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ABSTRACT Compared with traditional vehicles, driverless electric vehicles equipped with electric wheels
are more likely to generate the front wheel shimmy phenomenon, which affects driving comfort and safety.
It is necessary to study an active control approach to alleviate or even eliminate the shimmy phenomenon. The
current active shimmy control methods do not consider the sensor measurement error. However, the sensor
measurement error worsens the effect of an active shimmy control method in practice. For addressing this
issue, this paper proposed a novel active shimmy control method considering unknown sensor measurement
error via sampled-data output feedback. Firstly, a four-degree-of-freedom (4-DOF) shimmy model of the
front electric wheel is built. The dynamic functions of the model are obtained via the Lagrange theorem.
Based on the dynamic functions, a shimmy control system with unknown sensor measurement error and
nonlinearities is proposed. Then a sampled-data output feedback control (SOFC) method is proposed for the
shimmy control system. By selecting an appropriate domination gain, the designed controller can globally
asymptotically stabilize the system even in the presence of unknown measurement error. Finally, the 4-DOF
shimmy model and the SOFC method for the shimmy system are verified via simulation. The simulation
results show that the SOFC method can address the sensor measurement error issue.

INDEX TERMS Vehicle control, driverless electric vehicle, shimmy control, sensor measurement error,
sampled-data output feedback.

I. INTRODUCTION
With the development of computer, artificial intelligence,
sensor, and internet technologies, the driverless vehicle
is greatly developed [1], [2], [3], [4]. Driverless electric
vehicle with electric wheel (DEV-EW) especially meets the
requirement for energy saving, environmental protection, and
handling stability. For a DEV-EW, it is easier to generate
a front-wheel shimmy phenomenon than a traditional fuel
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vehicle because of the electric wheel and no driver inter-
ference. The in-wheel motor is fixed into the wheel which
changes the mass moment of inertia of the wheel, the tyre
cornering stiffness coefficient, the natural frequency, the tyre
lateral stiffness coefficient, and the torsional damping of
the wheel rotation around kingpin etc. Therefore it is more
necessary to study the front electric wheel shimmymodel and
active control method for the DEV-EW [5], [6], [7].

Many achievements have been obtained on the front
wheel shimmy mechanism of traditional fuel vehicles in the
past decades. Pacejka analyzed the shimmy phenomenon
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considering the tyre characteristics, coulomb friction in the
king-pin bearings, and clearance in the wheel bearings [8].
Lu et al. built a 6-DOF dynamic model of a vehicle shimmy
system considering the clearance in [9] and stochastic
clearance in [10]. Zhuravlev et.al. used poly component
dry friction theory to explain the shimmy phenomenon
in [11]. Ran et.al. used the Von Schlippe tyre model and
the energy flow method to illustrate the energy transfer by
the tyre during shimmy in [12]. Bian et al. built a 5-DOF
model to analyze the suspension damping characteristics
influence on the wheel shimmy of four wheel-independent-
drive electric vehicles [13]. Wei et al. analyzed shimmy
bifurcation characteristics based on a 4-DOF model in [14]
and established a 7-DOF dynamic model of whole vehicle
self-excited vibration induced by the shimmy of front wheels
which considering the nonlinear factor of tire lateral force
and dry friction force in suspension and steering system
in [15]. By theway, some researchers also studied the shimmy
phenomenon of the aircraft land wheel widely [16], [17].
The aforementioned achievements are about the shimmy

mechanism. They are mainly used for vehicle design. Once
the shimmy appears, it needs to find effective methods to
address this issue. Some researchers have proposed different
control methods to alleviate or even eliminate the shimmy
phenomenon. For example, Dutta and Choi designed an
adaptive sliding mode controller for an automotive steering
systemwith amagneto-rheological damper based on a 4-DOF
dynamic model in [18]. Meng et.al. built a 2-DOF shimmy
dynamic model of an EV and proposed an active shimmy
control method based on sampled-data output feedback
in [19]. Then they built a new 4-DOF steering wheel shimmy
dynamic model of an EV with independent suspension and
constructed an active shimmy controller based on finite-time
controlmethod via a nonlinear uncertain disturbance observer
to deal with the shimmy phenomenon in [20].
But aforementioned active shimmy control methods do not

consider the sensor measurement error. They need precise
measurement data acquired by sensors, i.e., there are no
sensor measurement errors in the state equations. A universal
control system can be described as [21]

ẋi = xi+1 + φi(t, x, u), i = 1, 2, · · · , n− 1,

ẋn = u+ φn,

y = h(t)x1, (1)

where x = [x1, · · · , xn]T ∈ Rn, u ∈ R and y ∈ R.
The sensor measurement precision h(t) is selected as h(t) ≡

1 directly in most existing control methods. However, there
always exists a sensor measurement error because of the
sensor design, sensor manufacturing, working temperature,
electromagnetic interference, etc, i.e., h(t) ̸= 1 in
engineering and the sensor measurement precision h(t) is
bounded unknown or time-variable. In practical shimmy
system, sensor measurement errors may manifest in multiple
forms. The shimmy system acquires state through the angle
sensor installed on the steering column, and then uses the

state observer to obtain the shimmy angle based on the
obtained state. The data measured by the sensor contains
several errors: a) Random error: Random error is typically
caused by factors such as noise, electromagnetic disturbance,
and temperature fluctuations in the environment. This error
leads to large fluctuations in measurement data, affecting
accurate judgments of the measured parameters. b) System
error: System error is typically caused by inherent defects
in the sensor, calibration errors, or long-term stability
issues. System error results in a fixed deviation in all
measurements for the sensor. c) Linear error: Linear error
causes a fixed proportional deviation between the true value
of the measurement and the value of the sensor display. d)
Nonlinear error: Nonlinear error causes a complex nonlinear
relationship between the true value of the measurement and
the value of the sensor display. e) Thermal drift error: Due to
the large temperature variations in the automotive operating
environment, thermal drift error can cause measurement
values to vary at different temperatures. It is challenging for
constructing a control law to stabilize the system (1) if the
sensor measurement error is considered. But it is necessary
to find a new control method to solve this problem via
advanced control theory. Some researchers have discussed the
control methods considering sensor measurement sensitivity
in theory. For example, in [22], Zhang et.al. provided a
solution by a feat of the concept of tuning functions and
barrier Lyapunov functions. Oh and Choi designed a gain-
scaling output feedback controller for a kind of nonlinear
system with unknown measurement sensitivity in [23] and
studied the regulation of a class of nonlinear systems with
unknown growth rate and uncertain measurement sensitivity
in [24]. Koo and Choi designed an output feedback controller
and discussed the bound of the measurement sensitivity
for a class of lower triangular nonlinear systems in [25].
In [26], Liu et.al. presented a new method to obtain the
bound of the sensor sensitivity as large as possible. Qian,
CJ et al. designed a dynamic output feedback controller to
stabilize a nonlinear system with unknown structure and
measurement sensitivity [27]. In [28], Deng et.al. studied the
event-triggered control of the nonstrict-feedback nonlinear
system with unknown measurement and unknown model
dynamics. These achievements are focused on continuous
time and studied in theory. But in vehicle control systems, the
computers are used widely. The computers deal with discrete
data, i.e., the outputs of the controllers and inputs of sensors
are sampled-data. On the other hand, the nonlinearities
and unknown disturbances are generated from the dynamic
model of a plant, whose parameters are determined by the
parameters of the plant. Therefore, how to design an output
feedback controller based on the sampled-data for the front
wheel shimmy control system with sensor measurement
error is challenging but interesting. In this paper, we will
construct a novel sampled-data state observer which can
counteract the nonlinearities and unknown sensor measure-
ment error via domination gain, and design a sampled-
data output feedback active shimmy controller based on
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the constructed observer. The novelties of this paper are
as follows.
(1) A 4-DOF electric wheel shimmy model of a DEV-

EW is established to express the characteristics of the
shimmy phenomenon which also enable the control
system to be controllable and observable.

(2) A sampled-data observer with a domination gain is
constructed. The domination gain can deal with the
nonlinearities and unknown sensor measurement error.

(3) A sample-data output feedback active shimmy con-
troller is designed to stabilize the 4-DOF shimmy
system globally asymptotically. The controller can
mitigate or even eliminate the negative influence of the
unknown sensor measurement error and nonlinearities
effectively.

This paper consists of the following sections. The 4-DOF
shimmy model of a DEV-EW is established in section II.
The sampled-data observer and output feedback controller
of the shimmy control system are designed in Section III.
Simulations are carried out to verify the effectiveness of the
shimmymodel and SOFC compared with the SMCmethod in
Section IV. The conclusion of the paper is given in Section V.

II. 4-DOF ELECTRIC WHEEL SHIMMY
MODEL OF A DEV-EW
For describing the characteristics of electric wheel shimmy
and enabling the controllability of shimmy control system,
we simplify the shimmy system to a 4-DOF dynamic model
as shown in Figure 1, where θ1 and θ2 are the shimmy angles
of the front-left wheel and front-right wheel respectively,
θ3 is the swing angle of the pinion, θ4 is the torsion angle
of the motor output shaft, J1 is the mass moment of inertia
of the front-left wheel, J2 is the mass moment of inertia of
the front-right wheel, J3 is the mass moment of inertia of
the pinion, J4 is the mass moment of inertia of the motor,
k̃1 is the equivalent torsional stiffness between the front-
left wheel and pinon, k̃2 is the equivalent torsional stiffness
between the front-right wheel and pinion, k̃3 is the equivalent
torsional stiffness between the pinion and rack, k̃4 is the
equivalent torsional stiffness between the reduction gear and
the motor, kα is the amplifying coefficient between a steering
wheel and the rack of the rack and pinion steering gear, kβ
is the amplifying coefficient of the rack and pinion steering
gear, c1 is the torsional damping between the front-left wheel
and the rack, c2 is the torsional damping between the front-
right wheel and the rack, cl1 is the torsional damping of the
front-left wheel rotation around kingpin, cr2 is the torsional
damping of the front-right wheel rotation around kingpin,
c3 is the torsional damping of the rack, cg is the equivalent
torsional damping between the pinion and rack,cs is the
equivalent torsional damping between the reduction gear and
the motor.

According to Lagrange’s theorem, there exists

d
dt
(
∂T
∂ q̇i

) −
∂T
∂qi

+
∂U
∂qi

+
∂D
∂ q̇i

= Qi (i = 1, 2, 3, 4), (2)

where

T =
1
2
J1θ̇21 +

1
2
J2θ̇22 +

1
2
J3θ̇23 +

1
2
J4θ̇24 ,

U =
1
2
k̃1(θ1 − kαθ3)2 +

1
2
k̃2(θ2 − kαθ3)2

+
1
2
k̃3(θ3 − kβθ4)2 +

1
2
k̃4θ24 ,

D=
1
2
cl1θ̇21 +

1
2
c1(θ̇1 − kα θ̇3)2+

1
2
cr2θ̇22 +

1
2
c2(θ̇2 − kα θ̇3)2

+
1
2
c3(θ̇3 − kβ θ̇4)2 +

1
2
cgθ̇23 +

1
2
csθ̇24 ,

qi is the generalized coordinatewhich represents θ1, θ2, θ3, θ4.
For a tyre, the motion around a kingpin is mainly caused by
lateral force and other external disturbances. Therefore, the
generalized force Qi can be obtained as follows.

Q1 = −Fyl(tm + rd sinα) + w1 − u,

Q2 = −Fyr (tm + rd sinα) + w2 − u,

Q3 = 0, Q4 = 0, (3)

where Fyl and Fyr are the lateral forces of the front-left wheel
and the front-right wheel respectively, tm is the pneumatic
trail, rd is the wheel rolling radius, α is the caster angle,
w1 is the moment generated by uncertain disturbances to the
front-left wheel and kingpin, w2 is the moment generated by
uncertain disturbances to the front-right wheel and kingpin.

FIGURE 1. The 4-DOF electric wheel shimmy model of a driverless electric
vehicle.

For fully reflecting the shimmy characteristics, we use Eq.4
to obtain the lateral forces. The lateral forces are strongly
nonlinear.

Fyl = ak(θ1 − bθ̇1) + a2̃a2(θ1 − bθ̇1)2 + a3̃a3(θ1 − bθ̇1)3,

Fyr = ak(θ2 − bθ̇2) + a2̃a2(θ2 − bθ̇2)2 + a3̃a3(θ2 − bθ̇2)3,

(4)

where a, b, ã2, and ã3 are obtained from

a = [(ρv/k)2 + (ρf /k)ω2]/[ω2
+ (ρv/k)2],

b = [ρv/k − ρ2fv/k2]/[(ρv/k)2 + ρf ω2/k],

ã2 = −0.0668k2/(µGz), ã3 = −0.1032k3/(µGz)2, (5)

where v is the vehicle speed, k is the tyre cornering stiffness
coefficient, ω is the natural frequency, ρ is the tyre lateral
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stiffness coefficient, Gz is the front wheel vertical weight, µ
is the road adhesion coefficient.

Then the 4-DOF dynamic equations are described as

J1θ̈1 + [c1 + cl1 − abk(tm + rd sinα)]θ̇1
+ [̃k1 + ak(tm + rd sinα)]θ1 − k̃1kαθ3

− c1kα θ̇3 + [a2̃a2(θ1 − bθ̇1)2 + a3̃a3(θ1 − bθ̇1)3]

· (tm + rd sinα) − w1 + U = 0,

J2θ̈2 + [c2 + cr2 − abk(tm + rd sinα)]θ̇2
+ [̃k2 + ak(tm + rd sinα)]θ2 − k̃2kαθ3

− c2kα θ̇3 + [a2̃a2(θ2 − bθ̇2)2 + a3̃a3(θ2 − bθ̇2)3]

· (tm + rd sinα) − w2 + U = 0,

J3θ̈3 + (c1k2α + c2k2α + c3 + cg)θ̇3 − c1kα θ̇1

− c2kα θ̇2 − c3kβ θ̇4 − k̃1kαθ1 − k̃2kαθ2

+ (̃k1k2α + k̃2k2α + k̃3)θ3 − k̃3kβθ4 = 0,

J4θ̈4 + (c3k2β + cs)θ̇4 − k̃3kβθ3 − cskβ θ̇3

+ (̃k3k2β + k̃4)θ4 = 0. (6)

Define xi as

x1(t) = θ4(t), x2(t) = θ̇4(t), x3(t) =
k̃3kβ
J4

θ3(t)

x4(t) =
k̃3kβ
J4

θ̇3(t), x5(t) =
k̃2̃k3kαkβ
J3J4

θ2(t)

x6(t) =
k̃2̃k3kαkβ
J3J4

θ̇2(t), x7(t) =
k̃1̃k3kαkβ
J3J4

θ1(t)

x8(t) =
k̃1̃k3kαkβ
J3J4

θ̇1(t). (7)

The state equations of Eq.6 are

ẋi(t) = xi+1(t) + φi(t, x(t)), i = 1, 2, · · · , 7

ẋ8(t) = u(t) + φ8(t, x(t))

y = h(t)x1(t), (8)

where

φ1(t, x(t)) = 0,

φ2(t, x(t)) = −
k̃3k2β + k̃4

J4
x1 −

c3k2β + c3
J4

x2 +
cs
k̃3
x4,

φ3(t, x(t)) = 0,

φ4(t, x(t)) =
k̃23k

2
β

J3J4
x1 +

c3̃k3k2β
J3J4

x2 −
k̃1k2α + k̃2k2α + k̃3

J3
x3

−
c1k2α + c2k2α + c3 + cg

J3
x4+

c2
k̃2
x6+x7+

c1
k̃1
x8,

φ5(t, x(t)) = 0,

φ6(t, x(t)) =
k̃22k

2
α

J2J3
x3 +

c2k2αk2
J2J3

x4

−
k̃2 + ak(tm + rd sinα)

J2
x5

−
c2 + cr2 − abk(tm + rd sinα)

J2
x6

− x7 + L1 +
k̃2̃k3kαkβ
J2J3J4

w2 −
k̃2̃k3kαkβ
J2J3J4

U ,

φ7(t, x(t)) =0,

φ8(t, x(t)) =
k̃21k

2
α

J1J3
x3 +

c1k2αk1
J1J3

x4

−
k̃1 + ak(tm + rd sinα)

J1
x7

−
c1 + cl1 − abk(tm + rd sinα)

J1
x8

+ L2 +
k̃1̃k3kαkβ
J1J3J4

w1,

u(t) = −
k̃1̃k3kαkβ
J1J3J4

U ,

L1 = −
1
J2

[
a2̃a2

J3J4
k̃2̃k3kαkβ

(x5 − bx6)2

+a3̃a3

(
J3J4

k̃2̃k3kαkβ

)2

(x5−bx6)3
]

× (tm+rd sinα),

L2 = −
1
J1

[
a2̃a2

J3J4
k̃1̃k3kαkβ

(x7 − bx8)2

+a3̃a3

(
J3J4

k̃1̃k3kαkβ

)2

(x7 − bx8)3
]

× (tm + rd sinα).

One can find that the state equations include the sensor
measurement precision h(t) which means that the torsion
angle of the motor output shaft obtained by the torsion angle
sensor includes the sensor measurement error caused by
external disturbances.
Remark 1: The 4-DOF shimmy model is more precise

than some shimmy models. It can meet the requirement
of engineering. The higher DOF shimmy models are more
precise than the 4-DOF shimmy model. But these models
increase the control difficulty greatly. And the real-time
performance of higher DOF shimmy models get worse.
Taking these factors into consideration, we choose to build
this 4-DOF model. We simulate this model in IV section.
The simulation results coincide with published achievements
which verify that this 4-DOF model is effective.

III. ACTIVE SHIMMY CONTROL APPROACH BASED ON
SAMPLED-DATA OUTPUT FEEDBACK
In this section, we will design a linear observer with a
domination gain as well as a controller based on sampled-data
output feedback for system (8) which considers the unknown
sensormeasurement precision h(t). To begin with, we provide
two assumptions on the nonlinear terms and the unknown
sensor measurement error of the system (8) respectively.
Assumption 1: There exists a constant c ≥ 0 such that

|φi(t, x(t), u(t))| ≤ c(|x1| + |x2| + · · · + |xi(t)|), (9)

i = 1, 2, · · · , 8

for all (t, x, u) ∈ R × R+
× R8.
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Assumption 2: There exists a positive constant
h(t) ∈ (0, 1) such that

1 − h∗(t) ≤ h(t) ≤ 1 + h∗(t), (10)

for all t ∈ R+, where h∗(t) is the allowable sensor
measurement error.

Next, we will provide a theorem to express our achieve-
ment of this paper.
Theorem 1: A sampled-data output feedback controller

designed as

u(t) = u(tk ) = −k1y(tk ) − k2ẑ2(tk ) − · · · − k8ẑ8(tk ),

∀t ∈ [tk , tk+1), tk = kT , k = 0, 1, 2, · · · (11)

with an observer{
ẑ1(tk ) = z1(tk ), ẑi(t) = η̂i(t) + aiẑi−1(t), y(tk ) = z1(tk ),
˙̂ηi(t) = −Laiηi(t) − La2i ẑi−1(tk ), i = 2, 3, · · · , 8

(12)

can globally asymptotically stabilize system (8) with an
allowable sensor measurement precision h(tk ) ∈ [1 −

h∗(tk ), 1 + h∗(tk )] under Assumption 1 and 2 where ai
are coefficients of a Hurwitz polynomial. ki in Eq.11 are
coefficients of a Hurwitz polynomial. L ≥ 1 is a domination
gain to dominate the unknown nonlinear items and unknown
sensor measurement error which will be determined in the
following section.

Next, we will prove Theorem 1 by the Lyapunov method.
Firstly, we give a lemma which helps to prove Theorem 1.
Lemma 1 [29]: The following inequality holds for any

x ∈ R and y ∈ R, if select a and b to be positive real numbers.

a|x||y| ≤ b|x|2 +
a2

4b
|y|2. (13)

Proof: The following work is to prove Theorem 1.
We divide the proof process into four parts. Firstly, system (8)
is pretreated via coordinate transformation for introducing a
domination gain L which is used to dominate the unknown
sensor measurement error and nonlinearities. Then a linear
sampled-data state observer including the same domination
gain L is designed. Next, a sampled-data output feedback
control law is proposed based on the domination gain
observer. Finally, the allowable sensor measurement error
is explicitly determined whereby the domination gain L
and sampling period T are appropriately selected to render
system (8) globally asymptotically stable.

A. PRETREATMENT OF SYSTEM (8) VIA COORDINATE
TRANSFORMATION
We introduce the following coordinate transformation

z1 = x1, zi =
xi
L i−1 , v =

u
L8

, i = 2, 3, · · · , 7, (14)

It will be determined later. Under the new coordinate
z = [z1 z2 · · · z8]T ∈ R8, system (8) can be written as

ż1(t) = Lz2(t) + φ̄1(z(t), v(t), t)

ż2(t) = Lz3(t) + φ̄2(z(t), v(t), t)

· · ·

ż7(t) = Lz8(t) + φ̄7(z(t), v(t), t)

ż8(t) = Lv(t) + φ̄8(z(t), v(t), t)

y(t) = h(t)z1(t), (15)

where

φ̄1(z(t), v(t), t) = φ1(x(t), u(t), t),

φ̄i(z(t), v(t), t) =
φi(x(t), u(t), t)

L i−1 , i = 2, 3, · · · , 8.

For an electric wheel shimmy system, the states are
limited. Therefore, the nonlinear terms of system (15) meet
Assumption 1, i.e.,

|φ̄i(z(t), v(t), t) ≤
c

L i−1 (|z1(t)| + · · · + |L i−1zi(t)|). (16)

B. DESIGN OF LINEAR SAMPLED-DATA OBSERVER WITH
DOMINATION GAIN
According to the observer designed in [30], we construct a
sampled-data observer which includes the continuous-time
states ηi(t) and the discrete y(tk ) as its input signals.

˙̂η2(t) = −La2η̂2(t) − La22y(tk ), ẑ2(t) = η̂2(t) + a2y(t),
˙̂ηi(t) = −Laiη̂i(t) − La2i ẑi−1(tk ), ẑi(t) = η̂i(t) + aiẑi−1(t),

(17)

for t ∈ [tk , tk+1], i = 3, 4, · · · , 8, where ai are coefficients
of a Hurwitz polynomial.

In the observer (17), η̂ is used to estimate the unmeasurable
variable

ηi(t) = zi(t) − aizi−1(t). (18)

We define

η̂(t) = [η̂2 η̂3(t) · · · η̂8]T , Ẑ (t) = [y(t) ẑ2(t) · · · ẑ7(t)]T ,

ẑ(t) = [ẑ2(t) ẑ3(t) · · · ẑ8(t)]T ,A = diag(a2, a3, · · · , a8).

The observer (17) is rewritten as

˙̂η(t) = −LAη̂(t) − LA2Ẑ (tk ), ẑ(t) = η̂(t) + AẐ (t) (19)

for t ∈ [tk , tk+1], from which we obtain the estimation

η̂(tk+1) = eLTaη̂(tk ) + L
(∫ T

0
e−LTasds

)
A2Ẑ (tk ), (20)

and

ẑ2(tk ) = η̂(tk ) + a2y(tk ), ẑi(tk ) = η̂i(tk ) + aiẑ7(tk ),

i = 3, 4, · · · , 8. (21)

Then the estimation error of ηi, i = 2, 3, · · · , 8 is

ei(t) = ηi(t) − η̂(t), (22)

i.e.,

ė2(t) = Lz3(t) − La2e2(t) − La22(z1(t) − y(t))

− La22(y(t) − y(tk )) + φ̄2(·) − a2φ̄1(·)

ė3(t) = Lz4(t) − La3e3(t) − La23(z2(t) − ẑ2(t))
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− La23(ẑ2(t) − ẑ2(tk )) + φ̄3(·) − a3φ̄2(·)
...

ė7(t) = Lz8(t) − La7e7(t) − La27(z6(t) − ẑ6(t))

− La27(ẑ6(t) − ẑ6(tk )) + φ̄7(·) − a7φ̄6(·)

ė8(t) = Lv(t) − La8e8(t) − La28(z7(t) − ẑ7(t))

− La28(ẑ7(t) − ẑ7(tk )) + φ̄8(·) − a8φ̄7(·). (23)

We define the function V0 as

V0(e(t)) =
1
2
e(t)eT (t), (24)

where e(t) = [e2(t) e3(t) · · · e8(t))].
Via Lemma 1, the time derivative of V0(E(t)) along (23)

satisfies

V̇o(e(t))

≤ −L
8∑
i=2

aie2i (t) + L
7∑
i=2

2e2i (t) +
L
4
(|z8(t) + B̄TZ8(t)|)2

+ L
(
1
4
∥B̄∥

2
)

∥Z7(t)∥2 + La22|e2(t)||z1(t) − y(t)|

+L
8∑
i=3

a2i |ei(t)||zi−1(t)−ẑi−1(t)|+La22|e2(t)||y(t)−y(tk )|

+ L
8∑
i=3

a2i |ei(t)||ẑi−1(t) − ẑi−1(tk )| + L|e8(t)v(t)|

+ |e2(t)(φ̄2(·) − a2φ̄1(·)) + · · · + e8(t)(φ̄8(·) − a8φ̄7(·))|,

(25)

where t ∈ [tk , tk+1), B̄ = [b1 b2 · · · b7]T is a set of
coefficients of a Hurwitz polynomial.

C. CONSTRUCTION OF THE ACTIVE SHIMMY CONTROL
LAW BASED ON SAMPLED-DATA OUTPUT FEEDBACK
For solving the problem of shimmy control system con-
sidering unknown sensor measurement error,we design the
following sampled-data output feedback controller

v(t) = v(tk ) = −k1y(tk ) − k2ẑ2(tk ) − · · · − k8ẑ8(tk ),

∀t ∈ [tk , tk+1), tk = kT , k = 0, 1, 2, · · · . (26)

Then (15) can be rewritten as

Ż7(t) = LBZ7(T ) + LC(z8(t) + B̄TZ7(t)) + 8̄(·)

ż8(t) = −L(k1y(tk ) + k2ẑ(tk ) + · · · + k8ẑ8(tk )) + φ̄8(·)

y(t) = h(t)z1(t), (27)

where

Z7 = [z1(t) z2(t) · · · z7(t)]T ,C = [0 0 · · · 1]T ∈ R7,

8̄(·) = [φ̄1(·) φ̄2(·) · · · φ̄7(·)]T

B =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−b1 −b2 · · · −b7

 .

Furtherly, we select the function V1 as

V1(z(t)) = ZT7 (t)PZ7(t) +
(z8(t) + B̄TZ7(t))2

2
, (28)

where P ∈ R7×7 is a positive definite matrix which satisfies

PB+ BTP = −

(
q+

1
2

)
I7. (29)

It is obvious that V1(z(t)) is positive definite. Similar with
the processing of V0(z(t)), the time derivative of V1(z(t))
along (27) satisfies

V̇1(z(t)) ≤ −Lq∥Z7(t)∥2 + L
(
b7 +

(2∥PC∥ + ∥B̄TB∥)2

2

)
· (z8(t) + B̄TZ7(t))2 − L(k1z1(t) + k2z2(t)

+ · · · + k8z8(t))(z8(t) + B̄TZ7(t))

+ 2|ZT7 (t)P8̄(·)| + L|z8(t) + B̄TZ7(t)|

· |k1(z1(t) − y(tk )) + k2(z2(t) − ẑ2(t))

+ · · · + k8(z8(t) − ẑ8(tk ))|

+ |z8(t) + B̄TZ7(t)||φ̄8(·) + B̄T 8̄(·)|. (30)

We let k8 ≥ b7 +
(2∥PC∥+∥B̄TB∥)2

2 + 1 and ki = bik8, i =

1, · · · 7, then one obtains

V̇1(z(t)) ≤ −Lq∥Z7(t)∥2 − L(z8(t) + B̄TZ7(t))2

+ 2|ZT7 P8̄(·)| + L|z8(t) + B̄TZ7(t)|

· |k1(z1(t) − y(tk )) + k2(z2(t) − ẑ2(t))

+ · · · + k8(z8(t) − ẑ8(tk ))|

+ |z8(t) + B̄TZ7(t)||φ̄8(·) + B̄T 8̄(·)|. (31)

Then the function V (z(t), e(t)) is defines as

V (Z(t)) = V0(e(t)) + V1(z(t)) (32)

with Z = (z(t), e(t))T ∈ R15.
Before we continue to carry out the proof, we introduce

two propositions which are proved in reference [30].
Proposition 1: Letting ai→i+1 = 1, ai→i = ai,

ai→j = aiai−1 · · · j, for i = 2, · · · 8, j = 2, · · · i − 1, the
following inequality holds,

a22|e2(t)||z1(t) − y(t)| +

8∑
i=3

a2i |ei(t)||zi−1(t)|

≤

8∑
i=2

i− 1 +

8∑
j=i+1

a2j a
2
j→i+1

4

 e2i (t)

+

8∑
i=2

a2i a
2
i→2

4
|z1(t) − y(t)|2. (33)

Proposition 2: There are nonnegative constants α1, α2,
α3,α4, α5, α6, α7, α8, and Vmax(Z(t)) = maxV (Z(s)),
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s ∈ [tk , t) such that the following inequalities hold,

2|ZT7 (t)P8̄(·)| + |e2(t)(φ̄2(·) − a2φ̄1(·))

+ · · · + e8(t)(φ̄8(·) − a8φ̄7(·))|

+ |z8(t) + B̄TZ7(t)||φ̄8(·) + B̄T 8̄(·)| ≤ α1∥Z(t)∥2.
(34)

L
8∑
i=3

a2i |ei(t)||ẑi−1(tk )| + La22|e2(t)||y(t) − y(tk )|

≤ L2α2
√
V (Z(t))

√
Vmax(Z(t))(t − tk )

+ Lα3V (Z(t)) + L2α4
√
V (Z(t))|z1(t) − y(tk )|(t − tk ).

(35)

|z8(t) + B̄TZ7(t)||k1(z1(t) − y(tk )) + k2(z2(t) − ẑ2(t))

+ · · · + k8(z8(t) − ẑ8(tk ))|

+ |e8(t)(k1y(tk ) + · · · + k8ẑ8(tk ))|

≤
1
2
|z8(t) + B̄TZ7(t)|2 +

1
8
∥Z7(t)∥2 +

33
4

α5|z1(t) − y(t)|2

+ α6V (Z(t)) +
33
4

7∑
i=2

 8∑
j=i

kjaj→i+1

2

e2i (t)

+ Lα7
√
V (V(t))|z1(tk ) − y(tk )|(t − tk )

+

(
7∑
i=1

2(ki + k8∥B̄∥)2 + 9k28 + k8 + 7

)
e28(t)

+ Lα8
√
VZ(t)

√
Vmax(Z(t))(t − tk ). (36)

With the help of Propositions 1 and 2, Eq.32 satisfies

V̇ (Z(t)) ≤ − L
(
q−

1
4
∥B̄∥

2
−

1
4

)
∥Z7(t)∥2

−
L
4
(z8(t) + B̄TZ7(t))2 − L

8∑
i=2

(ai − δi)e2i (t)

+ Lδ1|z1(t) − y(t)|2 + α1∥Z(t)∥2

+ L2(α4 + α7)
√
VZ(t)|z1(tk ) − y(tk )|(t − tk )

× L2(α2 + α8)
√
VZ(t)

√
Vmax(Z(t))(t − tk )

+ L(α3 + α6)V (Z(t)), t ∈ [tk , tk+1), (37)

where

δ1 =

8∑
i=2

a2i a
2
i→2

4
+

33
4

α5,

δi = i+ 1 +

8∑
j=i+1

a2j a
2
j→i+1

4
+

33
4

 8∑
j=i

kjaj→i+1

2

,

δ8 =

7∑
i=1

2(ki + k8∥B̄∥)2 + 9k28 + k8 + 14.

For insuring V̇ (Z(t)) to be negative definite, next we will
deal with the left items of Eq.37. First, we select q ≥
1
4∥B̄∥

2
+

1
2 . Then when ki, i = 1, 2, · · · , 8 is determined,

δi, i = 1, 2, · · · , 8 depends only on ai, i = 2, 3, · · · , 8 which
can be selected as

a8 ≥ δ8 +
1
4
, ai ≥ δi(ai+1, ai+2, · · · , a8) +

1
4
. (38)

Because V (Z(t)) is positive definite, there are positive
constants σi, i = 1, 2, · · · , 6 such that

4σ1V (Z(t)) ≤ ∥Z7(t)∥2 + |z8(t) + B̄TZ7(t)|2 + ∥e(t)∥2,

σ2∥Z(t)∥2 ≤ σ3V (Z(t)). (39)

Via Eq.39, one has

−

(
q−

1
4
∥B̄∥

2
−

1
4

)
∥Z7(t)∥2 −

1
4
(z8(t) + B̄TZ7(t))2

−

8∑
i=2

(ai − δi)e2i (t)

≤ −
1
4
∥Z7(t)∥2 −

1
4
(z8(t) + B̄TZ7(t))2 −

1
4

8∑
i=2

e2i (t)

≤ −σ1V (Z(t)) (40)

and

|z1(t)|2 ≤ ∥Z(t)∥2 ≤
σ3

σ2
V (Z(t)) =: σ4V (Z(t)). (41)

According to Assumption 2, one can obtain

|z1(t) − y(t)| ≤ h(t)
√

σ4
√
V (Z(t)), (42)

therefore

|z1(tk ) − y(tk )| ≤ h(t)
√

σ4
√
V (Z(tk )). (43)

We select the allowable sensor measurement error as

h∗
= min

{√
σ1

4δ1σ4
,
σ1

√
λmin(P)
8ζ

, 1
}

, (44)

where

ζ = 2
√
2

(
k1 +

8∑
i=2

kiai→2

)
+

√
2

(
a22 +

8∑
i=3

aiai→2

)
.

Via (42)-(44), we have

δ1|z1(t) − y(t)|2 + (α3 + α6)V (Z(t))

≤ δ1h2σ4V (Z(t)) +
2ζh

√
λmin(P)

V (Z(t))

≤
σ1

2
V (Z(t)) (45)

and

(α4 + α7)
√
V (Z(t))|z1(tk ) − y(tk )|(t − tk )

+ (α2 + α8)
√
V (Z(t))Vmax(Z(t))(t − tk )

≤ h(α4 + α7)
√
V (Z(t))

√
σ4
√
V (Z(tk ))(t − tk )

+ (α2 + α8)
√
V (Z(t))Vmax(Z(t))(t − tk )

≤ σ5
√
V (Z(t))

√
Vmax(Z(t))(t − tk ), (46)
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where σ5 = h∗(α4+α7)
√

σ4+α2+α8. Substituting (40),(41),
(42), (43), (45), and (46) into (37), one has

V̇ (Z(t)) ≤ −
Lσ1 − 2α1σ4

2
V (Z(t))

+ L2σ5
√
V (Z(t))

√
Vmax(Z(t))(t − tk ),

t ∈ [tk , tk+1). (47)

According to the continuity of V (Z(t)), there exists

maxV (Z (s))|s ∈ [tk , tk+1] = V (Z (tk )). (48)

According to Eq.47, we select

L ≥
2(σ6 + α1σ4)

σ1
,T <

σ6

L2σ5
, (49)

where σ6 > 0 is a constant. Therefore

V̇ (Z(t)) ≤ −σ6V (Z(t))
+ L2σ5

√
V (Z(t))

√
V (Z(tk ))(t − tk ), t ∈ [tk , tk+1).

(50)

From Eq.50, one can conclude that system (8) can be
globally stabilized by the sampled-data observer (17) and
controller (11) if T and L are correctly selected according to
Eq.49.

Proof ends.

IV. NUMERICAL SIMULATION ANALYSIS
In this section, the established 4-DOF shimmy model of
the DEV-EW will be analyzed via numerical simulation.
Then the proposed SOFC method for the shimmy system is
simulated and compared with the SMC method to verify its
effectiveness.

A. THE SHIMMY MODEL SIMULATION
We firstly simulate the 4-DOF shimmy model. The used
parameters of the shimmy system are listed in Tab.1.

TABLE 1. The parameters of the designed controller.

In this section, the self-excited shimmy and force-excited
shimmy are both simulated. To investigate the dynamic
response of the shimmy system, L2 functions are selected as
the disturbances.The initial state values of this system are set
as
[
θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, θ4, θ̇4

]
=

[
0.02, 0, 0, 0, 0, 0, 0, 0

]
.

As shown in Fig.1, we assume that the structure of the front
wheel shimmy model is symmetrical. Therefore, the shimmy

angles θ1 and θ2 almost are the same. We will just give the
simulation analysis of θ1.
The response of θ1 under self-excited shimmy is shown

in Fig.2 and Fig.3. As shown in phase diagram Fig.2, the
shimmy phenomenon is shown as a closed stable limit cycle.
θ1 vibrates with a constant amplitude as shown in the time-
domain diagram Fig.3. According to the analysis, the self-
excited shimmy generates when the DEV-EW runs at a low
velocity within 20-40 km/h.

FIGURE 2. The phase diagram of shimmy angle θ1 for self-excited shimmy.

FIGURE 3. The time-domain diagram of shimmy angle θ1 for self-excited
shimmy.

In the force-excited shimmy simulation, the DEV-EW runs
under 100 km/h and suffers the disturbance from 10th to 30th
seconds. Fig.4 is the phase diagram of the θ1 for force-excited
shimmy suffering 100 sin(20t)/(1 + t2)N· m disturbance.
It shows that the stable limit cycle vanishes gradually. θ1
attenuates to zero as shown in time-domination diagram
Fig.5.

As aforementioned analysis, the self-excited and force-
excited shimmy simulation results are identical to other
researchers’ achievements, i.e., the built 4-DOF shimmy
model is effective.
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FIGURE 4. The phase diagram of shimmy angle θ1 for force-excited
shimmy.

B. THE SOFC METHOD SIMULATION
Now we will simulate the proposed SOFC method. In the
simulation, we choose L = 3 and select h∗(t) = 0.5 as the
sensor measurement error. The parameters of the designed
controller and observer are listed in Tab.2.

TABLE 2. The parameters of the designed controller and observer.

In order to verify the effectiveness of the SOFC method,
the SMC method for the shimmy model is also designed
and simulated. As definition in Eq.7, x7 represents θ1 in
fact. Fig.6, Fig.7 and Fig.8 show that the estimation values
of θ1 can meet the requirement of the control system under
different disturbances when the sensor measurement error is
0.5. Fig.9, Fig.10 and Fig.11 are the controller outputs for
100sin(20t)/(1 + t2)N · m, 50 sin(20t)/(1 + t2)N · m and
step disturbance respectively. Fig.12, Fig.13 and Fig.14 show
the response of θ1 under the SOFC, SMC and without control
suffering 50 sin(20t)/(1+ t2)N · m, 100 sin(20t)/(1+ t2)N ·

m and step disturbance respectively. The simulation results
under disturbance 50 sin(20t)/(1 + t2)N · m are shown in
Tab.3. From which one obtains that θ1 tends to zero after
about 10s without control. The designed SOFC controller
stabilizes θ1 to zero within 2s. And the max value of θ1 is
attenuated within 0.008 rad. However, the SMC controller
stabilizes θ1 to zero within 4s. And the max value of θ1 is
attenuated within 0.015rad. The simulation results under
disturbance 100 sin(20t)/(1 + t2)N · m are shown in Tab.4
which are similar with Tab.3. Tab.5 shows that the two

controller both do not shorten the stabilization time, θ1 under
SOFC controller has smaller oscillation value and is closer
to the real added θ1 than that under SMC controller. From
the above figures and tables, one can find that the two
controllers both have good anti-disturbance and can attenuate
the shimmy phenomenon. But the proposed SOFC method
has better effectiveness than the SMC method.
Remark 2: From Eq. 7 one can find that x7 represents θ1.

θ̂1 is obtained via observer Eq.12 in which a domination gain
L ≥ 1 is introduced to dominate the unknown nonlinear
items and unknown sensor measurement error. If L > 1,
the domination effect is obvious, but the estimation error
becomes larger. Therefore, Fig.6 and Fig.7 show that the
estimation values θ1 do not coincide with the real values of
θ1 completely. But the estimation can meet the requirement.

FIGURE 5. The time-domain diagram of shimmy angle θ1 under
force-excited shimmy.

FIGURE 6. θ1 and its estimation values under v = 100km/h suffering
100 sin(20t)/(1 + t2) N · m.

According to the Hopf bifurcation theory, the self-excited
shimmy is unstable, i.e, the self-excited shimmy can not be
stabilized. Fig.15 shows the response of θ1 with different
controllers under self-excited shimmy. From which one can
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TABLE 3. Simulation results under different controllers suffering
50 sin(20t)/(1 + t2) N · m.

TABLE 4. Simulation results under different controllers suffering
100 sin(20t)/(1 + t2) N · m.

TABLE 5. Simulation results under different controllers suffering step
disturbance.

FIGURE 7. θ1 and its estimation values under v = 100km/h suffering
50 sin(20t)/(1 + t2) N · m.

FIGURE 8. θ1 and its estimation values under v = 100km/h suffering step
disturbance.

find that the SOFC controller and SMC controller both can
not enable θ1 to converge to zero, but the SOFC controller
also has better effectiveness than the SMC controller.
The simulation result coincides with the Hopf bifurcation
analysis. The simulation results are shown in Tab.6.

FIGURE 9. Controller output suffering 100 sin(20t)/(1 + t2) N · m.

FIGURE 10. Controller output suffering 50 sin(20t)/(1 + t2) N · m.

FIGURE 11. Controller output suffering step disturbance.

TABLE 6. Simulation results with different controllers for self-excited
shimmy.

Remark 3: Generally speaking, we suggest to choose
a smaller L under the premise of satisfying obvious
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FIGURE 12. Response of θ1 under the SOFC, SMC and without control
suffering 50 sin(20t)/(1 + t2) N · m.

FIGURE 13. Response of θ1 under the SOFC, SMC and without control
suffering 100 sin(20t)/(1 + t2) N · m.

FIGURE 14. Response of θ1 under the SOFC, SMC and without control
suffering step disturbance.

anti-disturbance effect according to Eq.49. The allowable
sensor measurement error h∗ of the proposed method is
determined by Eq.44. For verifying the anti-disturbance
effect of the proposed method, we select a larger h∗ according
to Eq.44. But in fact, the sensor measurement error is not so
large in practice.

FIGURE 15. Response of θ1 under the SOFC, SMC and without control
under self-excited shimmy.

V. CONCLUSION
In this paper, for addressing the shimmy control issue for
the DEV-EW considering the sensor measurement error
and nonlinearities, the 4-DOF shimmy model of the front
electric wheel is established and the dynamic functions of this
model are obtained via Lagrange’s theorem. Then the state
equations of the shimmy control system with an unknown
sensor measurement error and nonlinearities are presented.
The SOFCmethod is proposed based on these state equations.
This method consists of designing a linear sampled-data state
observer which includes a domination gain as well as an
output feedback control law for the shimmy control system.
The domination gain can suppress the negative influence
caused by the unknown sensor measurement error and
nonlinearities. By the Lyapunov method, the proposed SOFC
method is proved that it can stabilize the shimmy system
globally asymptotically. Finally, simulations are carried out
to verify the effectiveness of the constructed 4-DOF shimmy
model. And the proposed SOFC method is also verified
compared with the SMCmethod. The simulation results show
that the SOFC method has a better effect than the traditional
SMC method for active shimmy control,i.e., the designed
SOFC method can address the sensor measurement error
issue effectively.
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