, the
two-dimensional beamspace method of direction estimation (2-D BMODE) is developed to estimate the
path directions, including angles of departure and arrival. The least-squares(LS) method is then employed
to estimate the path gains. Different from the beamspace two-dimensional multiple signal classification
(MUSIC)method, themethod proposed in this paper significantly ruduces computational complexitywithout
spectral search. Moreover, the DODs and DOAs can be paired automatically by reduced-dimension(RD)
MUSIC. Meanwhile, the performance of this method deteriorates when the covariance matrix of gains isn’t
of full column rank. This paper also enhances the performance using spatial smoothing technique and oblique
projecting to overcome the influence of rank deficiency. The 2-D BMODE method, as illustrated in this
paper, outperforms in terms of both unity in computational complexity and estimation accuracy. Numerical
simulations validate the advantages and demonstrate the method can serve as a superior alternative.

INDEX TERMS Channel estimation, two-dimensional MODE, hybrid beamforming, spatial smoothing,
oblique projection.

I. INTRODUCTION
Millimeter wave (mm-wave) communication has received
a significant amount of attention over the last several
decades, particularly focusing on multiple-input multiple-
output(MIMO) system [1], [2], [3], [4]. The mm-wave has
a shorter wavelength, offering unique advantages, such as
a much smaller physical size occupied by the antenna
array [5]. Simultaneously, a key feature of mm-wave systems
is the more severe propagation loss compared to microwave
systems. Consequently, the traditional MIMO channel mod-
els can not describe the spatial sparsity of the mm-wave
channel, primarily concentrated in a few dominant paths
because of rich scattering. Alternately, mm-wave channels
can be parametrically modeled based on the path angles
of departure/arrival (AoD/AoA) and the corresponding path
gains. Apparently, the mm-wave channel estimation problem
transforms into one of estimating the path directions and
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gains, rather than estimating the MIMO channel matrix [6],
[7], [8].
For the purpose of overcoming the shortcomings of

mm-wave communications and leveraging the gains provided
by multiple antennas, beamforming technology is widely
considered [9]. Hybrid beamforming shows great promise
in reaching a balance between rate enhancement and power
saving. Considering the mm-wave signals, which are highly
directional and consist of several significant components,
a straightforward and low-complexity approach to mm-
wave channel estimation is to search in angular space by
adjusting the direction of beamforming [10], [11], [12].
Nevertheless, the exhaustive search may face hindrance
due to the high training overhead in practice. To avoid an
exhaustive beam search, [11] and [12] propose a hierarchical
multi-beam search scheme that divides the beam training into
multiple phases. First, multiple wide beams cover all angular
spaces, and the transmitters select the angular range of
great significance to the objective. Subsequently, the angular
range previously fed back to transmitters is used to form
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narrow beams. The above process is repeated until the desired
resolution is attained.

In contrast to beam training methods, [7] addresses the
mm-wave channel estimation problem using an orthogonal
matching pursuit(OMP) algorithm. The OMP algorithm
ensures that the residuals are orthogonal to current and all
previously selected atoms, improving the algorithm’s sparse
reconstruction performance. In addition, in [13] and [14],
a significant number of MIMO channel estimation problems
are also addressed using compressed sensing (CS)-based
methods. These CS-based methods treat sparse multipath
channel estimation as a problem of sparse recovery. Due to
the spatial sparsity of the mm-wave channels, a small fraction
of the gain coefficients are non-zero, which is essential for
path directions. The sparse recovery methods aim to recover
the non-zero gain coefficients, providing an estimation of the
path direction while minimizing the training overhead.

Literature [15] exploits the inherent sparsity of mm-
wave channels, formulating the channel estimation prob-
lem as atomic norm minimization to enhance sparsity
in the continuous DoAs and DoDs. In order to address
the channel estimation problem posed by these formulas,
which stem from pilot-assisted and data-aided channel
estimators, a computationally efficient conjugate gradient
descent method, originating from nonconvex factorization,
is developed to restricted the search space to low-rank
matrices in [15].
In contrast to the aforementioned work, [16] addresses

the mm-wave estimation problem using the spatial spectral
estimation (SSE) method. Particularly, in [17] and [18],
the AoDs/AoAs are estimated using 2-D BMUSIC and
2-D ESPRIT schemes, respectively. When the AoDs and
AoAs are fixed, the path gains are estimated by using the
LS method. The detailed discussion regarding conditions
to avoid spectrum ambiguity and maximum number of
resolvable path directions can be found in [17]. Therefore,
we skip it to avoid redundancy. The previous schemes
are typically based on the uniform linear arrays (ULAs).
However, unlike for the ULAs, larger array apertures
can be achieved by fewer array elements using co-prime
arrays, which is beneficial to improve the performance of
arrival direction estimation, contributing to the estimation
performance of AoAs and AoDs [19]. In [19], for each
path direction, multiple peaks are generated in the spatial
spectrum of each subarray. An arbitrary peak is then searched
by selecting over any finite sector, allowing recovery of the
remaining peaks. The correct path direction is obtained by
comparing the peaks of the two subarrays when the common
peaks appear.

In this paper, the MODE method, adopted for mm-wave
channel estimation, has been previously used to estimate the
AoDs for MIMO system in [20]. Nevertheless, this literature
only considers the single-antenna case, where the transmitter
and receiver do not need to consider beamforming. In contrast
to existing work, hybrid beamforming structures are incor-
porated into mm-wave MIMO systems to facilitate channel

estimation. The main contributions of this paper can be
summarized as follows.

1) The conventional beamspace MUSIC algorithm is able
to obtain the AoDs and AoAs by spectral peak search,
but this method tends to be computationally intensive.
The 2-D BMODE algorithm developed in this paper
calculates the desired angles through iteration, signif-
icantly reducing the computational cost. Additionally,
the use of the RD MUSIC algorithm to transform the
two-dimensional search into a one-dimensional search
also enhances computational efficiency.

2) When paths in the mm-wave channel with idential
gain values, accurately and completely sreaching the
AoDs and AoAs becomes challenging due to the rank
deficiency of the covariance matrix of gains. The
use of an oblique projector and forward-backward
spatial smoothing can improve the accuracy of the
acquisition angle. In order to minimize the influence
of beamformers, the discrete fourier transform (DFT)
beamformers are designed for use in the proposed
channel estimator. These beamformers are commonly
employed in the hybrid beamforming structure of
mm-wave communication systems and don’t lead to
spectrum ambiguity. The detailed analysis is provided
in [17].

The remainder of the paper is organized as follows.
Section II presents the system model, establishing the basis
for subsequent channel estimation methods. In Section III,
we introduce the 2-D BMUSIC method and present the 2-D
BMODE and RD-MUSIC algorithms to reduce the spectral
peak search time. Oblique projector and forward-backward
apatial smoothing are employed to handle non-orthogonal
resulting from the rank deficiency of the gains matrix. The
complexity is analyzed in Section IV. Section V illustrates
the performance using computer simulation, and Section VI
concludes the paper.
Notations: IK and 0M×K denote a K × K identity matrix

and an M × K zero matrix, respectively; a, a and A indicate
a scalar, a column vector, and a matrix, respectively; A∗,
AT , A† and AH denote the conjugate, transpose, Moore-
Penrose inverse and conjugate transpose of A, respectively;
A[:,i] is the ith column of A, and diag{a} is a diagonal matrix
with the elements of a on the diagonal; ⊗ and ⊙ denote the
Kronecker product and Khatri-Rao product, respectively; and
∥A∥F denotes the Frobenius norm of A.

II. SIGNAL MODEL
Fig.1 illustrates the employed hybrid analog/digital beam-
forming, a promising scheme crucial for reducing the
hardware cost of millimeter wave communication system [6].
The system has Nt = DN1 and Nr = DM1 antennas at the
transmitter and receiver, respectively, where D is the number
of sub-arrays. Furthermore, the numbers of RF chains at the
transmitter and receiver are Mt = DDt and Mr = DDr ,
respectively. Within the hybrid structure, data streams are
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mapped to different antennas through an analog precoder
F ∈ CNt×Mt (Mt ≤ Nt). The same hybrid structure is used
at the receiver, where received signals are first processed
by an analog combiner W ∈ CNr×Mr (Mr ≤ Nr ). In this
paper, we are only concerned about the mm-wave channel
estimation problem.

For mm-wave channels, only limited information on the
path parameters is required to determine the mm-wave
model, as the dramatic path loss of mm-wave transmission
severely limits the number of transmission paths in the
channel. Therefore, the ray-tracing model is commonly used
in mm-wave communication systems. The ray-tracing model
describes the multipath channel based on various parameters
of the transmission path in the wireless channel, so it is a
parametric channel model [6]. Assuming the existence of K
clusters, with each cluster contributing to the resolved path,
the channel model can be written as [6]

H(q) =

K∑
k=1

αk (q) ar (θk )aHt (φk ) ∈ CNr×Nt , (1)

where ar (·) and at (·) are the antenna array response at
the receiver and transmitter, respectively. Assuming that
the antenna arrays are installed in the horizontal direction,
at (φk ) =

[
1, ejρd sinφk , . . . , ejρd(Nt−1) sinφk

]T
and ar (θk ) =[

1, ejρd sin θk , . . . , ejρd(Nr−1) sin θk
]T
. Here, ρ =

2π
λ , both for

transmitter and receiver, d is set to λ
2 , we denote φk and

θk as the departure and arrival directions of the k th path,

αk (q)
i.i.d
∼ CN

(
0, σ 2

k

)
is the fading gain of the k th path, and

q is used to index the time block during which the mm-wave
channel is considered fixed. In (1), for the sake of facilitating
the description and analysis, we assume that the channel
is caused only by the path gain {αk (q)}Kk=1, with the path
angles remaining constant. This assumption of time variation
is based on the mm-wave channel measurements in [21],
indicating that the central angle of the cluster belongs to a
large-scale fading, whereas the path gain belongs to a small-
scale fading. For ease of symbolic representation, (1) can be
compactly rewritten in the form of

H(q) = AR3α(q)AH
T (2)

where 3α(q) = diag {α1(q), . . . , αK (q)} ∈ CK×K ,
AT = [at (φ1) . . . at (φK )] ∈ CNt×K , and AR =

[ar (θ1) . . . ar (θK )] ∈ CNr×K .

III. CHANNEL ESTIMATION PROCEDURE
The 2-D BMODE method, developed to estimate the path
directions, relies on the matrix factorization of the covariance
matrix. Therefore, we first need to abtain the received signal.
Once the estimated angles are acquired, we then use the
LS method to estimate the path gains. In the above process,
attention must be paid to the case of rank defificiency.

A. THE RECEIVED SIGNAL EXPRESSION
We assume that the pilot signal transmitted at the
mth (m = 1, . . . ,Mt) RF chain during one time block is

defined as [17]

pm(t) =

√
E
Mt
ϕ(t − (m− 1)T ) (3)

where E represents the transmit power assigned equally
for each pilot signal, and ϕ(t) denotes the shaping pulse
in duration T satisfying

∫
T ϕ

2(t)dt = 1. Due to the
orthogonality of pilot signals transmitted by different RF
chains, we get∫

MtT
pi(t)pj(t)dt =


E
Mt
, i = j

0, i ̸= j
(4)

To distinguish between large-scale fading and small-scale
fading, we consider the frame structure shown in Fig.2. As we
can see, each frame consists of N resource blocks. Within a
single resource block, the mm-wave channel is set to remain
constant; between the different resource blocks, the gain of
each path in the channel will change, but the transmit and
arrival angles of the path remain constant. The pilot signal,
betokened as pm(q, t) = pm (t − (q− 1)Tb) is sent by themth

RF chain in the qth block, where q = 1, . . . ,N and m =

1, . . . ,Mt . Here, Tb denotes the block duration.
Based on the above discussion, the output of the receive

beamformer can be expressed as

y(q, t) = WHH(q)Fp(q, t) + WHn(q, t) ∈ CMr (5)

where p(q, t) =
[
p1(q, t), . . . , pMt (q, t)

]T is the pilot signal
vector and n(q, t) represents the i.i.d. Gaussian noise.
According to (5), the received signal expression contains

the analog logarithmic beamformers W and F, which means
that channel estimation performanc is severely affected by
the beamforming matrix. In the following section, spatial
spectrum analysis and system simulations in the beamspace
are combined with the DFT beamformer. The specific
expression of the DFT beamformer is

F =

[
at

(
φ̂1

)
at

(
φ̂2

)
. . . at

(
φ̂Mt

)]
∈ CNt×Mt

W =

[
ar

(
θ̂1

)
ar

(
θ̂2

)
. . . ar

(
θ̂Mr

)]
∈ CNr×Mr (6)

where

φ̂i = φ̂1 +
2
Nt

(i− 1), i = 1, . . . ,Mt , φ̂1 ∈ [−1, 1]

θ̂j = θ̂1 +
2
Nr

(j− 1), j = 1, . . . ,Mr , θ̂1 ∈ [−1, 1] (7)

As shown in Fig.2, we use the 2-D BMODE algorithm to
estimate the path direction {(φk , θk)}

K
k=1, which consists of

N fading blocks. The 2-D BMODE algorithm adopted is
not a simple extension of its elemental space counterpart
due to the existence of beamforming. As described in [17],
the unsuitable beamformers may cause spectral ambiguity,
making it difficult to uniquely determine the path angle. The
path direction estimation will then serve as the basis for
estimating the path gains in each block. Specifically, knowing
the path direction, we can use the LS algorithm to estimate
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FIGURE 1. A mm-wave communication system employing hybrid analog/digital beamforming.

the path gain {αk (q)}Kk=1, and then obtain the entire channel
matrix H(q), q = 1, . . . ,N .
In the condition of the orthogonality of the pilot wave-

forms, we apply matched-filtering to the received signal
y(q, t) in (5) to obtain

ym(q) =

∫
MtT

y(q, t)pm(q, t)dt, m = 1, . . . ,Mt

=
E
Mt

WHH(q)F[:,m] + nm(q) (8)

wherewe assume that the columns ofW are orthogonal, sowe
have nm(q) = WH

∫
T n(q, t)pm(q, t)dt ∼ CN (0, σ 2IMr ).

Substituting (1) into (8), we get

ym(q) =
E
Mt

WH
K∑
k=1

αk (q)ar (θk) aHt (φk)F[:,m] + nm(q)

=
E
Mt

K∑
k=1

(
FH[:,m]at (φk)

)∗

WHar (θk) αk (q) + nm(q)

=
E
Mt

[(
FH[:,m]at (φ1)

)∗

WHar (θ1) · · ·(
FH[:,m]at (φK )

)
WHar (θK )

]
α(q) + nm(q)

=
E
Mt

(
FH[:,m]AT

)∗

⊙

(
WHAR

)
α(q) + nm(q) (9)

where α(q) = [α1(q) . . . αK (q)]T . If we stack all the Mt
vectors in a column, we get theMtMr×1measurement vector

y(q) =

[
y1(q)T . . . yMt (q)

T
]T

=
E
Mt


(
FH[:,1]AT

)∗

...(
FH[:,Mt ]AT

)∗

 ⊙

(
WHAR

)
α(q) + n(q)

=
E
Mt

(
FHAT

)∗

⊙

(
WHAR

)
︸ ︷︷ ︸

C

α(q) + n(q) (10)

where n(q) =
[
n1(q)T , . . . ,nMt (q)

T
]T andC is theMtMr×K

direction matrix. The k th column of C can be expressed as

c (φk , θk), where the function c(φ, θ) is defined as

c(φ, θ) =

(
FHat (φ)

)
⊗

(
WHar (θ )

)
(11)

Without loss of generality, we employ the measurement
vectors from N previously collected blocks to capture the
covariance matrix

Ry ≜ E
{
y(q)y(q)H

}
≃ R̂y ≜

1
N

N∑
q=1

y(q)y(q)H (12)

This is the basis of the proposed algorithm. The 2-D BMODE
algorithm is a fast implementation to solve multidimensional
nonlinear optimization problems, requiring signal subspace
and noise subspace to come to fruition. Therefore, it is
necessary to make a brief review of the covariance matrix of
the received signal.

B. COVARIANCE MATRIX OF RECEIVED SIGNAL
The eigenvalue decomposition of covariance matrix is the
crux of the proposed algorithm. Therefore, we should
first form the sample covariance matrix. Substituting (10)
into (12), we have

Ry = CE
{
α(q)α(q)H

}
CH

+ σ 2IMtMr

= C3CH︸ ︷︷ ︸
Rx

+σ 2IMtMr (13)

Assuming C is a full-rank column matrix, the eigenvalue
decomposition of Rx is expressed as

Rx = Udiag
{
η1, η2, . . . , ηMtMr

}
UH (14)

where {ηi}
MtMr
i=1 represent eigenvalues of Rx , sorted in

descending order. We establish rank (Rx) = K due to
rank(C) = K . Thus{

ηi > 0, for i ≤ K
ηi = 0, for i > K

(15)

According to (13), it is obvious that Ry has eigenvalues{
η′
i = ηi + σ 2

}MtMr
i=1 and the same eigenvectors as Rx . So the
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FIGURE 2. The framework of proposed mm-wave channel estimator.

eigenvalue decomposition of Ry can be written as

Ry = U diag
{
η′

1, η
′

2, . . . , η
′
MtMr

}
UH

= Us6sUH
s + Un6nUH

n (16)

where η′
i = σ 2 for i > K , as indicated by (15). Then the

matrix U can be partitioned into U = [Us | Un], where Us
and Un represent the signal and noise subspace. The columns
inUn ∈ CMtMr×(MtMr−K ) are the eigenvectors corresponding
to the eigenvalue σ 2. Note that Un in (16) can be estimated
by performing an eigenvalue decomposition of the estimated
sample covariance matrix R̂y defined in (12). Here, it is
assumed that the path number K is known.

C. 2-D BMODE FOR DOA ESTIMATION
The MODE algorithm is an improvement of the Iterative
Quadratic Maximum Likelihood (IQML) algorithm and an
implementation of the Maximum Likelihood(ML) algorithm.
Its biggest advantage is that the computational cost is
moderate and much smaller than the IQML algorithm. For
simplicity of analysis, we use A to substitute

(
WHAR

)
and B

to substitute
(
FHAT

)∗ in the following.
Initially, we attempt to define two coefficient vectors,

a = [a0, a1, · · · , aK ]T and b = [b0, b1, · · · , bK ]T . These
coefficients are constructed similarly to two polynomials of
the following form

K∑
i=0

cizK−i
= c0

K∏
i=1

(
z− ejπ sinψi

)
, c0 ̸= 0 (17)

where ci ∈ {ai, bi} and ψi ∈ {θi, φi} correspondingly. If we
introduce the set

L =

{
{ci} | C(z) =

K∑
i=0

cizK−i
̸= 0 for |z| ̸= 1

}
(18)

it can be seen that the mapping from {ψi} ∈ R to {ci} ∈ L
is one-to-one, provided that we eliminate the non-uniqueness
implied by the introduction of c0 ̸= 1.

Let Ga ∈ CNr×(Nr−K ) and Gb ∈ CNt×(Nt−K ), for a and b,
respectively, be with the following Toeplitz form

GH
c =

 cK · · · c1 c0 · · · 0

0
. . .

. . .
. . .

. . . 0
0 · · · cK · · · c1 c0

 , c ∈ {a,b} (19)

It is noticed that rank {Ga} = Nr − K , rank {Gb} = Nt − K ,
and

GH
b AT = GH

a AR = 0 (20)

Let

Za = W−1Ga (21)

then

ZHa A = ZHa
(
WHAR

)
= GH

a AR = 0 (22)

Therefore, based on the above relationship, we can derive
the following equation, which can be used to estimate all
DOA information.(

IMt ⊗ Za
)H (B ⊙ A) = B ⊙

(
ZHa A

)
= 0 (23)

where we make use of the properties of the Kronecker
product.

Let

V = IMt ⊗ Za (24)

R =

(
VHV

)−1
(25)

Then the ML algorithm can be simplified as

minFR(a) = min
θ ,si

tr
[
UH
s VRV

HUs

] (
6s − σ 2I

)
(26)

where Us, 6s and σ 2 can be acquired from (16). Iterating
Constantly (26), the angle

{
θ̄k

}K
k=1 is obtained when ci

converges. The process is summarized in Algorithm 1.
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TABLE 1. Summary of the 2-D BMODE approach.

D. RD-MUSIC ALGORITHM
Once all DOAs are obtained, we can use the RD-MUSIC
algorithm [23] to divide the 2-D algorithm into two optimiza-
tion problems.

min
θ

B(φ)HQ(θ )B(φ), s.t. eHAT (φ) = 1 (27)

where

Q(θ ) =
[
IMt ⊗ A(θ )

]H UnUH
n

[
IMt ⊗ A(θ )

]
(28)

and e = [1, 0, · · · , 0]T . As mentioned earlier, A represents(
WHAR

)
.

After that, we can further construct a Lagrange cost
function

P(φ, η) = B(φ)HQ(θ )B(φ) + η
[
1 − eHAT (φ)

]
(29)

where η is the Lagrange multiplier. By setting the gradient
of (29) with respect to B(φ) equal to zero, we can obtain
the estimated steering vectors for this cost function with
nonsingular Q(θ ). According to the above, B(φ) represents(
FHAT

)∗, thus, for each φ̄k ,

at (φk) =
(F∗Q)−1 e

eH
(
F∗QFT

)−1 e

∣∣∣∣∣
θ=θ̄k

, k = 1, 2, · · · ,K (30)

Inserting
{
θ̄k

}K
k=1 into (30), we obtain K vectors

ât (φ1) , ât (φ2) , . . . , ât (φK ). Then, the estimated auto-paired
DODs information can be obtained from the above steering
vectors using the LS principle.

The transmit steering vector for φk is at (φk) =[
1, exp (−jπ sinφk) , . . . , exp (−jπ (Nt − 1) sinφk)

]T , and
we get

gk = −angle (at (φk)) (31)

where angle(.) is to determine the phase angle of each ele-
ment in the complex array. gk = [0, sinφk , . . . , (Nt − 1) sinφk ]T ,
and the LS principle is then applied to estimate sinφk .
The normalization for the estimated vector ât (φk) (k =

1, 2, . . . ,K ) is primarily processed, and then the normalized
sequence is processed to obtain ĝk according to (31). Now
we apply the LS principle to estimate transmit angle φk .
LS fitting is

min
ck

∥∥Pck − ĝk
∥∥2
F (32)

where ck = [ck0, ck1]T ∈ R2×1 is an unknown parameter
vector, and ck1 is the estimated value of sinφk ; ck0 is the other
estimation parameter. P is

P =


1 0
1 1
...

...

1 M − 1

 (33)

The LS solution for ck is
[
ĉk0, ĉk1

]T
=

(
PTP

)−1 PT ĝk , and
the transmit angle φk is estimated through

φ̂k = sin−1 (
ĉk1

)
(34)

By this point, joint DOAs and DODs estimation has
already been acquired. Unfortunately, theoretical analysis
indicates that when the covariance matrix of gains exhibits
rank deficiency, the 2-D BMODE algorithm struggles to
accurately distinguish DODs due to spectrum ambiguity.
In the next stage, wewill leverage oblique projecting to obtain
comprehensive information about the mm-wave channel.
Without loss of generality, we assume that it generates a
total of K clusters. Among them, there are K1 clusters with
distinct gain values. Additionally, there may exist Q groups
of clusters with identical gain values. l = 1, 2, · · · ,Lq, q =

1, 2, · · · ,Q. For convenience, let K2 =
∑Q

q=1 Lq, then we
haveK = K1+K2. It is worth mentioning that the numbers of
clusters K1, K2, and groups Q are also assumed to be known.
Thus, Equation (10) can be rewritten as

y(q) =
E
Mt

(Bd ⊙ Ad )αd (q) + (Bs ⊙ As)αs(q) + n(q)

=
E
Mt

(B ⊙ A)α(q) + n(q) (35)

where Bd , Ad and αd represent clusters with distinct gain
values; Bs, As and αs represent clusters with identical gain
values.

E. OBLIQUE PROJECTING FOR DOD ESTIMATION
For DOD estimation of clusters with identical gain values, the
contribution of clusters with distinct gains in Ry must to be
eliminated. This can be realized through the so-called oblique
projection (OP) technique.

An oblique projection [24] is a type of nonorthogonal
projection, e.g., PD1D2 , where its range is spanned by D1 and
its null space is spanned by D2,

PD1D2 = D1

(
DH
1 P

⊥

D2
D1

)−1
DH
1 P

⊥

D2
(36)

so that PD1D2D1 = D1 and PD1D2D2 = 0. In the scenario we
discussed, if let D1 = Bd ⊙ Ad and D2 = Bs ⊙ As, we can
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construct a virtual observation matrix Y with only clusters
with identical gain retaining, i.e.,

Y ≜
(
IMrMt − PD1D2

) (
Ry − σ̂ 2

n IMrMt

) (
IMrMt − PD1D2

)H
= (Bs ⊙ As)Rs (Bs ⊙ As)

H

= (Bs ⊙ As)Gs (37)

where σ̂ 2
n =

1
MrMt−K1−Q

∑MrMt
i=K1+Q+1 ηi.

Therefore, the core problem is how to design a practical
oblique projection. To our knowledge, the calculation of P⊥

D2
in (36) is unrealistic because Bs ⊙ As is unknown. Refer-
ence [25] suggests that if we substitute R† for P⊥

D2
, where

R†
= Us6

−1
s UH

s , i.e., PD1D2 = D1

(
DH
1 R

†D1

)−1
DH
1 R

†,

it then works [26], [27]. Nevertheless, the approximation
usually causes confusion because the power and information
of the clusters with identical gain values contributing to Us
are subtracted in Y.

1) NEW OBLIQUE PROJECTOR
The essence of this new oblique projector lies in the estimated
DOA information of the clusters with identical gain values,
i.e.,

{
θ̄i

}K
i=K1+1.

On account on these, a K2-order polynomial with roots{
ejπ sin θ̄i

}K
i=K1+1

and K2 = K − K1 can be reconstructed.

For convenience, the coefficients are defined by the vector

h =
[
h0, h1, · · · , hK2

]T (38)

Similar to (19), a Toeplitz matrix Gh ∈ CMt×(Mt−K2)

can be used to help create oblique projections as it satisfies
GH

h Bs = 0. If defining G = Gh ⊗ IMr , then we have

G
H
D2 = G

H
(Bs ⊙ As) =

(
GH

h Bs
)

⊙ As = 0 (39)

In other words, it can allow us to substitute PG for P⊥

D2
in (36),

which creates an alternative to oblique projectors, i.e.,

PD1D2 = D1

(
DH
1 PGD1

)−1
DH
1 PG (40)

where PG = G
(
G
H
G

)−1
G
H
. We can easily go over

the attributes that PD1D2D1 = D1 and PD1D2D2 = 0.
In this paper, the algorithm is called improved 2-D BMODE
algorithm in which PD1D2 takes the place of PD1D2 .

F. FORWARD-BACKWARD SPATIAL SMOOTHING
Substituting (40) into (37), we can obtain the virtual
observation Y. If Bs ⊙As is a full column rank matrix and 3
is a rank-deficient matrix due to equal gain, we must use the
2-D spatial smoothing technique. Define a series of selection
matrices, n = 1, 2, · · · ,Nt − Z1 + 1, m = 1, 2, · · · ,Nr −

Z2 + 1

0n,m =
[
0Z1×(n−1)IZ10Z1×(Nt−Z1−n+1)

]
⊗

[
0Z2×(m−1)IZ20Z2×(Nr−Z2−m+1)

]
(41)

where Z1 < Nt and Z2 < Nr indicate the length of receive
and transmit subarrays, respectively. Let

J =

(
FT

)−1
⊗

(
WH

)−1
(42)

Y2 = JY (43)

Subsequently stacking 0n,mY2 as the following style[
01,1Y2 · · ·01,Nr−Z2+1Y202,1Y2

· · · 02,Nr−Z2+1Y2 · · ·0Nt−Z1+1,Nr−Z2+1Y2
]

it holds

Y ≜
[
B(Z1)s ⊙ A(Z2)s

]
Gs (44)

Note that Gs ∈ CK2×(Nt−Z1+1)(Nr−Z2+1)NtNr is a gain matrix
that in turn decorrelates the rank-deficient Gs, making it a
full row rank matrix. Furthermore, similar to the traditional
smoothing technique, the choices of Z1 and Z2 depend mainly
on the number of the clusters with identical gain values.

Taking advantage of the noise subspace of Y, i.e., Un,
we can obtain the estimated auto-paired transmit steering
vectors for the gain matrix with identical gain values,

at (φk) =

(
Q

)−1
e

eH
(
Q

)−1
e
, k = K1 + 1, · · · ,K (45)

whereQ =

[
IZ1 ⊗ A(θ)

]H
UnU

H
n

[
IZ1 ⊗ A(θ)

]
withA(θ) =

A(Z2)(φ), and e = e(Z2).

G. LS ESTIMATION OF PATH GAINS
Once the path angles are estimated by the 2-D BMODE
method, ĉ(φ, θ) can be obtained from (11), forming the
direction matrix Ĉ. After that, the path gain in (10) can be
determined using the LS method as

α̂(q) =
Mt

E

(
ĈH Ĉ

)−1
ĈHy(q), q = 1, 2, . . . ,N (46)

The channel matrix H(q) in (2) can be obtained by
substituting AoDs, AoAs and the path gain achieved by the
above discussion. It should be noted that the order of the
elements in α̂(q) is determined by Ĉ. Put differently, the k th

element in α̂(q) is the gain Ĉ of the path whose direction
contributes to the k th column. Eventually, in TABLE 2, the
complete process of the proposed approach is summarized.

IV. COMPUTATIONAL COMPLEXITY
Now, we analyze the computational complexity of the
2-D BMODE method in detail. One flop is defined as
one-time complex multiplication according to [28]. For
easy comparison, we herein consider the RD-MUSIC
+ oblique projection + SS + RD-MUSIC algorithm,
in which the discerning of clusters with distinct gain
values is easily achieved by the angles concerning K1
least spectrum peak or by calculating (29). The com-
putational complexity is analyzed as follows: distinct
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TABLE 2. Summary of complete process of the approach proposed.

gain values corresponding to DOA and DOD estima-
tion require O

{
Mr

3Mt
3
+

(
K 2

+Mr − K
)
0+ (k1 + k) ×[(

Mr
2Mt

2
+Mr

2) (MrMt − k1 − Q) +Mr
3]}, where 0 is

the number of iterations; oblique projection and SS require
O

{
3M3

t M
3
r + 3K1M2

t M
2
r + 3K 2

1MtMr + 2K 3
1

}
. Especially,

oblique projection and SS required in the improved 2-D
BMODE approach require O

{
M3
r (Mt − K2)

[
M2
t + 2Mt

(Mt − K2)+ (Mt − K2)
2]

+ 3M3
t M

3
r + 2K1M2

t M
2
r

+2K 2
1MtMr + K 3

1

}
. The clusters with identical gain values

estimation require O
{
Z3
1Z

3
2 + K2

[
Z2
2 (Z1 + 1)

(Z1Z2 − K2)+ Z3
2

]}
.

For the 2-D BMUSIC method, multi-dimensional search
requires O

(
M2

t M
2
r GθGφ

)
, where Gθ and Gφ is the total

searching number in the whole angle domain. Oblique
projection and SS is similar to 2-D BMODE method.
The clusters with identical gain values estimation require
O

{
Z3
1Z

3
2 + GφGθ

[
(Nt − Z1 + 1)2 (Nr − Z2 + 1)2

]}
. It is

evident that the difference in complexity between these two
methods increases with the angular resolution. Consequently,
the 2-D BMODE method has significant advantages in
reducing the cost of the calculation. The computational
complexity of several channel estimation methods discussed
above detailed in TABLE 3.
If taking some typical values of parameters into account,

e.g., Nt = Mt = 8, Nr = Mr = 16, K = 4,
K1 = 2, Q = 14, K2 = 2, Gφ = Gθ = 90◦/0.1◦,
Z1 = 5, Z2 = 13. Through meticulous calculations,
we can observe that 2-D BMODE has a computational
complexity of O

{
1.06 × 107

}
and its improved version has

a computational complexity of O
{
1.54 × 107

}
, whereas the

compared one is of O
{
1.35 × 1010

}
, which significantly

increases the complexity with the angular resolution. In other

TABLE 3. Computational complexities of the proposed and comparative
algorithms.

words, our proposed method has a substantial advantage in
computational efficiency.

V. SIMULATION RESULTS
The channel estimation performance of themm-wave channel
modeled by ray-tracing is investigated through Monte Carlo
simulation.

In this section, we elaborate on the performance of the
proposed channel estimator through computer simulation
with the following parameters. The ULAs at the transmitter
and receiver are equipped with Nt = 8 and Nr = 16 antenna
elements, respectively. There are Mt = 8 RF chains at the
transmitter and Mr = 16 RF chains at the receiver. The
DFT beamformers defined in (6) are used in the simulations
to avoid the beamspace spatial spectrum ambiguity effect.
E

Ntσ 2
represents the signal-to-noise ratio (SNR). We compare

the proposed 2-D BMODE method with the 2-D BMUSIC
method in [17] to exhibit the channel estimation performance.
All results are averaged over 100 frames with N = 40, and in
all channel realizations, the path directions {(φk , θk)}

K
k=1 are

kept fixed, so the variation is only caused by the path gains
{αk (q)}Kk=1. There are four sharp peaks in the spectrum of 2-
D BMUSIC in Fig.3(a), while only two in Fig.3(b) because
of rank deficiency where two fuzzy bumps cause failing
to acquire complete DOAs and DODs. Fig.3(c) indicats
the excellence of oblique projecting + spatial smoothing
when the rank deficiency of 3 leads to spectrum ambiguity.
In Fig.4, we show the channel estimation performance of
different channel estimators when the covariance matrix
of gain is full column rank. Dantzig selector(DS)-based
estimator is mentioned in [29]. The normalizedmean-squared
error (NMSE) is defined as E

{
∥Ĥ − H∥

2
F/∥H∥

2
F

}
, where Ĥ

denotes the estimate of the channel. In Fig.4, the proposed
2-D BMODE approach performs nearly the same as the 2-
D BMUSIC. Moreover, both the 2-D BMUSIC and 2-D
BMODE methods outperform OMP and DS counterparts
significantly. This is because these methods have a higher
angular resolution.

In Fig.5, the channel estimator based on the improved 2-D
BMODE method, which uses new oblique projector, is very
close to the MUSIC+OP algorithm when the covariance
matrix of gain is rank deficiency. The performance of the
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FIGURE 3. The 2-D beamspace direction spectrum.

FIGURE 4. The performance comparison of channel estimator between
several typical algorithms.

FIGURE 5. The NMSE performance as a function of SNR.

FIGURE 6. The NMSE of path angles as a function of SNR.

improved 2-D BMODE method is better than the 2-D
BMODE method because it can reduce the error of P⊥

D2
.

In Fig.6, we show the MSE-A of the estimated path angles,

which is defined as E
{(
φ1 − φ̃1

)2
+

(
θ1 − θ̃1

)2}
. As we

FIGURE 7. Path detection probability as a function of SNR.

can see in Fig.6, the proposed channel estimator shows
considerable performance.

Next, we compare three types of channel estimation
methods in terms of detection probability at SNRs ranging
from 2 dB to 12 dB, where a successful detection is indicated
by the deviation of estimated AoDs/AoAs being lower than
the threshold Th. In the simulation, Th = 0.04, with
40 sample points and 100 snapshots.

As shown in Fig.7, it is apparent that the MUSIC+OP
algorithm has a higher detection probability but requires
higher computational cost. The method proposed in this
paper can enhance detection probability by reducing iteration
errors.

Therefore, both proposed methods can be considered as
better choices than the existing competitors from the joint
perspective of computational complexity and accuracy of
angle estimation.

VI. CONCLUSION
We present a novel 2-D beamspace mm-wave channel
estimation method that leverages the slow variation of path
angles in comparision to path gain. The iterative 2-DBMODE
algorithm significantly reduces the computational costs
compared to the 2-D spectral peak search algorithm. The
proposed algorithm’s estimation accuracy can be enhanced
by addressing the iteration error. Rank deficiency issues are
mitigated through spatial smoothing technique and oblique
projecting to acquire comprehensive channel information.
DFT beamformers are employed to circumvent spectrum
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ambiguity arising from pseudo pole. Once the angles are
estimated, the LS method is applied to estimate fading gain in
each block within the frame. Simulation results demonstrate
that the proposed 2-D BMODE channel estimator achieves
comparable performance with less time-consuming com-
pared to existing methods. In the near future, our focus will
be on addressing the system-level challenges of wideband
mm-wave channel estimation.
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