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ABSTRACT Knowledge Graphs have demonstrated a real advantage in knowledge representation, leverag-
ing graphs NoSQL structures and schema-less technology, which offers superior comprehension, knowledge
representation, interpretation, and reasoning. The problem is that current methods for Knowledge Graph
embedding rely on the topology of the graph, and essential information about entities and relations has not
been fully employed, failing to utilize the graph’s ontology to limit the spurious growth of edges, leading to
inaccurate, misleading, and fabricated knowledge. This research aims to establish a method to restrict the
spurious growth of host graph by imposing an upper bound on edge embedding using the claim’s and the
host’s ontology graph. Through this research, a claim-ontology signature artifact was designed to facilitate
open-environment KG completion. This artifact establishes the upper bound for the type of edges predicted
by the link prediction algorithm, thus preventing the spurious growth of edges within the Knowledge
Graph. Furthermore, the artifact was evaluated in the context of three use cases: host-guided embedding,
claim-guided embedding, and topic-guided embedding, using a quantitative framework for design science
evaluation. The main finding is that the spurious growth of edges can be limited by imposing an upper bound
on the possible edge embedding using the claim’s graph and the host ontology graph. A secondary finding
is that the artifact could serve as an instrument to manage the ontology-topology tradeoff in Knowledge
Graphs.

INDEX TERMS Knowledge graphs, knowledge graphs embedding, knowledge graph quality, link predic-
tion.

I. INTRODUCTION
Knowledge Graphs (KGs) have demonstrated a real advan-
tage in knowledge representation, leveraging graphs NoSQL
structures and schema-less technology, which offers superior
comprehension, knowledge representation, interpretation,
and reasoning. Consequently, KGs are adopted as an essen-
tial part of Knowledge Management Systems across various
domains, solving many real-life problems, including infor-
mation retrieval, recommender systems, question-answering,
and Artificial Intelligence (AI) [1], [2]. Knowledge Graphs
are constructs of nodes that represent entities and edges
that illustrate the relationships between these entities. This
information is encoded using the Resource Description
Framework (RDF), a W3C standard used for modeling
semantic web objects [3], [4]. Under the RDF construct,
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KGs store knowledge or facts in triples ≪head, relation,
tail≫ [5]. Industry examples of KGs include Google’s KG,
comprising over one billion entities and 70 billion assertions,
and Microsoft Bing, containing over two billion entities and
fifty-five billion facts. Facebook has the world’s largest social
graph, which includes information about people, places,
movies, and music. For example, while eBay owns the
largest Product Knowledge Graph, containing knowledge
about products and manufacturers [6], [7].

With the maturation and standardization of semantic web
technologies, resulting in a remarkable amount of data being
shared on the web as linked data (LD), various stakeholders
within the larger community of researchers and practitioners
in Computer Science and Big Data Analytics have identified
the importance of LD quality. In the semantic web context,
KGs are perceived as essential knowledge systems products
of LD, and their quality is commonly accepted as fitness
for use [2], [8], [9]. The two commonly used dimensions
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associated with KG’s fitness for use are completeness and
correctness. The former is defined as the degree to which the
KG covers the topic of interest, and the latter is defined as the
degree of freedom from error [10].

Fitness-for-use is not a fixed-value property, and to be
fit for use, a KG must be continuously maintained by (a)
ensuring completeness by updating the KG with new facts
(claims) and (b) ensuring correctness by refining the KG by
using graph mining techniques to create new knowledge by
predicting new nodes and edges or pruning them, altering
the KG structure [11], [12]. Tang et al. [11] indicated three
approaches for updating KGs, manual, semi-automated, and
automated, each comprising two essential steps. The first step
is to extract information from a new claim, and the second
step involves modifying the KG according to rules predefined
by domain experts. Furthermore, Tang et al. [11] indicated
that new claims contain explicit and implicit information,
the latter being the information not mentioned in the claim
but can be inferred from it. They claimed that the implicit
information causes changes in the KG structure [11]. More-
over, by exploring theKG structure for application in Industry
4.0 applications, Yahya et al. [13] discussed the refinement
of KGs as a process that runs on two levels: ontology and
facts. According to Yahya et al. [13], large-scale KGs have
two layers in their graph structure. The first layer comprises
an ontology graph that, like schema, stores all the entities
and properties used to label the facts. The second contains
a facts graph that holds all the facts and the relationships
between them. Using these two layers, Yahya et al. described
the insertion of new claims into KGs by mapping the claims
into ontological terms, thus converting them into a knowledge
subgraph [13].
This research is concerned with inserting new claims into

KGs and the link prediction process triggered by the claim
insertion. Such insertion alters the host KG’s topology and,
in turn, its quality, which affects the KG’s fitness for use.
A quantitative Design Science Research (DSR) method was
used to design and evaluate an artifact that, when embedded
in the insertion process, organically regulates the evolution
of the KG topology and the quality of the residing knowl-
edge. The original contributions of this study are two-fold.
First, it facilitates effective and reliable machine knowledge
curation, discovery, andmanagement by limiting the spurious
growth of the KGs. Second, it promotes the use of ontology as
an efficient KG knowledge management tool throughout the
KG lifecycle. While a significant body of research explores
KG updating and refining through multi-label classification
and link prediction, no study has explored the connection
between ontology and topology.

The rest of this article is structured as follows: Section II
provides an overview of related work on KG comple-
tion, knowledge representation, link prediction, and artificial
reasoning. Section III highlights the problem statement,
hypotheses, and research question. Section IV discusses the
research method and proposed artifact design and evaluation.
Section V reports the findings and discusses the interpretation

of the results and artifact applications, along with limitations
and recommendations for future research. The final section
provides the summary and conclusions.

II. RELATED WORK
A. KNOWLEDGE GRAPH COMPLETION
Knowledge Graph completion is the process of completing
the structure of KGs by predicting the missing entities and
relationships in the graphs and mining unknown facts [14],
[15]. Large-scale KGs contain millions of entities and rela-
tionships. However, they still suffer from incompleteness due
to missing (a) explicit observable facts and (b) implicit non-
observable facts, resulting in an incomplete KG structure and
content. Chen et al. attributed the incompleteness of KG’s to
manual or semi-automated KG construction methods, miss-
ing many implicit entities and relationships [14]. Wang et al.
observed two critical aspects of successful KG completion,
capturing the relational context and multi-faceted relational
paths [15]. Researchers describe the KG completion problem
as a ‘‘fill-in-the-blank’’ task. Chen et al. [14] suggested three
types of KG completion tasks based on which component is
missing from the RDF ≪h, r, t≫ representation. Each task
type assumes that the other two components exist and aims
to predict the missing component. For example, for the triple
≪?, r, t≫, the head is missing, but the relationship and tail
are given; the goal is to predict the head entity [14].

B. KNOWLEDGE REPRESENTATION LEARNING
Knowledge representation learning is a branch of KG com-
pletion that mines the semantic information of KGs by using
ML techniques. He et al. referred to this branch of KG
completion methods as KG embedding and stated that this
branch of models aims to represent entities and relationships
in a low-dimensional continuous vector space [16]. Accord-
ing to Chen et al., it comprises three tasks, including (a)
representing relationships and entities in a continuous space,
(b) defining a score function that determines the probabilities
of established triples, and (c) learning the representation of
entities and relationships by solving the optimization problem
of maximizing the rationality of observable facts [14]. This
branch of methods has expanded in recent years and com-
prises four subgroups: translation models, semantic matching
models, network representation learning models, and neural
network (NN) models.

In a comprehensive review of these methods, Chen et al.
[14] demonstrated that the translation models predict new
entity relationship triples by embedding entities and rela-
tionships in the vector space using existing KG structured
information. However, these models ignore the semantic
information contained in the graph. In contrast, semantic
matching models mine the semantic association between
entities and relationships, leading to better accuracy and
improved performance in natural language processing tasks.
The Network representation learning models move further by
fusing the information from the network topology structure
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and the attribute information of nodes and edges, thereby
implementing the KG completion task using ML. Finally,
neural network models for KG completion are based on
various neural network (NN) methods, such as deep, recur-
rent, convolutional NN, and attention mechanisms. The main
benefits of these models are mitigating the problem of data
sparsity, handling multi-relational characteristics, and han-
dling sequence-based data [14].

C. LINK PREDICTION
In Knowledge Graph completion and specifically represen-
tation learning methods, link prediction has been one of
the most widely researched and applied tasks in recent
years [17], [18], [19]. According to Zhou, link prediction
is a paradigmatic problem in network science that aims
to uncover missing relationships or predict future relation-
ships [19]. Martinez et al. [18] stated that link prediction
is a method that infers the behavior of the network link
formation process based on observed connections. In both
cases, the researchers indicated that link prediction methods
operate on the topology of the network and the properties
of its elements [18], [19]. Rossi et al. classified the link
prediction methods into three categories: tensor decomposi-
tion, geometric learning, and deep learning, emphasizing that
all models in the review learn from the KG structure [20].
Martinez-Rodriguez et al. [21], whose study encompassed
complex networks, proposed a different taxonomy, including
similarity-based, probabilistic, statistical, algorithmic, and
pre-processing methods. They also differentiated between
local and global structure approaches [21]. Ferrari et al. [17],
completed a benchmarking analysis and provided another
classification, including translation, semantic information,
and neural network. Presenting their results, they stated that
‘‘the effectiveness of these models strictly depends on the KG
properties’’ [17] (.p21).

Amongst the many classes of link prediction methods,
one is of particular interest, namely the probabilistic and
statistical approaches and, more specifically, the hierarchical
structure models. This is because the method was used in
this research and requires special attention. Clauset et al. [22]
proposed a hierarchical structure model called a Hierarchical
RandomGraph. Provided an incompletely observed network,
the model generates a set of HRGs with associated proba-
bilities that fit the network. Then, it searches for pairs of
nodes that are unobserved in the network and have a high
average likelihood of connecting within these HRGs [22].
Alternative link prediction methods for link prediction are
based on characteristics such as common neighbors, shortest
paths between nodes, or the largest product of the node degree
[18], [22].

D. ARTIFICIAL REASONING
The topic of artificial reasoning is extensive, encompass-
ing the formation of technological, cognitive reasoning,
and artificial argumentation. The current review is offered
in the context of Knowledge Graphs as systems used in

knowledge-grounded models and applications and their abil-
ity to extract and recycle information, creating models of the
real world. Bryndin [23] pointed out that such capabilities
require an ‘‘artificial mind,’’ defining them as an artificial
modeling system. The main advantage of such a system is
the cost and the speed of making technical decisions [23]. The
benefits of such capabilities are demonstrated in applications
such as transfer learning and generative AI, which are con-
sidered in this review.

Knowledge graphs enable transfer learning by provid-
ing explicit and interpretable mapping between domain
spaces [24], [25]. This capability, observed independently by
several researchers, including Ammanabrolu and Riedl [24],
as a result of studying the efficiency of transfer between
deep reinforcement learning agents designed to play text-
adventure games, reveals two advantages of KGs in transfer
learning. The first was reducing the policy training time
between similar games. The second was increasing the qual-
ity of the learned control policy. Both are critical in text
adventure games because learning in this context requires sig-
nificant training and simulations [26]. More broadly, Petroni
et al. emphasized the importance of knowledge transfer for
a wide range of state-of-the-art tasks, such as latent context
representation [27]. With transfer learning, researchers have
identified two challenges. The first challenge is negative
transfer, in which an arbitrary transfer decreases performance
in the target domain. The second challenge is the inter-
pretability of the transfer learning [25], [28], [29]. Zhuang et
al. explained that the occurrence of negative transfer depends
on several factors, including (a) relevance between source and
target domains and (b) learners’ ability to find transferable
parts of knowledge across domains [29].

Generative AI refers to artificial intelligence that generates
novel content through generative methods involving the dis-
tribution hypothesis, parameter estimation, and sampling new
data from estimated models. According to Gozalo-Brizuela
and Garrido-Merchan’s review of state-of-the-art large gener-
ative AI, such models comprise a transformer and generator
trained on a massive corpus in an enormous architec-
ture [30]. Although, advanced computing technology enables
the advancement of such models with the complexity of rich
data without suffering from underfitting, generative AI mod-
els still face several limitations, including time-consuming
training, bias, overconfidence, and lack of transparency [31].
Themost significant limitation, according toGozalo-Brizuela
and Garrido-Merchan, is that ‘‘the models do not understand
exactly what they are doing’’ [31](p.20). This limitation
points to a lack of a justification for the model output of a
knowledge-grounded ontology.

III. PROBLEM STATEMENT, HYPOTHESIS, AND
RESEARCH QUESTION
A. PROBLEM STATEMENT
The problem is that current methods for Knowledge Graph
embedding rely on the graph’s topology, treating attribute
triples as relation triples, and essential information about
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entities and relations has not been fully employed [32],
[33], [34] failing to utilize the graph’s ontology to limit the
spurious growth of edges leading to false, misleading, and
fabricated knowledge.

B. HYPOTHESIS
H0: The spurious growth of KG cannot be limited by impos-
ing an upper bound on the possible edge embedding using the
claim graph and the host KG ontology graph.

H1: The spurious growth of KG can be limited by imposing
an upper bound on the possible edge embedding using the
claim graph and host KG ontology graph.

C. RESEARCH QUESTION
How can the spurious growth of KG be limited by imposing
an upper bound on the possible edge embedding using the
claim and host’s ontology graphs?

IV. METHODOLOGY
A. METHOD
The research method selected for this study is Design Science
(DS) research following the research traditions in Computer
Science and Information Technology, where practitioners
design and develop artifacts [35] in response to specific
requirements using experiential knowledge and practical rea-
soning [36]. This research offers a construct for limiting the
spurious growth of the host KG and requires evaluating the
construct using hypothesis testing. These two elements rep-
resent a process and a product, and as noted by Bisandu [37],
comprise the signature of the design science researchmethod.
In addition, through Bisandu [37], following Hevner’s guide-
lines for producing viable artifacts in Information Science
research helped to ensure that DSR is the optimal method-
ological fit for such research [37]. Finally, Elragal and
Haddara recommended several evaluation strategies, includ-
ing hypothesis testing when a new theory, artifact, system,
or method is designed to demonstrate the ex-ante vs. ex-post
state of the factors in the context of the problem [38]. The
data analysis software used for this quantitative analysis was
R, a programming language for statistical computing with an
integrated development environment (IDE) RStudio.

B. POPULATION AND SAMPLE
The study’s target population was the RDF statements of
a small KG created from the bibliography of the explored
literature, including scholarly and electronic articles and book
sections. The Knowledge Graph of these references was con-
structed using the igraph package for network analysis and
visualization. The sampling methods included purposive and
random sampling, which are typically used in quantitative
research. The sample size was determined using the Hand-
shaking Lemma to compute the total number of edges in
a connected graph with n nodes. On average, a reference
had seven nodes and 16 edges. Thus, a bibliography KG
comprising ten references can result in a graph with approx-

imately 70 nodes, including ten unique nodes representing
titles, fewer than ten nodes representing years of publication,
and more than ten authors since most papers are co-authored.
By the Handshaking Lemma, such KG can have a maximum
of 4,830 edges in total. After adding a further reference, seven
nodes and 16 edges enter the KG, triggering a link prediction
algorithm.

C. ARTIFACT DESIGN
The purpose of creating the artifact is to establish a method
to limit the spurious growth of the host’s edges by imposing
an upper bound on the possible edge embedding using the
ontology graphs of the claim and the host. In the design of this
artifact, two issues were considered, includingwhere and how
this artifact is (a) generated and (b) applied. Before address-
ing each issue, a description of the problem context, including
the process, the scope, and the parameters is provided. This
process is depicted in Fig. 1, which describes the formation
of the artifact as a transaction between the host and claim
ontology graphs. Once the transaction is complete, the claim
is inserted in the host KG along with the Claim-Ontology
Signature (COS) artifact and the link prediction algorithm
(LPA) is executed. The role of the COS is to filter the newly
predicted edges before they are embedded in the host, thus
limiting the growth of edges in the KG using the established
ontology. The scope of the problem includes a host KG and
a claim subgraph. The host KG comprises an ontology graph
(OG) and a facts graph (FG). The OG defines the generalized
concepts and their relationships, while the FG represents the
facts and relationships. The claim subgraph defines the new
facts and their relationships.

FIGURE 1. Artifact application process flow. The claim and host ontology
graphs are the key components in the formation of the artifact.

The ontology layer comprises ontology triples and is the
datamodel used to represent the semantics of the domain con-
cepts through ontological terms. In contrast, the facts layer
comprises only facts triples. The ontology layer defines the
domain schema, where classes are entities and relationships
are properties [13]. For instance, the ontology layer of a
bibliography KG provides generalized terms of the classes,
including authors, articles, journals, publishers, and the rela-
tionships between them. Fig. 2 illustrates that the ontology
layer connects the author and article directly through a
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‘‘wrote’’ relationship. However, there is no direct connection
between the author and the journal, and such connections
can be established through a path author-reference-journal
because an author is a human, and they are not an entity
that can be published in a journal. The KG’s Ontology layer
is represented using the RDF model where claims (facts)
are expressed as a set of triples (subject, predicate, object),
denoted as ⟨s, p, o⟩. Table 1 shows the RDF representation of
the KG ontology.

FIGURE 2. Host’s ontology graph.

TABLE 1. Host ontology triples.

Next, the claim structure is also represented using the RDF
framework. Fig. 3 illustrates an example of a claim, and
the claim ontology footprint (COF) shown in Table 2. The

claim ontology footprint contains five RDF ontology triples,
represented by the ontology used to express the explicit facts
and implicit information that is knowledge.

FIGURE 3. Textual representation of a claim.

TABLE 2. Claim ontology triples.

Furthermore, ontology triples are the vehicle for knowl-
edge discovery as these triples can trace the paths to
connecting nodes within the existing network through vali-
dated relationships. This footprint serves as the foundation of
the COS, establishing the upper bounds of each node entering
the host KG. Once the claim ontology footprint is set, it is
ready for mapping onto KG ontology. The mapping requires
searching for a complete triple <s, p, o> that matches the
claim triple. This results in a subset of RDF triples from the
KG Ontology layer, as listed in Table 3, which forms the
ontology projection of the claim. The claim triples cf1 and
cf2, through their corresponding ontology footprint vectors
<co1, co2> and <co3, co4, co5> map onto the KG’s ontol-
ogy vectors <T1, T2> and <T5, T6, T10>, each describing
explicit relationships between the entities. These two vectors
describe the explicit relationships between the entities iden-
tified in the claim and serve as the basis for constructing the
claim ontology signature.

TABLE 3. COS matching triples.

Finally, constructing the claim ontology signature requires
tracing the remaining ontology triples describing the explicit
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and implicit relationships between the claim entities and
KG entities. This process searches for incomplete ontology
triples of the form <s, %, %> where only the subject is
known. In the example of the bibliography KG, the search
for such triples where the subject is Reference results in
ontology vector of a form <T7, T8>, representing explicit
relationships, and no vector representing implicit relation-
ships. Consequently, the combined number of edges (degrees)
attributed to this node can be computed as the sum of the
relationships carried by these vectors. In other words, the
claim’s entity Reference has a claim ontology signature that is
a vector of size five with the following components:<T2, T5,
T6, T7, T8>. This ontology signature represents the upper
bound of the potential number of edges linked to this node
once it enters the KG. This number remains fixed unless there
is a change in the KG ontology, allowing for alteration of the
COS. Table 4 lists the COS for each node of the example
claim.

TABLE 4. Example of claim-ontology signature (COS).

Updating the KG using COS permits embedding only a
limited number of edges, with each claim node bounded
by the COS vector determined by the KG ontology graph.
In addition, the type of each newly embedded edge is
validated by the KG ontology, allowing only a specific
ontology-validated relationship between the nodes. In other
words, the attributes of the edges are always known, and
only their value remains to be identified by a subsequent KG
fact-completion process. The claim ontology signature allows
the embedding of a limited number of ontology-validated
edges, thus preventing the formation of false or misleading
information.

D. ARTIFACT EVALUATION
The artifact was evaluated in the context of three use cases,
including (a) Host-Guided embedding (HGE), (b) Claim-
Guided embedding (CGE), and (c) Topic-Guided embedding
(TGE). The motivation for selecting and developing the three
use cases was two-fold. First, from a KG update perspective,
it is known that KGs are updated with external informa-
tion by synchronizing with existing encyclopedia sources
(most likely structured) or extracting data from news streams
(typically unstructured) [11]. Regardless of whether the infor-
mation comes from structured or unstructured data sources,
the methods for KG updating rely on elaborate information
extraction systems and carefully formulated rules that are
often domain-specific, difficult to maintain, and general-
ize [11]. These obstacles lead to two essential problems with

KGs: inefficiency and brittleness. The inefficiency is due to
the computational complexity of reasoning. The brittleness is
due to the large set of handcrafted logical rules that need to be
mined, especially in a dynamic environment [39]. Stakehold-
ers may not be able to solve these two problems, but they can
be alleviated by controlling the type and limits of information
inserted into the host KG.

V. RESULTS, INTERPRETATIONS, AND APPLICATIONS
A. RESULTS
The artifact evaluation was focused on answering the main
research question: How can the spurious growth of KG be
limited by imposing an upper bound on the possible edge
embedding using the claim and the host’s ontology graph?
The evaluation environment and protocol were identical
across all three use cases while the inserted claims differed
based on the use case objectives, driving the difference in the
COS artifact limit values. The numerical results are presented
in Tables 5 and 6, respectively.

TABLE 5. Tradeoff matrix by use case.

TABLE 6. Example of claim-ontology signature (COS).

TheHost-Guided embedding use case described a scenario
where the KG is sufficiently mature, and the stakehold-
ers were mainly interested in curating new facts under the
established KG ontology. As a result, the COS artifact was
constructed based entirely on the basis of the host ontology
graph. In the assessment of the effect of the artifact, the pre-
dicted edge types for the claim nodes exceeded the number of
COS-prescribed edge types. While theWilcoxon signed-rank
test did not detect a statistically significant difference in the
expected value, the Kruskal-Wallis rank-sum test showed
that the variance between the two samples was statistically
significant. This result shows that a COS based entirely on
KG ontology can limit the number of edge types for some
claim nodes but not all. Nevertheless, this result shows that
the artifact can limit the growth of edges in the host.
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Next, the tradeoff matrix created for the HGE use case
showed that without the artifact, a total of 117 edges (the sum
of edges in the column where the probability is greater than
zero) could be added to the graph after the claim insertion.
However, with the COS artifact, only 17 edges are defined by
the host ontology and can be embedded. In addition, it was
observed that the LP function assigned zero probability to the
113 edges that the COS flagged for embedding. These edges
comprise relationships existing in the ontology graph but are
not sufficiently represented in the fact graph. This observa-
tion raised the question of how to reconcile the information
provided by ontology and topology.

The Claim-Guided embedding use case assumed that the
KG was of sufficient maturity; however, the stakeholders
were interested in expanding the KG ontology while simul-
taneously curating new facts. As a result, the COS artifact
was constructed based on mapping the claim subgraph onto
the graph ontology and adding new relationships defined by
the claim. In the assessment of the effect of the artifact, the
predicted edge types for the claim nodes exceeded the number
of COS-prescribed edge types. Both, the Wilcoxon signed-
rank test and the Kruskal-Wallis rank-sum test showed that
the difference in the mean and variance in the two samples
were statistically significant. Furthermore, the tradeoffmatrix
created for the CGE use case revealed that the artifact can
limit the total number of predicted edges.Without the artifact,
112 edges could be added to the graph after the claim inser-
tion. However, only 32 edges were inserted after the COS
was applied. Here again, it was observed that the LP function
assigned zero probability to 125 edges that the COS identified
for potential embedding, leading to the need to reconcile the
information between ontology and topology.

The Topic-Guided embedding use case assumed that the
KG is of sufficient maturity; however, the stakeholders were
interested in learning the KG on a specific topic, including
expanding the ontology and facts graphs. As a result, the
COS artifact was constructed by mapping the claim onto the
graph ontology and adding the new relationships within the
chosen topic. In the assessment of the effect of the artifact, the
predicted edge types for the claim nodes exceeded the number
of COS-prescribed edge types. Both, the Wilcoxon signed-
rank test and the Kruskal-Wallis rank-sum test showed that
the differences in the mean and variance in the two samples
were statistically significant. Furthermore, the tradeoffmatrix
created for the TGE use case revealed that the artifact can
limit the total number of updated edges. Without the artifact,
169 edges could be added to the graph after claim insertion.
However, only 18 COS-prescribed edges were inserted in
the host. Once again, it was observed that the LP function
assigned zero probability to 413 COS-flagged edges. This
number is much higher than the numbers observed in the
previous two use cases, indicating that using graph topology
alone may lead to missing information provided by the ontol-
ogy.

B. INTERPRETATION AND APPLICATIONS
Knowledge Graphs combine factual data according to an
ontology, facilitating the derivation of new knowledge by
identifying non-observed entities and relationships. These
capabilities make KGs an essential component in AI and
ML through two functions: (a) promoting learning and
explainability and (b) encoding, representing, and discover-
ing domain knowledge that would be prohibitive for learning
from large data sets alone. The use cases designed for COS
artifact evaluation, including HGE, CGE, and TGE, illustrate
how the artifact supports the two functions. In all three use
cases, the host’s ontology, and the facts graphs were separated
to promote learning and explainability by facilitating the cre-
ation and application of the COS artifact. In this manner, the
artifact facilitates proper link encoding of the observable links
and bounds the number of non-observable links suggested
by the topology-driven LP algorithm executed to update
the KG.

Each use case tradeoff matrix illustrates the COS artifact’s
impact, that is, to limit the number of edges introduced
after inserting a new claim into the host KG. Furthermore,
an interesting result was the significant number of edges with
zero probability belonging to the COS set. For each use case,
these relationships were defined by the KG ontology, how-
ever the LP algorithm did not identify possible connections.
One way to explain this phenomenon is by considering the
structural redundancy of the host KG or lack thereof because,
by construction, the host KG is heterogeneous. Zhou (2021)
reported that networks with greater structural redundancy are
more predictable [19]. In other words, the uniqueness of the
nodes and edges in the host KG deterred the LP algorithm
from identifying relationships between nodes. However, the
COS artifact identified these edges as potential embedding
candidates. This finding is significant in demonstrating how
topology-based LP algorithms can miss ontology-defined
connections in heterogeneous KGs. It also reveals the role of
the COS artifact in detecting such missed links.

Next, in the context of the impact of ontology and KG
topology on knowledge discovery, the results of the COS
artifact evaluation revealed that based on the KG state and
stakeholders’ objectives, ontology, and KG topology are in
a tradeoff relationship that impacts the direction and rate
of knowledge discovery. It is unclear to what extent this
relationship has been understood by the research community
beyond the fact that ontology serves as a schema for KGs
and schemas facilitate encoding and representing knowledge.
Because these are the prerequisites for knowledge discovery,
in particular, how complete and correct information is charac-
terized, one can claim that ontology impacts the quality of the
knowledge discovery process and, by extension, the topology
of theKG.However, this reasoning is not actionable, although
logical. In other words, the relationship between ontology and
topology must be understood and leveraged for purposeful
and efficient knowledge discovery.
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The tradeoff relationship between ontology and topology
was revealed while exploring and comparing the findings of
the three use cases each designedwith a specific host KG state
and stakeholders’ objectives, determining the computation of
the COS artifact, in turn, and guiding the edge embedding.
In the HGE use case, the host ontology has precedence over
the claim ontology, and the host ontology graph alone sets
the upper bounds for each claim node. Consequently, the
topology of the host KG evolves strictly enclosed under its
ontology. In contrast, in the CGE use case, the ontology of the
host is open to accepting new relationship information. The
claim and host ontology graphs performed a handshake-like
transaction where new relationships were introduced by the
claim previously non-observable in the host ontology. This
transaction increases the upper bound limits set by the COS
artifact. As a result, the host KG evolves in both ontology and
topology.

Further, the Topic-Guided embedding use case was set to
explore ontology evolving in a specific direction, such as a
topic of interest that has not been observed before. Similar
to the CGE use case, the claim and host ontology graphs
performed a handshake-like transaction, where new relation-
ships were introduced by the claim previously not observed in
the host ontology. This transaction increases the upper bound
limits set by the COS artifact. As a result, the host KG evolves
in both ontology and topology. However, the difference with
this use case is that the ontology grows in a specific direction
and at a much higher rate.

Figure 3 illustrates the footprint on a log2 scale of the
rate of embedding the claim edges by use case, where the
tradeoff between topology (LPA) and ontology (COS) can be
observed. The radar chart shows the rate-embedding envelope
for each use case. All use cases start with the maximum
possible number of edges that can connect the nodes of the
new claim to the nodes of the host. The subsequent execu-
tion of link prediction determines the edges that should be
embedded based on the topology of the host. In turn, the
COS artifact determines the number of relationships defined
by the host’s ontology. Finally, the intercept of the last two
sets determines the edges that can be reliably embedded in
the host.

The observed tradeoff relationship between ontology and
topology can be described as the tradeoff between learning
new concepts and learning new facts within the same concept.
If the host KG preserves its ontology, then what is left to be
added to the KG is new facts, and over time, the topology
of this KG will become homogeneous and, as a result, more
predictable. By contrast, if the ontology is allowed to evolve,
whether in general or in a specific topic, the topology of
the host will develop accordingly, but it will remain less
predictable. Regardless of the scenario, the COS artifact can
facilitate the management of KG embedding either by limit-
ing the spurious growth of edges or by detecting edges that
are missed by topology-based LP algorithms. To a broader
degree, the claim ontology signature can facilitate a better
understanding of the ontology-topology tradeoff.

FIGURE 4. Topology vs. ontology tradeoff envelop, illustrating the
footprint in log2 scale of the rate of embedding the claim edges by use
case.

The application of the COS artifact as an instrument that
facilitates the ontology-topology tradeoff can be explored
in the pursuit of enforcing semantic knowledge. As demon-
strated in this study, the COS artifact ensures that new
information is (a) aligned with the host KG ontology and
(b) each entity receives an ontology-validated upper bound
of the number and type of potential links with other enti-
ties within the host. The COS artifact limits the number of
unobserved links possibly predicted by the LP algorithms that
are impacted by the graph topology. When transfer learning
is performed using KGs representing the source and target
domains, the challenges of transfer learning can be miti-
gated using the COS artifact, reinforcing positive transfer
and limiting the negative transfer effect while improving
interpretability. Enforcing semantic knowledge in generative
AI systems by maintaining an ontology graph that supports
the transformer and generatormodels can be away tomitigate
their limitations, help control this bias, limit hallucinations,
and improve the accuracy of the generated content.

The impact of the COS artifact which aids the enforcement
of semantic knowledge in transfer learning and generative
AI systems can be evaluated through socioeconomic lenses,
considering that AI-generated content has emerged as a
promising force for innovation. A study by PriceWaterhouse-
Coopers quoted by Du et al. reported that AI can potentially
increase global GDP by 14% or nearly $15.7 trillion by 2030
[40]. While capabilities demonstrated by a variety of models
such as ChatGPT developed by OpenAI and Stable Diffusion
launched by Stability AI are rapidly becoming essential,
the increasing costs of development and deployment due to
large datasets and complex architecture required to achieve
reliable performance still impede adoption across industries.
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Professional users seek domain-grounded knowledge and
transparency in these generative AI models.

C. LIMITATIONS
This section outlines the limitations of this research con-
cerning the characteristics of the evaluation environment,
including the type, size, and topology structure of the KG
and the ability to explore the proposed COS artifact with
available open-source link prediction algorithms. Limitations
are weaknesses associated with the choice of research design,
system or model constraints, or other factors outside of
the researcher’s control [41]. The choice of the evaluation
environment impacts the artifact evaluation results primar-
ily through the topology structure of the host KG and the
choice of link prediction method. The network topology
affects link predictability, revealing the effectiveness of the
artifact. According to Zhou’s review of link prediction meth-
ods, researchers have found that the network topology affects
link predictability. In the same review, Zhou revealed that a
network can be highly predictable if adding links does not
significantly affect its topological structure [19].
The choice of the host KG was prompted primarily by

the availability of domain-specific open-source KGs with
established ontology graphs. Because of the rich entity and
relationship ecosystem of domain knowledge, such KGs
could have been a more suitable evaluation environment
because their size and topology structure would impact the
link prediction algorithm and, as a result, illustrate how
the COS artifact performs within a rich and heterogeneous
domain-driven environment and, consequently, strengthen
the generalizability and transferability of the evaluation
results. However, such KGs were not publicly available dur-
ing this research. Although limited in size, both the ontology
and fact graphs of the host KG have been designed to ensure
their heterogeneous structures, that is, they contain nodes and
edges of more than one type [42]. In this sense, the design
supports the validity and reliability of artifact evaluation.

Next, the choice of link prediction algorithm was driven
by the implementation availability within the igraph package.
Zhou [19] stated that various automated link prediction algo-
rithms have been proposed and implemented using network
topology to estimate the likelihood of non-observed links.
However, in the same review, he pointed out that very few
algorithms have been compared using one or two metrics
and on several small networks [19]. Based on these find-
ings, the hierarchical random graph model to predict missing
edges from a network implemented in the igraph package
was chosen for artifact evaluation. Its impact on the validity
and trustworthiness of the results is limited within the igraph
package implementation, being an open-source product.

D. RECOMMENDATIONS FOR FUTURE RESEARCH
The utility value of Knowledge Graphs has been demon-
strated throughout this paper, and the importance of research-
ing ways to improve KG quality by limiting the spurious

growth of its edges using the graph’s ontology is paramount.
Moreover, exploring ways to maintain and update KGs by
enforcing semantic knowledge is in line with the recom-
mendations of other researchers in the current knowledge-
grounded scholarship. As a result, further exploration of
methods to limit, reduce, or prevent the spurious growth
of edges in KGs, especially utilizing the graphs’ semantic
knowledge, is recommended. Such efforts will increase the
utility of KGs and their downstream applications, such as
transfer learning and generative AI models.

The application of the research methodology described in
the Methods section was limited to the characteristics of the
evaluation environment, including the type, size, and topol-
ogy structure of the KG and the ability to explore the COS
artifact with available open-source link prediction algorithms.
Research with alternative topologies, domain-specific KGs,
and link prediction algorithms would be the next natural step
that can facilitate the exploration of richer domain-specific
topologies and help uncover potential challenges not encoun-
tered in this research.

Several directions are possible for future research regard-
ing the integration and impact of the COS artifact on
knowledge-grounded models. First, integrating the COS arti-
fact into transfer learning and generative AI models requires
further exploration owing to the complexity, wide range of
applications, and challenges of these models. Researchers
in transfer learning agree that transfer learning techniques
can be further explored with new methods to solve complex
knowledge transfer scenarios from relevant source domains,
looking to avoid negative transfer and improve interpretabil-
ity [29]. Therefore, it is recommended to research the
integration of the COS artifact into transfer learning models
and its impact on negative transfer and interpretability.

E. SUMMARY
The claim-ontology signature artifact is a data structure com-
puted as a mapping of the claim ontology graph onto the
host ontology graph. The artifact was evaluated in the con-
text of three use cases: host-guided embedding, claim-guided
embedding, and topic-guided embedding, each describing a
specific KG state and stakeholder’s objective and the corre-
sponding COS artifact. In all three cases, the host ontology
served as a blueprint for identifying explicit and implicit
relationships between the entities defined within the claim.
However, under each use case objective, either the host,
claim, or topic subgraph guides the construction of the COS
and determines the upper bound of the type and number
of edges permitted to grow in the fact graph after the LP
execution.

The evaluation results revealed that the COS artifact can
limit the spurious growth of edges in the KG of the eval-
uation environment. Regarding specific use cases, the COS
artifact can affect the connectivity of some claim nodes in
the HGE and all nodes in the CGE and TGE use cases.
One finding resulting from the tradeoff matrix calculations
across all use cases revealed the existence of COS-identified
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zero-likelihood edges. In all use cases, these edges repre-
sent relationships described by the graph or claim ontology.
This finding shows that the COS artifact effectively prevents
knowledge loss when used with topology-based LP methods.
A comparison of the three use cases revealed an element of a
tradeoff between the host topology and ontology that plays a
role in KG embedding.

VI. CONCLUSION
The purpose of this research was to establish a method to
limit the spurious growth of edges in KGs by imposing
an upper bound on the possible link embedding using the
ontology graphs of the host KG and claim. This study was
conducted to develop and evaluate a claim-ontology signature
artifact, facilitating the validation of new links predicted for
embedding by topology-driven link prediction algorithms.
The main research question posed was: How can the spuri-
ous growth of KGs be limited by imposing an upper bound
on the possible edge embedding using the claim and host
ontology graph? The study presented the COS artifact’s
design and evaluation in the context of current knowledge
graph scholarship using open-source software packages to
construct a bibliography-based evaluation environment and
practice-based use cases. The main finding from the research
revealed that the spurious growth of KGs can be limited by
imposing an upper bound on the possible edge embedding
using the claim and host ontology graph. Further findings
revealed that the COS artifact effectively prevents knowl-
edge loss and could serve as an instrument to manage the
ontology-topology tradeoff in KGs which plays a role in KG
embedding.

The applicability and impact of this research were
reviewed in the context of current KG research and its appli-
cations, including ML and AI. In particular, the findings of
this research can be applied to areas of ML, such as transfer
learning, which faces challenges, including negative transfer
and lack of interpretability. This research links these concepts
to the concept of ontology-topology tradeoff and the method
of embedding new edges representing relationships in the
target task ontology when training data is scarce. Specifically,
in AI, knowledge-grounded dialog systems and generative
AI models face challenges, including poor performance on
topics unseen in the training data, inability to generalize to
different knowledge source domains, bias, and accuracy. This
study links these challenges to the idea of enforcing semantic
knowledge and discusses the application of the COS artifact
as an instrument for validating input or generating output by
such AI systems. The limitations of this study relate to the
characteristics of the evaluation environment, including the
type, size, and topology structure of the KG and the ability to
explore the COS artifact with available open-source link pre-
diction algorithms. The choice of the host KG, prompted by
the availability of domain-specific open-source KGs, impacts
the performance of the HRG based link prediction algorithm
and, as a result, demonstrates COS artifact performance.

With these findings and their potential applications, sev-
eral focus areas for future research have been identified,
including exploring alternatives to the COS artifact, explor-
ing the artifact in alternative settings, and researching ways
to integrate the artifact with existing knowledge-grounded
ML and AI downstream applications. The first direction
calls for further exploration of the COS artifact as a con-
struct and potential data structure and storage solutions. The
second direction aims to overcome the limitations of the
current research framework and explore the COS artifact
in an industry-domain ontology-rich environment. Finally,
the third direction focuses on the practical applications of
this research concerning integration of the COS artifact
with knowledge-grounded transfer learning and generative
AI models. Exploring how different industries with a defined
ontology may integrate a COS artifact can be beneficial for
evaluating the artifact’s ability to enforce semantic knowl-
edge.
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