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ABSTRACT Multi-camera systems are now widely employed across numerous domains. The exponential
growth of deep learning has simplified the implementation of advanced video analytics applications. While
current systems strive to enhance live video analytics from several aspects, they overlook the potential
degradation in performance resulting from dynamic content changes, such as the variation in the quantity
and types of objects of interest over a period and across different cameras. The authors introduce Workload
and Model Adaptation (WMA), a two-stage resource allocation strategy for a three-tiered, cross-camera
video analytics system. This system not only supports model fine-tuning but also ensures workload balance.
Notably, both the system architecture and control workflow fully comply with the IEEE 1935 edge standard.
This paper delves into the GPU utilization performance of a vehicle re-identification application and
examines the workload dynamics spanning multiple cameras. Furthermore, the challenges related to multi-
process execution are explored. The system is evaluated using a commonly employed dataset and a popular
open-source project. The results demonstrate that the proposed design surpasses the baseline and enhances
the overall throughput and latency across cameras within the system.

INDEX TERMS Continuous learning, edge computing, re-identification, resource allocation, offloading,
video analytic.

I. INTRODUCTION
In recent years, cameras have been widely deployed at many
places, such as road intersections, grocery stores, and the
university campus. The rapid advancement of deep learning
has made it increasingly convenient to deploy powerful
video analytics applications. Furthermore, the utilization of
multiple cameras further expands the range of applications
that can be supported, such as vehicle counting, traffic
control, and object re-identification, as shown in Figure 1 [1].
Additionally, some studies leverage the spatial and tem- _ ‘
poral correlations among cameras to enhance system perfor- =l = 2 = ‘
mance in muli-camera systems [2], [3]. Whil the demand  [CUTE | Vel e entiction xampl. ) the gl vido e
for video analytic applications continues to grow, it becomes bounding boxes and labels of different colors.
increasingly important to have powerful computing resources

in order to achieve high throughput and low latency. Edge
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resources at the network edge [4]. Recent studies have
shown that integrating edge/fog computing architecture with
video analytics applications is an effective approach to
mitigate latency and throughput bottlenecks in the system.
By processing the application closer to the data source,
edge/fog computing reduces the need for data transmission,
minimizes latency, and improves overall system perfor-
mance [1], [5]. Various standards have been established to
define the behavior of edge computing, including the ETSI
MEC standard [6] and the IEEE 1935 Edge standard [7].
Among them, the IEEE 1935 standard defines a three-tiered
architecture to leverage the management and orchestration of
edge resources and applications. With the defined workflow,
the paradigm guarantees the system’s flexibility, stability,
and security. Due to its hierarchical structure, it allows for
more efficient and diverse data processing at the edge. These
advantages benefit video analytic applications as the system
can process video analytics dispersedly and keep resources
and bandwidth efficient.

In real-world deployments, the number and types of
objects of interest, such as people, vehicles, and trucks,
can vary significantly both over time and across different
cameras. This variation is due to factors such as changes
in environmental conditions, different camera viewpoints,
and dynamic scenarios. The variation in number and type
presents two challenges: workload imbalance and data
drift.

For an introductory video analytics system with cloud/edge
architecture, workload imbalance can cause serious issues.
Each camera’s video processing stream is fixed on a central-
ized cluster or the nearest edge server. This setup results in
some servers being overloaded with work while others are
underutilized, leading to lower processing throughput and
higher latency. Some recent studies have explored methods
for dynamically distributing the processing pipeline across
the cluster, which reduces latency and improves overall
throughput [8], [9], [10], [11], [12], [13].

Data drift is another significant issue for video analytics
on the edge. Since edge servers have limited computational
resources, they can only support deep neural network (DNN)
models with fewer weights. This limitation makes the model
likely to lose accuracy when faced with significant data
variations. A promising approach to address data drift is
continuous learning. It involves incrementally retraining
edge DNNs on new video samples while retaining previous
knowledge. By continuously updating the models with new
data every few minutes, the edge DNNs can adapt to changing
environments, evolving object behaviors, and other variations
over time [14], [15].

Both workload imbalance and data drift are crucial issues
in multi-camera video analytics systems. Moreover, there are
several challenges to address with both issues. Continuous
learning requires enormous computing resources, offloading
requires large network bandwidth between servers, and
the time scale of data drift and workload imbalance is
different.
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As a result, the authors propose Workload and Model
Adaptation (WMA), a cross-camera video analytic frame-
work to tackle these challenges. The framework uti-
lizes a three-tiered edge system, which adheres to the
IEEE 1935 Edge standard. Besides, it decouples complex
multi-hierarchical problems, tackles each issue indepen-
dently, and optimizes the overall system performance. In the
edge system, the middle-layer server aims to monitor the
workload and address workload imbalance. The top-layer
server is responsible for monitoring accuracy and sharing the
fine-tuned model. The key contributions are as follows:

o A multi-camera vehicle tracking system, which incor-
porates retraining and workload balancing techniques,
is proposed. The results show that the proposed
algorithm can enhance the system’s overall throughput
across cameras.

o The utilization of GPU for real-time vehicle tracking
is analyzed and leveraged in the proposed mechanism.
Therefore, the system is more consistent in practical
usage.

e The cross-camera vehicle tracking system is fully
compatible with the IEEE 1935 edge standard, which
ensures compatibility across heterogeneous devices and
enables exceptional flexibility and scalability.

The rest of this paper is organized as follows. Section II
delves into a discussion of work related to this research.
Section IIT outlines the proposed system model. Following
this, the problem formulation is introduced in Section IV.
Section V details the evaluation setup and outlines the
experiments conducted. Lastly, the research findings are
concluded in Section VI.

Il. RELATED WORK

This section introduces the IEEE 1935 edge standard archi-
tecture, which is the primary edge system architecture used
in this study. Additionally, it also examines the multi-camera
video analytics systems research and categorizes them
into four domains: video analytics optimization, resource
management, configuration improvement, and envisioned
system.

A. IEEE 1935 EDGE STANDARD
IEEE 1935 edge standard provides better availability, flexi-
bility, and scalability in the Edge/Fog systems. The standard
defines a three-level architecture for different functions to
enable the management and orchestration of the Edge/Fog
system [7]. Figure 2 shows the overall architecture of the
Edge/Fog system. The IEEE 1935 standard also offers a set of
APIs to manage and configure the resources and applications
in the Edge system [16].
The functionalities of each level are described as follow:
1) Edge/Fog Orchestrator (EFO): The top layer of the
edge computing system. The Edge/Fog Orchestrator
is designed to manage and control the Edge system.
It is responsible for interacting with users, handling
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applications properly, and providing system functional-
ities and infrastructures. There are many components in
the EFO, including Virtual Function Management and
Orchestration (VF M&O), Rule Framework, and Edge
Inventory Manager (EIM). VF M&O is responsible
for the start-up and operation of the application. Rule
Framework deals with all conditions, requirements, and
reactions. EIM provides a real-time view of the system’s
various inventories, including resources and services.

2) Edge/Fog Control Node: The middle layer of the
edge computing system. Control nodes oversee the
Compute nodes and manage related resources. The
entities can be divided into two categories based on their
management targets: the (Virtualization) Infrastructure
Manager, which focuses on resource management,
and the Edge Platform Manager, which focuses on
application management.

3) Edge/Fog Compute Node: The bottom layer of the edge
computing system. Compute nodes are responsible for
practical computing tasks. Edge applications interact
with the Edge Platform and communicate with the
internet via the Data Plane.

B. VIDEO ANALYTICS OPTIMIZATION

The video analytics application comprises a sequential
series of stages, encompassing frame partitioning, region of
interest (ROI) detection, and model inference. Various studies
enhance the performance by optimizing individual stages in
specific contextual scenarios.

Spatula [3] exploited the spatial and temporal corre-
lations in multi-camera scenarios to reduce computing
costs. Reducto [17] improved the resource consumption by
optimizing the filtering mechanism in the video analytic
pipeline. AMS [18] utilized a remote server for model
training and updated the edge device to improve performance.
A. Aliouat et al. dug into the video coding strategy and
proposed a fast ROI detection method [19].
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C. RESOURCE MANAGEMENT

Video analytics is a resource-hungry application. Due to
limited resources, processing multiple video streams simul-
taneously on the server poses a challenge. Thus, it is critical
to have an intelligent resource management mechanism. The
techniques for better resource management include video
pipeline partition and deployment, video pipeline integration,
and server workload balancing. The balance mechanism for
both pipeline and workload can be activated within seconds,
ensuring swift adaptation to variations.

VideoEdge [8] identified the best video pipeline configu-
ration by resources and accuracy. The system also placed the
pipeline across the hierarchy of clusters and merges typical
components across pipelines. VideoStorm [20] designed a
scheduler that efficiently considered the resource-quality
profile and lag tolerance. Distream [9] adaptively balanced
the workloads across smart cameras and partitioned the
workloads between cameras and the edge cluster. Faticanti
et al. proposed a method to determine the placement of
video pipelines on infrastructure and aimed to improve
the coverage of the camera network [21]. Rong et al.
scheduled massive camera streams and tasks on end-edge-
cloud architecture with comprehensive consideration of
computation and networking resources [11]. Zhang et al.
designed a blockchain-based edge system to reduce the
execution time by mapping video pipeline to edge [22].

D. CONFIGURATION IMPROVEMENT
The configuration of the application includes video reso-
lution, hyper-parameters, and model selection. Improving
the video pipeline configuration involves leveraging the
correlation between cameras, such as region of interest, object
density, and field of view. Another approach to enhance
configuration is implementing continuous learning to adapt
the model. The inference model will undergo updates every
few minutes through retraining with newly arrived data.
Chameleon [23] adapted the configurations over time and
utilized both spatial and temporal correlations to amortize
the overhead of adaptation. CrossRol [2] generated a better
region of interest for each camera based on offline processing
of multiple video streams. Convince [24] utilized spatiotem-
poral correlation to eliminate redundant frames and reduce
bandwidth utilization. Li [25] adjusted the camera pose
by jointly considering other camera poses in active object
tracking applications. Ekya [14] scheduled the training and
inference process to achieve higher frequency. RECL [15]
shared the fine-tuned model across edges and designed the
model selection algorithm.

E. ENVISIONED SYSTEM

Some systems also claim to provide potent video analyt-
ics applications but do not provide any implementations.
Yi et al. [26] aimed to build a software-defined video analyt-
ics system with a holistic resource orchestrator. The proposed
system exploited cross-camera collaboration and could run
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FIGURE 3. The system architecture of WMA.

various applications simultaneously. Apostolo et al. [27]
proposed Live video analytics as a service to achieve
flexibility, agility, and efficiency. The system included a
declarative interface, an adaptive analytics engine, and an
efficient runtime system.

Previous studies focused on either resource manage-
ment or configuration improvement. These existing works
do not build a comprehensive system for video analytic
applications. This gap highlights the need for integrated
frameworks that combine resource management and con-
figuration improvement to optimize resource allocation and
enhance performance.

Ill. SYSTEM MODEL

This paper proposed WMA, the three-tiered edge computing
system aligned with the IEEE 1935 edge standard, as shown
in Figure 3. The Edge/Fog Orchestrator can collect metrics
from all Compute nodes. The Control node, situated at road
intersections, manages these Compute nodes and monitors
their workloads. Each Compute node is a worker node,
running applications for nearby cameras. The Control node
and the underlying Compute nodes form a Cluster. The
dashed lines represent connections between the cameras and
servers, whereas the solid lines depict connections between
two servers. The cameras are deployed across the road
intersections as the input of the video analytic service.

The proposed system’s detailed component design and
workflow consistent with IEEE 1935 standard is illustrated
in Figure 4. The system’s workflow involves the VF M&O,
Rule Framework, and Edge Inventory Manager in EFO, Edge
Platform Manager in the Control node, and Edge Platform
and Edge App in the Compute node.

The brown arrows indicate the data flow of the application,
while the green and blue arrows represent the control flow of
the management scheme, which will be explained in more
detail in the next section.

Consider that there are V cameras and N Compute nodes in
the cluster. Each camera can stream the video to any Compute
node in the cluster in the Compute node. The mapping from
the camera to the Compute node is defined as binary variable
eyn. If the camera v is processing on Compute node n, e,
equals to 1.

The parameters and detailed definition of overall system
architecture are denoted as follows:
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Data Flow

o V: The set of video streams (cameras). Defined as V =
{1127"' 7V}‘

o N: The set of Compute nodes in a cluster. Defined as

N={1,2---,N}L

e & The set of binary variable e,,. Defined as £ =
{enlveV,ne N

Other parameters used in this article are summarized in
Table 1.

This paper adopts vehicle re-identification as the authors’
focus for the cross-camera video analytics application on the
edge system. Vehicle re-identification is a more complex task
compared to conventional video analytics tasks such as object
detection and classification. While vehicle re-identification
is a challenging and less explored area in previous studies,
it holds significant potential in multi-camera systems for real-
world applications.

The analysis of GPU utilization and memory consumption
is performed during the application execution, and issues
related to multi-process execution are noticed when running
multiple tasks simultaneously on a single server. Specifically,
the concurrent execution of several tasks on a single server
revealed limitations in GPU utilization.

A. VEHICLE RE-IDENTIFICATION
Vehicle re-identification has become a popular and complex
application in vehicle analytics today. Several competitions,
such as the AICity Challenge, have included this topic for
many years. The solutions for this application are diverse, yet
they generally follow a common framework.

The general pipeline of vehicle re-identification applica-
tions includes three steps: object detection, feature extraction,
and tracking [28]. Figure 5 shows the re-identification
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TABLE 1. List of notations.

Notation  Definition

% Set of video streams (cameras)

v A video stream (v € V)

N Set of Compute nodes

n A compute node (n € N)

£ Set of video stream, compute node mapping

e A set of binary variables (e,, € {0,1}Vv € V,Vn € N).

ey, = 1if video stream v process on compute node n.

Cy Compute resource of edge server n

CR Compute resource requirement for retraining

bn A set of binary variables (¢, € {0,1}).

¢n = 1 if retrain on compute node n

c! Compute resource available for inference

cl Actual compute resource for inference allocated on server n
c! The actual compute resource allocated of each video stream v.
m! The GPU memory cost required for each application

M, The total GPU memory size on compute node 7.

v workload of video stream v at time 7

T The set of timestamps of each retraining decision window
Tr the time to make decision (7 € T}).

T, The set of timestamps of each offloading decision window
To the time to make decision (7, € T,).
Ayr MOT Accuracy of video stream v at time 7
D, Accumulated object numbers of video stream v at time

¥ compute resource discount factor for multi-process executing

TABLE 2. Executing time for each step in re-identification.

Object Detection  Feature Extraction

Time (ms) 7.6 76.7 12.3

Tracking

pipeline of each video frame. The application will first get the
vehicles at each video frame by objection detection. Second,
use a deep learning model to generate each vehicle’s feature
vector, representing the vehicle’s color and type. Third, the
tracking module performs algorithms using features and
history data to get the ID of each vehicle. The feature
extraction and tracking step are called re-id in this paper for
simplicity.

The result of analyzing the executing time of each step
per frame can be found in Table 2. This application’s feature
extraction step takes significantly longer than other steps,
indicating that it can be considered the critical step. It stems
from the fact that the inference step for feature extraction is
notably more intricate than other steps. Numerous objects in
a single frame necessitate running inference multiple times.

Another important observation is that vehicle re-
identification is a stateful application because the tracking
algorithm relies on historical data to identify and track
vehicles over time. Consequently, parallel execution of the re-
identification process is impossible due to its stateful nature.
This limitation gives rise to GPU utilization issues, which will
be discussed in the following subsection.
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FIGURE 5. The re-identification pipeline of each video frame.

B. GPU UTILIZATION AND MEMORY

GPU utilization and memory are crucial parameters in
video re-identification applications. Both parameters present
individual challenges that can limit the overall system
performance.

« GPU Utilization: GPU utilization, defined as the

percentage of time over the past sample period during
which one or more kernels are executing on the GPU,
is a crucial metric for evaluating the efficiency of CNN
inference [29]. However, it has often been overlooked
in previous studies [30]. One reason is that many
popular deep learning-based applications, such as object
detection, classification, and anomaly detection, only
contain CNN inference tasks, which inherently tend to
achieve high GPU utilization in theory.
The execution of vehicle re-identification must occur
sequentially, and only some steps utilize the GPU so that
the GPU utilization will not reach 100% theoretically.
As a result, instead of modeling the execution time
proportional to the total computing power of the
server [22], the computing resource cost C ! is modeled
as a fixed value even when the server has a larger
capacity.

o GPU Memory: GPU memory refers to the amount of

storage available on a GPU for storing and processing
data. When the available GPU memory on a Compute
node is insufficient, it can lead to application failures
when running on the GPU. The size of the GPU memory
on the Compute node becomes a limiting factor in
determining the maximum number of applications that
can be executed simultaneously on a single server.
The limitations on server n with M,, GPU memory can
be modeled using the following equation. M/ represents
the memory cost of each application and indicates that
the total GPU memory used by all applications running
on a server cannot exceed the server’s limit.

Zevn'MISMn Vne N (D
veV

C. MULTI-PROCESS EXECUTING MODEL

Several GPU-related processes would execute simultane-
ously on a single server in the multi-camera video analytics
system. It is observed that when multiple processes run
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on a single server, the GPU utilization does not increase
proportionately to the number of processes. To address this
issue, a modifier y is added to the compute resource of each
process C!. CI and C! represent the actual resource cost for
all applications and each video stream.

The total compute resource of inference process C! on the
server n can be modeled as the following equation.

O0<y<1
y-Zevn~CI=C,€ YneN
veV
Dlewm-Cl=Cl VneN 2)
veV

D. VIDEO ANALYTIC THROUGHPUT MODEL

System throughput emerges as a crucial metric in evaluating
the performance of the vehicle analytics system. This study
defines the throughput in terms of frame processed per second
(FPPS). Therefore, the throughput of the video stream v at

time t is modeled by following formula:
CI
FPPS = Vk 3)

V¢ -+

The throughput is the resource allocated for this stream
divided by the resource required by the application. Here, k
is a constant representing the execution speed per workload.
The total throughput on Compute node 7 can be calculated by
summing up all the video streams on this server, as indicated
by the following formula:

FPPS,, = Z e -

veV

Crll / ZVGV évn
i “
v -k

IV. PROBLEM FORMULATION

This section provides the mathematical formulation of this
work. The objective is to optimize the overall throughput of
the video analytics service across all Compute nodes. The
overall problem can be formulated as:

max FPPS ygem = max »_ FPPS,

neN
CI
= ma —
e S
neN veV
CI

= max Z Zevn . n/VZ:vekV En (5)

neN veV '

Constraints:
Cl: ¢,-CRy+cl<c, VneN
Cc2: c’-yzem=c,{ YneN

vey
C3:> em-M <M, VneN
veV
ey €10, 1} YweV,VneN
C4: Zevn= 1 YveV
neN
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¢n €10, 1} Vne N
C5: Z dn =1 (6)
neN

Constraint C1 states that the overall compute resource
cannot exceed the server capacity. Constraint C2 represents
the multi-process limitation, as discussed in Section III-C.
Constraint C3 sets the maximum application process limit
for each server, as described in Section III-B. Constraint C4
means that one video stream can only be processed by one
Compute node. Constraint C5 guarantees that the retraining
process can only run on one Compute node in the cluster.

A heuristic algorithm is designed to schedule the retraining
process and fully utilize the compute resource to maximize
the overall throughput. The algorithm is decoupled into two
stages, the model retraining and workload offloading, and the
Edge/Fog orchestrator and Control node manage these two
stages, respectively.

There are three benefits to decomposing and managing the
solutions by different roles.

o Network bandwidth: Workload offloading requires
significant network bandwidth. The transmission over-
head can only be ignored in a small area in a single
cluster. Second, the fine-tuned model generated by
model retraining can be reused for different regions.

o Model reusing: The fine-tuned model generated by
model retraining can be reused for different regions.
The Edge/Fog orchestrator can manage these models
effectively.

o Time scale: The timescale of the two problems is
different. The workload on each camera is dynamic over
seconds, while the accuracy only drops over a long
period. The algorithm has to perform offloading much
more frequently than model retraining.

Figure 6 illustrates the system workflow of the two-staged
algorithm. In the first stage, the system makes the model
retraining decision on EFO using metrics collected from the
Compute node. In the second stage, the system balances the
workload across the system based on calculations performed
by the Control node.

A. FIRST STAGE: MODEL RETRAINING SCHEDULER

The model retraining scheduler is a heuristic method for
Edge/Fog orchestrator that aims to decide the retraining
decision ¢,. The cameras in the same cluster are near each
other geographically, and the video captured by cameras
within a cluster is similar. As a result, multiple retraining
processes executing simultaneously are restricted in the same
cluster, which is the constraint C5.

The model retraining scheduler makes the retraining
decisions over some time t,. Let the set including t, be T;.
For the sake of simplicity, in the following part, it is assumed
that the algorithm operates at time 7.
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The algorithm begins with initiating the retraining can-
didates set M as an empty set. For each Compute node n,
calculate the average accuracy A, and the accumulated data
size D,,.

If A, is lower than threshold « and D, is larger than §
to initiate the training progress, make Compute node n as a
candidate to start the retraining progress and append » into
retraining candidates set M. After calculating on all Compute
nodes, select the node with the lowest accuracy among all
retraining candidates. Since each Compute node is traversed
once, the overall computational complexity is O(N). For a
detailed step-by-step description of the algorithm, refer to
Algorithm 1.

Algorithm 1 Model Retraining Scheduler
Input: Compute node capacity C,, camera-server
mapping ey,

Output: Retraining decision ¢,

1 M0

2 foreachn € N do

3| Ay« ﬁ > ey e - Ay

4 Dy, < cyem-Dy

5 if A, < o and D,, > § then

6 ‘ M «— MU {n}

7 end

8 end

9 i < argmin,,c rq A

10 ¢ < 1

B. SECOND STAGE: WORKLOAD OFFLOADING

In this stage, workload offloading is the heuristic algorithm
for the Compute node that aims to balance the workload
between servers in the cluster. In general, the Control
node monitors the workload of each video analytic pipeline
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in the cluster and modifies the execution server of each
pipeline. Given that the Compute nodes are close to one
another and benefit from extensive network bandwidth, the
transmission overhead from offloading data within the cluster
is disregarded.

The algorithm will execute continuously at intervals of 7,,
as the video content is streamed without interruption, and
the workload needs to be adjusted dynamically. Let the set
including t, be 7T,. For the sake of simplicity, in the following
part, it is assumed that the algorithm operates at time t.

Let the total workloads on Compute node n be wj,. Since
the compute resource on each server may not be the same,
calculate the adjusted workload w/, based on the computing
power of each server. These parameters can be computed as

W = Zevn "Vt (7

veV
iy G
W, = Wy c
Let the Compute node with the maximum and minimum
workload be node i, and node j, respectively, and the workload
difference between i and j be A. If A is larger than two
times the minimum workload # on node i, offload this
video stream and continue to perform the previous balancing
procedure. The complexity of this algorithm is constrained
by the quantity of video streams, expressed as O(V). Refer to
Algorithm 2 for a detailed step-by-step algorithm description.

®)

Algorithm 2 Workload Offloading
Input: Video stream workload v;, compute resource
C,,, GPU memory M,
Output: The video process decision e,
1 Wy < D eyl Ve
2 W), < Wy -

=n
o
3 0 <= argmax, g W, j <= argmin, g s wy,
4 A —w— w]’-
5 u<—argmin, , _v;

6 while A > 2 -u; do

7 if >y ey M! > M, then
8 | break

9 end

10 eyi <0

11 ey <1

12 Wi < D ey € - Ve

13 W, < Wy - &

14 [ < argmax, s Wy, j < argmin, . nr w),
15 A —wi—w
16 u < argmin, , vy
17 end

V. EVALUATION
This section first provides an overview of the experi-
mental environment for evaluating the proposed scheme,
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FIGURE 7. A part of the CityFlowV2 dataset includes five cameras
situated at a road intersection. The images at the right hand side are the
view of Camera 1 and Camera 5.

(d) L e -EED---”“‘Q-&

FIGURE 8. Example vehicle bounding-box and whole scene images of the
VRIC benchmark.

including the dataset and the testbed information. Subse-
quently, the proposed algorithms are evaluated by comparing
them against existing algorithms under different system
configurations.

A. SYSTEM IMPLEMENTATION
1) DATASET
Two different datasets are used for the vehicle re-

identification application training and testing: CityflowV2
[31] and VRIC [32].

« CityFlowV2: CityFlowV2 is an official dataset of the
6th AI City Challenge Track 1: City-Scale Multi-
Camera Vehicle Tracking, the updated version of
CityFlow. The dataset consists of videos captured
by 46 cameras in a real-world traffic surveillance
environment. There are 215.03 minutes of videos in
total, and most of the videos have a frame rate of 10 FPS.
Part of the CityFlowV2 dataset is shown in Figure 7,
which includes five cameras in the same intersection
from different perspectives.

o VRIC: VRIC is another vehicle re-identification dataset
that includes variations in resolution, motion blur,
illumination, occlusion, and viewpoint. VRIC contains
60,430 images of 5,622 vehicle identities that are
captured by 60 different cameras at heterogeneous road
traffic scenes. The example images that cropped from
the original paper are shown in Figure 8.
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2) VIDEO ANALYTIC APPLICATION
This section introduces how the application is built and
highlight the available configurable options.

« Video re-identification application: The general appli-
cation is a modification of a Python project developed
by Regob [33]. The project is well-structured and offers
simple configuration options for customization, such as
model usage, tracking algorithm selection, and dataset
format.

« Object detection model: As the first step in the vehicle
re-identification pipeline, there are several options, such
as simple background subtraction, YOLO [34], and
Mask R-CNN [35]. Both YOLO and Mask R-CNN have
been hugely influential in the field of object detection.
YOLO is known for its speed and efficiency, and Mask
R-CNN achieves high accuracy but can be slower.

The YOLO model is selected, specifically implement-
ing YOLOvVS5s weights due to its effectiveness and
lightweight design.

o Feature extraction CNN model: VRIC dataset is
utilized to train the main feature extraction model
and perform the vehicle analytic application on the
CityflowV2 dataset. For the model’s architecture,
the Resnet-IBN network is adopted and trained for
20 epochs. In the retraining process, the model is fine-
tuned for five epochs.

o Tracking: Among the various tracking algorithms avail-
able, including DeepSORT [36], and ByteTrack [37].
DeepSORT introduces a neural network to compute the
appearance descriptors, and this deep association metric
significantly improves tracking performance. ByteTrack
is a newer tracking algorithm that simplifies the tracking
problem into a top-k list update problem and achieves
high accuracy. DeepSORT is chosen for the application,
given its popularity and widespread usage in several
benchmark datasets and applications.

o Logging and Monitoring: The Weights and Biases
(W&B) library is used for metrics logging and moni-
toring. W&B is a machine learning toolset that helps
researchers and developers track and visualize their
models’ performance. This research utilizes its logging
system and dashboard service that can plot metrics
in real-time. Additionally, Weights and Biases can
log system usage simultaneously, which is extremely
helpful in the experiments.

It is noted that the application benefits from edge
computing because it contains monitoring, tracking, and
object detection, which requires real-time surveillance, low
latency, and well-organized resource distribution.

3) HARDWARE

The server, which acts as a Compute node, is equipped with
an AMD Ryzen 7 5800X CPU and an NVIDIA GeForce
RTX 3080 GPU. The server has 8 CPU cores, 64 GiB of
memory, and 10 GiB of GPU memory.
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FIGURE 9. Relationship of throughput and process number on a single
server.

B. EXPERIMENTAL SETTINGS
The metrics of system throughput and latency are adopted
to evaluate the performance of the proposed approach. The
throughput is related to FPPS and the latency is to the average
task execution time and queueing time for all streams.

The system schedules the video analytics tasks with
offloading. The system performance is evaluated and com-
pared against several benchmark solutions.

« Randomly mapping: The cameras randomly map to the
Compute node to start the video analytic application.

o Evenly mapping: The cameras map to the Compute
node evenly. That is, the number of video streams
executing on each Compute node is evenly distributed.

e WMA: The cameras map to Compute nodes by
workload and perform the offloading mechanism when
the workload changes.

The impact of the retraining mechanism is also assessed
within the system. The label noR, appended at the end of each
scheme, signifies that the retraining mechanism is not being
utilized in that particular scheme.

C. ANALYSIS OF SYSTEM PERFORMANCE

The system performance is observed and analyzed based on
various factors, including the number of processes, dynamic
workloads, Compute nodes, and cameras.

1) IMPACT OF MULTIPLE PROCESSES EXECUTION
As mentioned in Section III-C, performance decreases when
multiple processes are executed on a single server. In the
evaluation, the processing throughput of a single video
stream is measured when multiple processes are executing
simultaneously. This analysis aims to understand how the
concurrent execution of processes affects the performance of
the video stream processing.

As depicted in Figure 9, the throughput decreases as the
number of processes increases. Specifically, the throughput
decreases by a factor of 75% with each additional process.

2) RELATIONSHIP BETWEEN WORKLOAD AND
THROUGHPUT

The video re-identification pipeline’s processing speed is
highly influenced by the objects or workload in each frame,
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FIGURE 11. Workload dynamics of five cameras in CityFlowV2 dataset.

primarily due to the critical feature extraction step mentioned
in Section III-A.

Figure 10 depicts the relationship between workloads
and throughput, illustrating a negative proportionality.
As observed, there is an inverse correlation between work-
load and processing speed, meaning that as the workload
increases, the processing speed decreases.

3) IMPACT OF DYNAMIC WORKLOAD

The performance of WMA and various baselines are
evaluated under dynamic workloads. Figure 11 shows that
the workloads across five cameras in the dataset are dynamic
over time. One notable observation is that Camera 5 has a
higher average workload than the other cameras, achieving
more than two times the workload of Camera 1. As shown in
Figure 7, Camera 5 is a wide-angle camera with a larger field
of view than the others. This hardware difference results in
more vehicles appearing in the view of Camera 5, leading to
higher workloads.

As shown in Figure 12, the average system throughput
of WMA outperforms the baselines by 12% and 32%.
In the schemes without the retraining algorithm, WMA still
outperforms the baselines, achieving improvements of 10%
and 27%, respectively. The retraining decision is made at
frame 1000, leading to a significant drop in the throughput
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FIGURE 13. Relationship of the system latency and dynamic workloads.

for each scheme. The retraining mechanism results in an 8%,
11%, and 15% drop in WMA and the baselines, respectively.
The trends over time of the three schemes are similar since
the throughput is highly related to the workloads. The evenly-
mapping scheme can achieve relatively high performance
because the workload between the dataset’s cameras is not
significantly imbalanced. When the workload distribution is
relatively even across cameras, the evenly-mapping scheme
can allocate resources efficiently and avoid overloading
specific cameras.

The average latency of each video stream under dynamic
workloads is also evaluated. As shown in Figure 13, the
average latency of WMA surpasses the baselines by 15% and
65%. Even in the schemes that do not employ the retraining
algorithm, the system continues to outperform the baselines,
demonstrating improvements of 12% and 55% improvement,
respectively. Introducing the retraining mechanism leads to
an increase of 7%, 13%, and 14% in WMA and the respective
baselines.

4) IMPACT OF THE NUMBER OF COMPUTE NODES

The number of the input video stream is set to 5. The WMA is
evaluated by different numbers of Compute nodes from 1to 5,
as shown in Figure 14. The performance of one Compute
node and five Compute nodes is identical to the baseline in
this context because no decision-making is involved in either
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situation. When the number of Compute nodes is set to 1,
all video streams can only process on a single server. Each
video stream is processed at a different server if the number
of Compute nodes is set to 5. Each video stream is processed
on a different server when the number of Compute nodes is
set to 5. Both configurations need no offload decision.

The performance of the configuration with 2 and 3 Com-
pute nodes shows significant improvements compared to the
randomly mapped baseline. In terms of overall throughput,
these configurations exhibit a notable gain, with an improve-
ment of 25% and 27%, respectively.

5) IMPACT OF THE NUMBER OF CAMERAS

The number of the Compute nodes is set to be 2, and WMA
is evaluated by different numbers of cameras from 2 to 5,
as shown in Figure 15. The throughput is normalized by
the number of cameras. The performance of the 2-camera
setup is identical to the baseline because there is no decision-
making involved in this scenario, where each camera has
its own isolated Compute node to utilize. In the cases of
3 and 5 cameras, the throughput improved by 19% and
25%, respectively. The case of 4 cameras does not show
improvement since having two cameras on two servers is
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already well-balanced in the authors’ dataset. Besides, it is
observed that as the number of cameras increases, the average
throughput decreases since the size of the compute resource
is fixed.

VI. CONCLUSION

This paper proposes WMA, a two-staged resource allocation
method on a three-tiered cross-camera video analytic system.
The system supports both model fine-tuning and workload
balancing. The system architecture and control workflow are
consistent with the IEEE 1935 edge standard. The research
first digs into the GPU utilization performance of vehicle re-
identification applications and then investigates the camera
workload dynamics. The system evaluation is performed with
a commonly-used dataset. The results show that the proposed
design outperforms the baseline and increases the system’s
overall throughput across cameras. As part of future work,
the authors would like to add configurable options to the
camera input, such as video resolution, FPS, and hardware
information. The selection of these parameters can provide
more options for the proposed algorithm, further enhancing
overall performance. Moreover, the system can be evaluated
using larger datasets or practical settings. These add-ons
will provide a more significant variation in video content,
enhancing the robustness of the evaluations.

In considering future work, exploring the generality and
robustness of the proposed system model in light of advanced
software and hardware optimizations would be valuable. The
workload during inference can fluctuate in computer vision
pipelines based on image or video content. The impact of
practical optimizations, such as adaptive resource allocation
for varying workloads or spatial sharing of GPU resources,
should be investigated to understand how these optimizations
influence the results of the system model. In addition, it is
valuable to discuss the spatial sharing of the GPU among
multiple processes, an optimization extensively explored in
both academic and industry settings for enhancing inference
efficiency. A comprehensive exploration of these factors
could provide insights into the scalability and adaptability
of the proposed model in real-world, dynamic computing
environments.
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