
Received 17 November 2023, accepted 13 January 2024, date of publication 18 January 2024, date of current version 25 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355804

Improved Search in Neuroevolution Using a
Neural Architecture Classifier With the CNN
Architecture Encoding as Feature Vector
JHON I. PILATAXI 1,2, (Graduate Student Member, IEEE),
JORGE E. ZAMBRANO 1,2, (Graduate Student Member, IEEE),
CLAUDIO A. PEREZ 1,2, (Senior Member, IEEE), AND KEVIN W. BOWYER 3, (Fellow, IEEE)
1Department of Electrical Engineering, and Advanced Mining Technology Center, Universidad de Chile, Santiago 8370451, Chile
2IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 1025000, Chile
3Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Corresponding author: Claudio A. Perez (clperez@ing.uchile.cl)

This work was supported in part by Agencia Nacional de Investigacion y Desarrollo (ANID) under Grant FONDECYT 1231675; in part by
the Basal funding for Scientific and Technological Center of Excellence, under Project AFB220002 and Project IMPACT #FB210024; and
in part by the Department of Electrical Engineering, Universidad de Chile.

ABSTRACT Designing Convolutional Neural Networks (CNNs) for a specific task requires not only
Deep Learning expertise but also knowledge of the problem. The goal of Neuroevolution is to find
CNN architectures automatically through evolution. The search time, however, is a critical problem in
Neuroevolution since multiple CNNs must be trained in the evolutionary process. In this work, we propose a
Neural Architecture Classifier (NAC) to avoid training architectures that would not have good performance,
based on knowledge of previously trained architectures. The NAC evaluates each CNN using the CNN
architecture encoding as the input. A genetic algorithm (GA) is used for evolution, and a search space with
few restrictions; hence, CNN architectures can have any width, depth or shape as well as the suitable number
of skip connections.We applied this methodology to solving pattern recognition problems on six well-known
datasets: five subsets of the MNIST-Variations (MNIST-V) dataset and the CIFAR-10 dataset. Experiments
demonstrated that integrating the NAC in the GA reduces the search time by up to 44% compared to
conventional GAs. Additionally, the architectures found by evolution with our classifier achieved a better
performance (4.6% on average) than those found by traditional evolution. Our results improved the state-
of-the-art by 5.2% (0.33% error reduction) on the most difficult dataset of the MNIST-V (MRDBI), and an
average of 4% (0.24% error reduction) on the MNIST-V datasets. Additionally, our results on CIFAR-10 are
close to those of the state-of-the-art but with significantly reduced search time. The application of a classifier
can be relevant and useful not only for genetic algorithms, but also for other evolutionary algorithms.

INDEX TERMS Convolutional neural networks, genetic algorithms, neuroevolution, neural architecture
classifier, search time.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) consist of two main
parts: the feature extractor or backbone and the classifier [1],
[2], [3], [4]. The backbone extracts the most important
features from an input image hierarchically, while the

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

classifier corresponds to a fully connected neural network
(NN) [4], [5], [6], [7]. This general design was inspired by
the mammalian visual system since some of the main blocks
can be identified with its early and intermediate processing
stages [8], [9], [10], [11].
Designing an optimum architecture for a specific task is

still an open problem, even for experienced researchers in
Deep Learning (DL) [12], [13], [14]. In 1979, Fukushima

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 11987

https://orcid.org/0009-0003-6217-9501
https://orcid.org/0000-0002-1539-7093
https://orcid.org/0000-0002-5484-4159
https://orcid.org/0000-0002-7562-4390
https://orcid.org/0000-0001-9315-1788


J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

introduced the Neocognitron model [9]. This CNN was
capable of solving pattern recognition problems including
translation invariance [9], [15], [16], [17]. LeCun designed
LeNet [10] to solve the handwritten digit recognition problem
in 1998. In 2012, Krizhevsky et al. introduced AlexNet [18],
which was the first CNN that won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), and significantly
improved the state-of-the-art (SOTA) compared to traditional
machine learning and computer vision methods [19]. In 2014,
Simonyan and Zisserman introducedVGG [20]. This network
used receptive fields smaller than AlexNet, and the small-size
filters allowed VGG to increase the number of layers. These
early approaches consisted of a stack of convolutional and
pooling layers, followed by fully connected layers [2], [21].
However, modern architectures, such as GoogLeNet [22],
ResNet [23], DenseNet [24], and PyramidNet [25], are not
only deeper, but are also more efficient than the early
models. More details about these architectures are provided
in section II-A.

As stated previously, the mammalian visual cortex evolved
over millions of years to perform pattern recognition
tasks with remarkable precision [26], [27], [28], [29].
The evolutionary concept has been applied to CNNs to
design better architectures that best fit a particular problem.
Neuroevolution embodies the concept of evolving neural
networks [30], and it is part of the Neural Architecture
Search (NAS) [31], which consists of searching CNN and
NN architectures automatically using various algorithms,
including Reinforcement Learning [32], [33], [34], [35], [36],
Gradient Descent [37], [38], and Evolutionary Computation
(EC) [39], [40], [41], [42]. Furthermore, Neuroevolution can
find better CNN architectures for a specific task efficiently,
allowing researchers without DL experience to find optimum
CNN architectures for their fields of study [14], [43].
Neuroevolution has been applied to image classification [14],
[31], [43], [44], [45], [46], [47], [48], [49], [50], [51],
medical imaging segmentation [52], [53], and human activity
recognition [54], among other problems [55], [56], [57], [58],
[59], [60], [61].

However, the main bottleneck in Neuroevolution is search
time because it is a population-based method, and multiple
CNNs must be trained to converge to a solution. In order to
reduce the CNN training time, and consequently the search
time, various studies have proposed fitness approximation
techniques in the following ways: training for a few
epochs [45], [46], [47], [48], using a subsampled dataset [62],
working with low-resolution images [63], evolving cells or
blocks instead of the complete architecture [64], evolving
architectures with a small dataset and then transferring
to a larger dataset [65], or by using a combination of
them [66].

Recently, new approaches to fitness acceleration were
proposed, such as 2-level Genetic Algorithm (2LGA) [14]
and performance predictors [67], [68], [69], [70], [71],
[72], [73], [74], [75], [76]. In the 2LGA [14], two levels

were proposed: in the first one, the whole population is
trained for a few epochs, whereas at the second level,
the best individuals are trained for more epochs after a
certain number of generations. Genetic operations were
performed at both levels, and the offspring of the second
level replaced a part of the first-level population. Performance
predictors are designed to predict the fitness value of CNNs
using a regression model based on the partial learning
curve [67], [68] or architecture encoding information (end-
to-end performance predictor) [69], [70], [71], [72]. Other
performance predictor methods are shared-weights based,
in which the weights are not directly trained but are updated
using trained weights from other architectures [73], [74],
[75], [76].

The search space is a crucial part of Neuroevolution
because it defines all possible architectures that can be found.
Some authors have used fixed-length encoding [47], [62],
[77], in which the architecture depth is fixed and depends
on the designer’s criterion. However, it is impossible to
know the suitable depth of the CNN needed to solve a
new task. In contrast, other authors have proposed variable-
length encoding, but nevertheless, the genetic operations
must be redefined according to the encoding used. For
instance, in [78] and [79] only mutation operations were
performed; in [14], [43], and [80] crossover and mutation
were defined for cells, blocks, and layer-based variable-
length encoding, respectively. Layer-based encoding space
considers a layer (convolutional, fully connected, activation,
or batch normalization, among others) as a basic unit, and
it only considers connections among adjacent layers (plain
CNNs) [62], [80]. Block-based encoding spaces combine
different layers in a block as a basic unit; traditional blocks
are residual blocks [23], dense blocks [24], or inception
blocks [22]. These encodings also require fewer parameters
than layer-based encoding [43], [81]. Cell-based encoding
is a special case of block-based encoding, in which all the
blocks in the CNN are the same [14], [49], [82]. Although
cell-based encoding reduces the number of parameters for
encoding deep networks significantly, stacking the same
block several times is not necessarily the best solution [82],
[83]. Additionally, some studies have included training
hyperparameters, such as batch size, optimizer, and learning
rate, in their proposed encoding [14], [62].

In this work, we propose improving the search in
Neuroevolution by using a Neural Architecture Classifier
(NAC) to avoid training the entire population, training only
those individuals that are classified with potential for good
performance by the NAC. The GA progresses to the next
generation reducing the number of CNNs trained, and thus
reducing the search time. The NAC is a binary classifier
trained using previously evaluated CNNs. We integrated
the NAC into a genetic algorithm (GA) to classify each
individual of the population as either 1 (indicating a
potential for good classification performance, and thus, that
individual is trained), or 0 (indicating a potential for poor

11988 VOLUME 12, 2024



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

classification performance, and therefore, that individual is
not trained).

The main contributions of this paper are the following:
(1) Development of a NAC based on the CNN architecture
encoding, and integration of the NAC in a GA to avoid
training the entire population. Thus, only those individuals
that are classified by the NAC with potential for good
performance are trained. In this way, the NAC reduces
the search time in Neuroevolution, (2) Introducing a new
block-based encoding to represent a complete CNN, and
(3) Applying the proposed method to six datasets of which
the MNIST-Variations (MNIST-V) and CIFAR-10 datasets
showed improvements relative to results of the SOTA.
Also, data augmentation and anti-aliasing (AA) filters are
considered in the results.

The rest of this paper is organized as follows: Section II
contains a background on CNNs and Neuroevolution and
summarizes related methods. The proposed method is
provided in Section III. In Section IV the experiments are
described. In Section V, the results and discussion are
presented. Finally, Section VI contains the conclusions and
future work.

II. BACKGROUND
In this section the fundamentals of CNNs, and the main
related work is presented, which helps to place our proposed
method in perspective.

A. CONVOLUTIONAL NEURAL NETWORKS
The results achieved with early CNN models had shown that
increasing the depth of the CNNs improved performance.
Nevertheless, it was not feasible to train deep networks
because of the vanishing gradient (VG) problem [84],
which refers to the gradient becoming insignificant during
backpropagation.

In 2015, Srivastava et al.. developed highway net-
works, and proved experimentally that connections between
non-adjacent layers (called skip connections) facilitated the
training process of deep neural networks [85]. In the same
year, He et al. used skip connections to develop residual
blocks that connected the input and output of a block by
addition [23]. Later, Hung et al. introduced dense blocks,
in which the output of each layer is connected to every
subsequent layer in the block by concatenation [24].
Recently, Zhang proposed combining a low-pass filter with

common down-sampling methods (max-pooling, average-
pooling, and stride-convolution) to create shift-invariant
CNNs [86]. This proposed approach increased the accuracy
of the ImageNet and CIFAR-10 classifications across several
commonly used CNNs. Furthermore, he observed that using
these filters provided better generalization [86].

Designing handcrafted-CNN architectures requires enor-
mous effort, and one cannot expect to obtain optimal
performance by applying the same architecture to different
tasks. To design a CNN architecture for a specific task

requires not only expertise in DL, but also knowledge of the
problem to be solved.

B. NEUROEVOLUTION METHODS
As mentioned previously, the goal of Neuroevolution is
to find CNN or NN architectures through EC methods,
such as Particle Swarm Optimization (PSO), Grammatical
Evolution (GE), Differential Evolution (DE), and Genetic
Algorithms (GAs). Examples of the PSO approach are
IPPSO [51] and psoCNN [48]; DECNN uses DE to evolve
CNN hyperparameters [46]; AE-CNN [43], 2LGA [14], and
evoCNN [45] are examples of GAs used to optimize CNN
architectures; E-CNN uses GA and GE to evolve CNN
Architectures [62]; HGAPSO is a hybrid method that uses
PSO to optimize convolutional hyperparameters, and a GA
to optimize the connections among convolutional layers in
block-based encoding [87].

The first studies in Neuroevolution used GAs with archi-
tectures and weights encoded to evolve simultaneously [77],
[88], [89]. However, this encoding did not support deep
architectures due to the number of parameters that needed
adjustment. To overcome this limitation, newer approaches
optimize either the weights or the architecture. In the first
case, the architecture remains fixed [90], [91]. In the second
case, the encoding includes only architecture hyperparame-
ters or both architecture and training hyperparameters, and
the weights are adjusted through training using backpropaga-
tion [39], [40], [41], [42].

An early study with LS-Evolution achieved promising
performance by evolving CNNs but required 2,730 GPU-
days [79]. Other EC methods were proposed, such as
GeNet [92], EIGEN [93], and CGP-CNN [94], which reduced
the employed computational resources significantly by com-
promising the classification accuracy. AmoebaNet [64] was
the first EC method that achieved the SOTA on the ImageNet
classification problem, employing 450 GPUs (Graphics
Processing Units) in 7 days. AE-CNN accelerated the process
and needed only 27GPU-days, but the classification accuracy
was compromised [43].
Recently, Sun et al. modified the AE-CNN by combining it

with an end-to-end performance predictor (E2EPP) [71]. AE-
CNN+E2EPP took only 8 GPU-days, but the classification
error increased compared to the original AE-CNN. The
time consumed by AE-CNN+E2EPP is caused mainly by
collecting the dataset to train the predictor model. In E2EPP
methods, it is impossible to collect more data to train
the predictor model because CNNs are not trained in the
evolution. The main differences with our proposed method
are: (1) we take advantage of the evolved-trained networks to
adjust our NAC, and (2) we optimize even the connections
inside blocks instead of using DenseNet or ResNet blocks as
in AE-CNN.

To reduce the search time, Wang et al. proposed
EffPNet [49] using a subset of the training set in the
evolutionary process and a surrogate model to search the

VOLUME 12, 2024 11989



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

FIGURE 1. Algorithm overview. The light blue rectangle depicts our
proposal for reducing the search time within the GA by means of the NAC.
The trained networks and their best validation accuracy are stored to fit
the NAC for further generations and other experiments.

optimal cell encoding. The surrogate model was a Support
Vector Machine (SVM), and its objective was to identify
whether or not a generated architecture should be trained
for more epochs. The cell encoding, accuracy, and loss
training history of ten epochs were used as input features
to the SVM, which was adjusted at each generation [49].
The main differences with our proposed method are: (1)
we encode the complete architecture instead of a cell to
reduce the human bias, and (2) we apply a NAC to identify
whether or not an architecture should be trained. Our NAC
is trained with the previously trained CNNs, using only the
architecture encoding. Li et al. proposed SHEDA-CNN [95]
to optimize the hyperparameters of a 20-layer ResNet
architecture. This method used a performance predictor. If the
predicted fitness of a CNN was greater than the average
fitness of the previously trained architectures, the CNN was
trained.

III. METHODOLOGY
A. ALGORITHM OVERVIEW
Figure 1 shows the framework of our proposed method.
We integrated the NAC into the GA. The NAC evaluates each
individual of the GA population, thus avoiding training those
individuals having been classified as low performing. There-
fore, in each generation, only those individuals identified
as promising by the NAC would be trained. Consequently,
the GA progresses to the next generation training fewer
individuals, and thus reducing search time.

B. SEARCH SPACE AND CNN ARCHITECTURE ENCODING
According to the methods previously used, there are various
ways to define the encoding of the CNN architecture.
Encoding can be applied using variable or fixed vector length,
and it can encode either the complete network or just a
cell that is stacked several times to build the final network.
In our study, we use the variable-length encoding of the
complete network in a search space with few restrictions,

FIGURE 2. Example of architecture encoding and its interpretation. (a) an
architecture encoding with 8 CBs and 3 RBs, (b) a CB with 5 convolutional
nodes encoding the following: the first array provides the number of
nodes in the block, and the number of filters and kernel size for each
convolution (CONV); the binary vectors represent the node
interconnection in the block, (c) A CB-n encoding interpretation.

since architectures can have any size, shape, or depth. The
encoding is based on blocks. There are two possible block
types: a convolutional block (CB), and a reduction block
(RB), but each block can be different because of the number
of nodes in each one, the hyperparameters of each node, or the
skip connections in each block.

CBs have two variable-length arrays. The first one encodes
the number of convolutional nodes (k), the kernel size, and
the feature map size of each node, while the second one
encodes the connections inside the block. The connections
inside the blocks are expressed as a list of k binary arrays,
as illustrated by Figure 2(b). The first node input is the input
of the block, and therefore, it is not necessary to represent
that connection. The l − th binary array corresponds to the
input to the l + 1 − th node. For example, the first binary
array represents the input for the second node, and the last
array corresponds to the output node. In a binary array,
the value 1 represents a connection from a specific node.
The first value represents a connection with the input of
the block, and the following values represent a connection
from the output of the following convolutional nodes, as is
illustrated in Figure 2(c). The feature maps of different nodes
are concatenated as in DenseNet [24]. Convolutional nodes
are composed of convolutional and batch normalization
layers [96], as well as the ReLU (Rectified Linear Unit)
activation function. RBs are encoded by 1 and 0 for max
and average pooling, respectively. RBs are used to sample the
feature maps based on Zhang’s proposal [86], which consists
of a pooling layer followed by an AA filter. The number of
convolutional blocks in the initial population is limited to
six, but it can increase during the evolution. In addition, the
number of reduction blocks is limited by the size of the input
images. Table 1 presents information on the proposed search
space.

Our proposed encoding represents the CNN backbone, and
a fully connected layer is added to obtain the whole CNN
architecture as in [14], [43], [44], [47], and [49].

11990 VOLUME 12, 2024



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

TABLE 1. Parameter domain in the proposed search space.

FIGURE 3. Crossover operation example in which the parents are divided
into two parts, and their offspring have one part from each parent.

C. GENETIC OPERATIONS
To generate a new population during the evolution process,
three operations are performed: crossover, mutation, and
selection [97], [98], [99]. The crossover generates offspring
from two selected parents. Then, mutation allows exploring
the search space and modifying the offspring individuals. The
selection finally defines the population for the next generation
from the current population and its offspring.

1) CROSSOVER
The offspring generated are expected to have greater fitness
than their parents [100]. However, selecting only the best
individuals as parents could reduce the diversity in the
population, and therefore, the best performance of the
population would not be achieved because of a premature
convergence of the GA [101]. For that reason, we used a
binary tournament selection to choose parents [102]. The
binary tournament selects two individuals randomly from the
population, and the one with better fitness is selected as a
parent [100].

In our proposed method, we use a one-point crossover
operation as in [43]. Each parent is divided into two parts,
and two offspring are generated by combining the first part of
one parent with the second part of the other. The combination
has a limitation: the number of RBs cannot be greater than
the maximum (see Table 1). Therefore, if an offspring does
not meet this constraint, another division point is selected.
Figure 3 illustrates an example of a crossover operation.

2) MUTATION
We use four possible mutation types: adding, deleting,
modifying, and mixing. The first three mutations are similar
to those used in [43], and we added the last mutation to
optimize the pooling layer position in CNNs. The added

FIGURE 4. Examples of each mutation operation. (a) adding CB-i in 5th

position, (b) deleting CB-4, (c) modifying the CB-2, and (d) changing the
position of RBs.

mutation increases the architecture length by adding a new
block in a random position. The deletingmutation reduces the
architecture length by removing a block in a random position.
The modifying mutation changes the parameters of a random
block. Finally, the mixing mutation changes the positions of
all RB blocks randomly. Figure 4 shows an example of each
mutation type.

It is worth mentioning that just one mutation type is
selected randomly. It was also verified that the number of CBs
was within the domain (see Table 1), and if it exceeded the
limit, the excess number of blocks was eliminated.

3) SELECTION
Given the current population Pt and the generated offspring
population Qt , I individuals are selected by the binary-
tournament selection, generating the population for the next
generation Pt+1. After that, it is necessary to check if the two
best individuals (elitism) are in Pt+1. Otherwise, the elitist
individuals replace the two randomly selected individuals of
Pt+1.

D. NEURAL ARCHITECTURE CLASSIFIER
An SVM was used as a neural architecture classifier to
decide if a CNN should be trained or not. An SVM was
used mainly for two reasons: first, the SVM does not require
a large dataset to achieve good performance compared to
other machine learning approaches, such as neural networks
(NN); and second, an SVM finds the optimal separation
hyperplane between the classes, even for non-linear problems
[103], [104].

The architecture encoding, accuracy, and the loss training
history of ten epochs were used as features to train SVM
models in [49]. By contrast, we propose using only the CNN
encoding as the input for the classifier. In this way, the
classifier will learn to distinguish between configurations in
the architectures generated by the GA that have the potential
for good performance, and those that have the potential for
poor performance. The NAC (SVM) classifies each generated
architecture into two categories by the GA: 1 (indicating
potential for good performance), or 0 (indicating potential for
poor performance). Architectures classified as 1 by the SVM
will be trained, while those classified as 0 are not trained.

VOLUME 12, 2024 11991



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

FIGURE 5. Transformation from architecture encoding to feature vector.
(a) An example of architecture encoding with 8 CBs and 3 RBs.
(b)Processing: in CBs, the binary arrays, which represent the
interconnections in the block, were transformed to decimals. For RBs, the
block position was added. (c) The final feature vector concatenates all the
CBs before the RB feature vectors.

1) FEATURE VECTOR
Due to the variable-length encoding, the feature vector is
normalized by filling those architectures with a smaller
number of convolutions per block with zeros, or a smaller
number of blocks than the limits defined in Table 1. The
original encoding is transformed into a feature vector as
follows:

First, the list of binary arrays that represent inside-block
connections is transformed to decimal values. Second, since
the RBs have only the type of pooling, the position of the
block in the complete network was considered as part of
the feature vector. The final feature vector concatenates the
feature vectors of all the CBs before the RB feature vectors,
as shown in Figure 5. Finally, the vector is normalized by
dividing it by the maximum value of each element according
to the domain.

The length of the feature vector is

length(Feat) = mCB(3mCN + 1) + 2mRB, (1)

where mCB, mRB, and mCN, are the maximum number
of CBs, RBs, and convolutional nodes, respectively. Factor
3 of mCN corresponds to the kernel size, feature map
size, and node connections. Factor 2 of mRD is assumed
because we consider the position of the RB, and the type of
pooling.

2) LABELING
The GA was run without the NAC for two evolutions
following a random initialization. After that, we ran our
proposed method, and we trained the NAC after each run.
We stored the architecture encoding and the best validation
accuracy achieved. We defined high and low thresholds
(TH ,TL) for assigning the trained CNNs to either class 1
(potential for good performance), or class 0 (potential for
poor performance). Class 1 was assigned to the architectures
with accuracies higher than TH , and class 0 to those with
accuracies lower than TL . Those architectures with accuracy

FIGURE 6. Validation accuracy distribution for initial (orange), and final
(blue), data used to train the NAC in MRDBI. The dashed and dotted lines
correspond to initial and final thresholds. For better visualization, the
figure is shown in the range 0.75 and 0.92, but there are CNNs with lower
performance.

TABLE 2. Final thresholds used in the NAC training.

between the two thresholds were not used to train the
NAC. Initially we used 25% of the best and the worst
trained CNNs to train the NAC. Then, the percentage of
CNNs used was reduced by 5% after every two evolutions
with the NAC. We adjusted the thresholds because the
trained CNNs modified the validation accuracy distribution.
This adjustment was necessary because the NAC eliminated
CNNs with the potential for low performance. Figure 6
shows the accuracy distribution, and the thresholds for
MRDBI, while Table 2 has the final thresholds for the six
datasets.

3) FITNESS EVALUATION
The fitness value of a CNN architecture depends on the
classifier response that will determine whether or not the
classifier will be trained. If the classifier identifies a CNN as
class 1, it is trained from scratch, and its validation accuracy
and training time are used to compute the fitness value.
Otherwise, a random fitness value between 0 and 0.5 is
assigned for those architectures that were not trained. The
fitness is computed according to

Fitness = max(accval) −
log(Ttime/Nepochs)

1000
, (2)

where accval is the validation accuracy, and Ttime and
Nepochs are the training time and the number of epochs,
respectively. The temporal component is used to prevent
searching networks with large training times. The fitness
function is similar to that proposed in [14].

11992 VOLUME 12, 2024



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

IV. EXPERIMENTS
We compared the classification accuracy of our proposed
method with GA, both with and without the NAC. The
first experiments with the GA did not include the NAC
for collecting data for the initial training of the NAC.
In experiments with the NAC, we collected additional data
(trained CNNs) to improve the NAC training.

A. BECHMARK DATASET
To test our proposed method, we used six well-known
datasets for image classification tasks: five subsets of
MNIST-V [105], and CIFAR-10 [106]. MNIST-V datasets
are modified versions of the original MNIST, and include:
MNIST Basic (MB) subset, MNIST with rotated digits
(MRD), MNIST with random noise as background (MRB),
MNIST with background images (MBI), and MNIST with
rotated digits with background images (MRDBI) [105].
MNIST-V contains 62,000 images (28 × 28 pixels), 12,000
for training and 50,000 for testing [105]. CIFAR-10 contains
32×32-color images of 10 common objects, and it has 50,000
and 10,000 images for training and testing, respectively [106].

B. METHODS FOR COMPARISON
Using MNIST variants, we compared our results to the
following SOTA evolutionary methods: DECNN [46],
EvoCNN [45], IPPSO [51], psoCNN [48], psoECNN [47]
HGAPSO [87], 2LGA [14], LF-MOGP [107], and
IDECNN [108]. These methods do not use any data
augmentation (DA). On CIFAR- 10, we compared our results
to the following NAS methods: Johnson [80], LargeEvo [79],
GeNet [92], CGP-CNN [94], CNN-GA [44], AE-CNN [43],
AE-CNN+E2EPP [71], EvoApproxNAS [91], SHEDA-
CNN [95], and NE-SGD [109]. All the methods selected use
the following common DA techniques for CIFAR-10: four-
pixel padding, random crop, and random flip [39], [40].

C. PARAMETER SETTINGS
In our proposed method, we set some of the parameters
according to the values commonly used in previous research
[39], [40]. The population size and the maximum number of
generations were both set to 20. The crossover and mutation
probabilities were set to 0.9 and 0.2, respectively, and the
elitism rate was set at 0.1. For population initialization, we set
the maximum number of blocks to six and the maximum
number of nodes per CB to seven for MNIST-V and nine for
CIFAR-10. Themaximum number of nodes in a CB remained
constant throughout evolution, but individual sizes could
increase by adding more blocks or nodes in a block through
genetic operations. Another restriction was the maximum
number of RBs, which depended on the image size. Since we
used a stride of two in each RB, the maximum number of RBs
was three for MNIST-V and four for CIFAR-10.

The training parameters for evolution were set as follows:
the training set was divided into 80% for training and 20% for
validation, the batch size at 128, and the number of epochs

TABLE 3. Summary of the parameter settings for evolution.

at 25 and 45 for MNIST-V and CIFAR-10, respectively.
To prevent overfitting, we used early stopping [110] of
10 epochs, and a dropout layer (p=0.1) [111], [112], after
each convolutional node. We used the cross-entropy loss
function [113] and Adam optimizer [114] with 1e-3 as the
learning rate. The validation accuracy was used to compute
the fitness, and the best individual in each run was retrained
for more epochs (long training), as in [14] and [49]. The
table 3 presents a summary of the parameters used during
evolution.

The parameters listed on Table 3 are static except for the
learning rate. We use the Adam optimizer and therefore,
the learning rate is adapted during the CNN training.
It is important to mention that the parameters defined
in Table 3 are commonly static in Neuroevolution, as in
[14], [43], [45], and [80].

In the long training, the best individual was trained from
scratch using the training set, and the error rate in the
test subset was reported on Tables 4 to 6. For MNIST-V
we retrained the models for 100 epochs with warm-up
and step decay learning rates. The warm-up increased
from 0 to 0.01 during 20 epochs, and on the step decay
scales, the learning rate divided by 10 in epochs 40 and 80.
Early stopping of 50 epochs was also used. For CIFAR-10,
we retrained for 250 epochs, with warm-up of 30 epochs,
adjusting the learning rate in epochs 90 and 180, and early
stopping of 100 epochs. Additionally, we retrained the best
individuals using random rotation and cutout as DA for
200 epochs onMNIST-V. Cutout randomlymasks rectangular
regions of the input images during training to improve
generalization and robustness [115]. We applied a 13 ×

13 mask. Random rotation with a range of 180 degrees in any
direction was applied for MRDBI and MRD, while for MRB,
MBI, and MB, the range was set at 20 degrees. For CIFAR-
10, the CNN that achieved the best results was also retrained,
adding cutout to theDA used in the evolutions.We applied the
samemask size (16×16) as in the original cutout paper [115].

The codes are implemented in Python 3.9.7 and PyTorch
1.11.0. The experiments on MNIST-V datasets were per-
formed on a Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz
and two Nvidia GeForce GTX 1080 GPUs, while the
experiments on CIFAR-10 dataset were executed on an

VOLUME 12, 2024 11993



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

TABLE 4. Comparison of test errors among our results and those of the
SOTA on MNIST-V (lower is better). The symbols (+) and (-) indicate that our
results are better, or worse, than the corresponding peer competitor, and
the symbol (=) means that there is no statistically significant difference.

Intel(R) Xeon(R) W-2123 CPU @3.6 GHz and three Nvidia
GeForce RTX2080Ti GPUs.

V. RESULTS AND DISCUSSION
A. OVERALL RESULTS
We compared our results to those of the SOTA using the
same datasets and testing conditions. All the experiments
were performed five times, and the mean and minimum
test error were reported as in the SOTA. Table 4 shows
the results on the five MNIST-V subsets, and One Sample
T-Test [116] was used to compare with the SOTA as in [46]
and [51]. Our method revealed the lowest error in all cases on
the most challenging datasets, (MRDBI, MRD, and MBR).
Our results demonstrated an improvement of 5.2% (0.33%
error reduction) on MRDBI, 13.71% (0.31% error reduction)
onMRD, and 0.77% (0.1% error reduction) onMBR, and our
results were comparable to the SOTA on the other datasets.
For CIFAR-10, studies from the SOTA reported just the
minimum error achieved. For this reason, no statistically
significant comparison is possible. However, on Table 5 we
compared our results with SOTA methods and reported the
relative improvement, with regard to [43], [44], [71], and [95].

Table 5 shows a comparison of our results on CIFAR-10
with those of the SOTA in terms of test error, number of
parameters, and computational cost. The latter was measured
in GPU-days as has been done in previous studies [43],
[44], [71], [95], even though different GPUs were used. Our
method achieved a 4.08% test error in 17.3 GPU-days, while
AE-CNN obtained a 4.3% test error using 27 GPU-days.
This result reduced the AE-CNN test error by 0.22% using
only 64% of the GPU-days. The E2PP method reduced the
search time to 8.5 GPU-days on AE-CNN, but the test error
increased to 5.3%, and therefore, our GA with NAC achieved
an improvement of 23% (1.22% error reduction). Some

TABLE 5. Comparison of test error, computational cost in GPU-days, and
number of parameters in our results and those of other Neuroevolution
methods on CIFAR-10 (lower is better).

TABLE 6. Comparison of test error (lower is better) among the best
individuals found on MNIST-V, trained with (w) and without (w/o) DA,
AA filter and cosine learning rate schedule (cos lr).

studies employed predefined CNN architectures, ResNet-20
and DPN-92 [117], that reach results with lower GPU-days,
but are not directly comparable [95], [109]. Additionally,
we trained the best architecture using cutout as additional data
augmentation, reducing the test error to 3.14%. It is worth
mentioning that the EffPNet, a method with an SVM as a
surrogate model, achieved 3.49% test error, but the authors
did not mention whether or not they applied any type of DA
in training [49].

B. ANTI-ALIASING FILTER AND DA FOR MNIST-V
For the ablation study, we trained the best CNNs with
and without DA, with and without AA filters, and with
the cosine annealing learning rate [118] instead of the step
decay learning rate on the MNIST-V datasets. As can be
seen on Table 6, DA improves the performance of our best
CNN significantly. The error was reduced by 2.1% (an
improvement of 33%) on MRDBI, and by an average of
0.7% (an improvement of 23%) when we trained with the
step decay learning rate. Moreover, the error was reduced by
2.6% onMRDBI and 0.8% on average when the models were
trained with a cosine annealing learning rate instead of a step
decay schedule. Figure 7 shows the boxplots of the test error
on theMRDBI dataset under the different training conditions.

Statistical tests were performed on the MRDBI results
for the different training conditions, using ANOVA and
Tukey HSD tests [119] to determine if the differences

11994 VOLUME 12, 2024



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

FIGURE 7. Test error on the MRDBI dataset of the best CNN with the
following training conditions, with (w) and without (w/o): DA, AA filter,
and cosine learning rate schedule (cos lr).

TABLE 7. Summary of the results of the Tukey HSD test for the best CNN
test error, trained with (w) and without (w/o): DA, AA filter, and cosine
learning rate schedule (cos lr) on MRDBI.

were statistically significant. The ANOVA test yielded a
pvalue = 7e − 20 (< 0.05), meaning that the results
are significantly different among test error scores. Table 7
shows a summary of Tukey HSD results, on which there
are significant differences in the test error between each pair
of experiments. Therefore, using the AA filters improves
the CNN performance significantly compared to performing
experiments without these filters. Also, the variance in test
errors is reduced in experiments with DA. Finally, the
cosine-schedule learning rate with suitable hyperparameters
helps in reducing the number of test errors.

C. ADVANTAGES OF USING NAC
Figure 8 shows the validation accuracy of the CNNs trained
by experiments with and without the NAC on six datasets.
Notice that the NAC avoids training architectures that could
result in low validation accuracy. For instance, the lowest
validation accuracy scores in experiments without the NAC
were 0.73, 0.81, 0.91, 0.76, 0.54, and 0.63 for the MB, MBR,
MBI, RD, MRDBI, and the CIFAR-10 datasets, respectively.
By contrast, when the GA integrated the NAC, the lowest
accuracy in each dataset increased to 0.987, 0.953, 0.95, 0.92,
0.811, and 0.832, respectively on the same six datasets.

Figure 9 shows the validation accuracy distribution of
the CNN trained in experiments developed on the MRDBI
dataset. In cases without NAC, only 25% of the CNN
achieved validation accuracy over 88%, and 36% obtained
accuracy lower than 85%. Additionally, less than 13% of

FIGURE 8. Validation accuracy achieved in experiments without (w/o)
and with (w) NAC on each of the six datasets (MB, MBR, MBI, RD, MRDBI,
and CIFAR-10).

FIGURE 9. Validation accuracy distribution of each run on the MRDBI
dataset. Two evolutions without (w/o) NAC, and five runs with (w) NAC.
The NAC avoids training architectures that result in low validation
accuracy.

the trained CNNs achieved performance under the initial
TL used to train the classifier, and more than 50% of the
trained CNNs achieved more than the initial TH in validation
accuracy.

We performed several experiments with and without NAC
to compare the search time on the same GPU. Table 8
shows the searching time in GPU-days, and the lowest test
error scores achieved in experiments with and without NAC,
respectively. The experiments demonstrated that including
the NAC in the GA reduced the search time by 41% on
average on six datasets. Moreover, as a result of our literature
review, we found that previous work reported the GPU-
days [43], [71], [92], [95] although they used different
GPUs for computations, and compared the computational
cost of various NAS methods. The measure in GPU-days was
performed in [43], [71], [92], and [95] even though comparing
GPU-days depends on the GPUs used.

D. EVOLUTIONARY TRAJECTORY
Figure 10 shows the evolutionary trajectory of an experiment
on the MRDBI set. The green line represents the fitness
of the best individual in each generation. The blue line

VOLUME 12, 2024 11995



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

TABLE 8. Comparison of search time in GPU-days and the best test error
in experiments with (w) and without (w/o) the NAC.

FIGURE 10. Evolutionary trajectory of a GA with a NAC on the MRDBI
dataset. In green, the fitness of the best individual for each generation; in
blue, the average fitness of trained CNNs during the evolution; and in
orange, the average fitness of the rejected CNNs trained once evolution
ends for analysis purposes.

represents the average fitness achieved by the trained
population (class 1) in each generation. In order to know
the behavior of the NAC during an evolution, individuals
rejected by the classifier in the initial population, and in
generations 5, 10, 15 and 20, were stored and trained with
the same hyperparameter as evolution (orange line). It is
clear that the GA with the NAC did not get stuck in a local
minimum and improved the population during the evolution
as shown in Figure 10. These results confirm that the NAC
performed well in rejecting these CNN architectures for
training.

Figure 11 shows the number of trained and non-trained
CNNs for each generation in an experiment with NAC
on the MRDBI dataset. In this evolution, 357 individuals
were generated by the GA, but only 168 of those CNNs
were trained. Additionally, it can be observed that less
than 10% of the population was trained (not rejected by
the NAC) in the first 25% of the generations. By contrast,
70% of the architectures were trained in the last 25%
of the generations. These results show that the NAC
helps improve the population performance over the gen-
erations. Starting with a random initial population, having
individuals with high performance in early generations
is not expected. Consequently, our NAC rejects most of
those individuals, and the number of trained architectures
increases with evolution because better individuals are
generated.

FIGURE 11. Number of trained (class 1) and non-trained (class 0)
architectures in each generation in an experiment with NAC on the
MRDBI dataset.

TABLE 9. Parameters of the best model in each dataset.

E. SEARCH SPACE
We used a search space with few restrictions, encoding
the complete architecture by two kinds of blocks, so that
the CNNs could have any width, depth, or shape. Table 9
presents the value of the parameters of the best model
in the search space domain. As can be seen on Table 9,
the number of convolutional nodes, which represent the
depth of the network, is 12 for the MB dataset (the easiest
subset of MNIST-V), but the best model for CIFAR-10 has
48 convolutional nodes.

VI. CONCLUSION
In this work, we propose a novel GA to improve search
in Neuroevolution. The new GA incorporates three main
contributions. The most important one is that the proposed
GA integrates the NAC into the conventional GA and
thereby reducing the search time. Additionally, our proposed
encoding and search space are different because we represent
the complete CNN in blocks instead of stacking the same
cell, as in [14] and [49]. Our proposed encoding allows
CNNs to have any size, width, and skip connections through
nodes. Furthermore, we included the skip connections in
the block instead of using DenseNet or ResNet blocks,
as in [43] and [71].

We applied the proposed method on pattern recognition
problems using the MNIST-V and CIFAR-10 datasets. Our
method achieved a significant reduction in the test error
compared to previously published results: 0.77% on theMBR

11996 VOLUME 12, 2024



J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

set, 13.7% on the MRD set, and 5% on the MRDBI set
without using any DA. In addition, our results on the CIFAR-
10 are competitive with the SOTA, improving the error score
and reducing the search time reported for other evolutionary
methods using common DA.

We also trained the best model by applying rotation and
cutout as DA, improving the test error achieved without DA
by 12% on MB, 18% on MBR, 15% on MBI, 47% on MRD,
and 35% on MRDBI; cutout was added to common DA on
CIFAR-10 improving the test error by 23%.

We demonstrated experimentally that including a NAC
in a GA reduces the search time substantially, improving
the global results as well. By contrast, previous studies
used an E2EPP, which compromised the performance of the
GA. The idea of a classifier could also be useful in other
evolutionary algorithms applied to Neuroevolution, or to
other optimization problems.

For future work a search space in a multi-objective
optimization problem could be used to optimize not only the
accuracy of the CNNs, but also the number of parameters.
In addition, the effectiveness of the proposed method on
larger datasets, in other pattern recognition tasks, could be
assessed. Similarly, a recent proposed approach [120], [121]
to balancing exploration and exploitation could be included in
future research to assess possible improvements in the results
obtained by the GA.

Finally, some possible limitations of our proposed method
are the time required for evolution, and the number of
GPUs required for larger datasets. Integrating the NAC into
the GA reduces the search time, but the computational
time may increase and requires a large number of GPUs
if Neuroevolution is applied to larger datasets. Despite the
good results obtained in this study, the application of the
proposed method to real-world problems should be examined
and evaluated in the future.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

pp. 436–444, May 2015.
[2] W. Rawat and Z. Wang, ‘‘Deep convolutional neural networks for image

classification: A comprehensive review,’’ Neural Comput., vol. 29, no. 9,
pp. 2352–2449, Sep. 2017.

[3] J. E. Zambrano, D. P. Benalcazar, C. A. Perez, and K. W. Bowyer,
‘‘Iris recognition using low-level CNN layers without training and single
matching,’’ IEEE Access, vol. 10, pp. 41276–41286, 2022.

[4] M. Z. Alom, T.M. Taha, C. Yakopcic, S.Westberg, P. Sidike,M. S. Nasrin,
M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, ‘‘A state-
of-the-art survey on deep learning theory and architectures,’’ Electronics,
vol. 8, no. 3, p. 292, Mar. 2019.

[5] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,
and H. Arshad, ‘‘State-of-the-art in artificial neural network applications:
A survey,’’ Heliyon, vol. 4, no. 11, Nov. 2018, Art. no. e00938, doi:
10.1016/j.heliyon.2018.e00938.

[6] Y. LeCun, K. Kavukcuoglu, and C. Farabet, ‘‘Convolutional networks and
applications in vision,’’ inProc. IEEE Int. Symp. Circuits Syst., May 2010,
pp. 253–256.

[7] G. W. Lindsay, ‘‘Convolutional neural networks as a model of the visual
system: Past, present, and future,’’ J. Cognit. Neurosci., vol. 33, no. 10,
pp. 2017–2031, Sep. 2021.

[8] D. H. Hubel and T. N.Wiesel, ‘‘Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,’’ J. Physiol., vol. 160,
no. 1, pp. 106–154, Jan. 1962.

[9] K. Fukushima, ‘‘Neural network model for a mechanism of pattern
recognition unaffected by shift in position-neocognitron,’’ IEICE Tech.
Rep., A, vol. 62, no. 10, pp. 658–665, 1979.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[11] D. P. Benalcazar, J. E. Zambrano, D. Bastias, C. A. Perez, and
K. W. Bowyer, ‘‘A 3D iris scanner from a single image using convolu-
tional neural networks,’’ IEEE Access, vol. 8, pp. 98584–98599, 2020.

[12] B.Wang, Y. Sun, B. Xue, andM. Zhang, ‘‘Evolving deep neural networks
by multi-objective particle swarm optimization for image classification,’’
in Proc. Genetic Evol. Comput. Conf. (GECCO). New York, NY, USA:
Association for Computing Machinery, Jul. 2019, pp. 490–498.

[13] B. Wang, B. Xue, and M. Zhang, ‘‘Particle swarm optimization for
evolving deep convolutional neural networks for image classification:
Single- andmulti-objective approaches,’’ inDeepNeural Evolution:Deep
Learning with Evolutionary Computation. Singapore: Springer, 2020,
pp. 155–184.

[14] D. A. Montecino, C. A. Perez, and K. W. Bowyer, ‘‘Two-level
genetic algorithm for evolving convolutional neural networks for pattern
recognition,’’ IEEE Access, vol. 9, pp. 126856–126872, 2021.

[15] K. Fukushima, ‘‘Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,’’
Biol. Cybern., vol. 36, no. 4, pp. 193–202, Apr. 1980.

[16] K. Fukushima, S. Miyake, and T. Ito, ‘‘Neocognitron: A neural network
model for a mechanism of visual pattern recognition,’’ IEEE Trans. Syst.,
Man, Cybern., vol. SMC-13, no. 5, pp. 826–834, Sep. 1983.

[17] K. Fukushima, ‘‘Neocognitron: A hierarchical neural network capable
of visual pattern recognition,’’ Neural Netw., vol. 1, no. 2, pp. 119–130,
1988.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, 2012, pp. 1097–1105.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
‘‘ImageNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[20] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–14.

[21] C. Bock, M. Moor, C. R. Jutzeler, and K. Borgwardt, ‘‘Machine
learning for biomedical time series classification: From shapelets to deep
learning,’’ in Artificial Neural Networks. New York, NY, USA: Humana,
2021, pp. 33–71.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[23] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. 30th IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jan. 2017, pp. 2261–2269.

[25] D. Han, J. Kim, and J. Kim, ‘‘Deep pyramidal residual networks,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6307–6315.

[26] C. A. Perez, P. A. Estévez, F. J. Galdames, D. A. Schulz, J. P.
Perez, D. Bastías, and D. R. Vilar, ‘‘Trademark image retrieval using a
combination of deep convolutional neural networks,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2018, pp. 1–7.

[27] C. A. Perez, C. A. Salinas, P. A. Estevez, and P. M. Valenzuela,
‘‘Genetic design of biologically inspired receptive fields for neural pattern
recognition,’’ IEEE Trans. Syst., Man Cybern. B, Cybern., vol. 33, no. 2,
pp. 258–270, Apr. 2003.

[28] B. A. Olshausen and D. J. Field, ‘‘Sparse coding with an overcom-
plete basis set: A strategy employed by V1?’’ Vis. Res., vol. 37,
no. 23, pp. 3311–3325, Dec. 1997. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0042698997001697

[29] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, ‘‘Designing
neural networks through neuroevolution,’’ Nature Mach. Intell., vol. 1,
no. 1, pp. 24–35, Jan. 2019, doi: 10.1038/s42256-018-0006-z.

VOLUME 12, 2024 11997

http://dx.doi.org/10.1016/j.heliyon.2018.e00938
http://dx.doi.org/10.1038/s42256-018-0006-z


J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

[30] R. Miikkulainen, ‘‘Neuroevolution BT,’’ in Encyclopedia of Machine
Learning and Data Mining, C. Sammut and G. I. Webb, Eds. New York,
NY, USA: Springer, 2017, doi: 10.1007/978-1-4899-7687-1_594.

[31] Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. D. Goodman, W. Banzhaf, and
V. N. Boddeti, ‘‘Multiobjective evolutionary design of deep convolutional
neural networks for image classification,’’ IEEE Trans. Evol. Comput.,
vol. 25, no. 2, pp. 277–291, Apr. 2021.

[32] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforcement
learning,’’ 2016, arXiv:1611.01578.

[33] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural network
architectures using reinforcement learning,’’ 2016, arXiv:1611.02167.

[34] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, ‘‘Efficient neural
architecture search via parameters sharing,’’ in Proc. Int. Conf. Mach.
Learn., 2018, pp. 4095–4104.

[35] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, ‘‘Practical block-
wise neural network architecture generation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2423–2432.

[36] Z. Zhong, Z. Yang, B. Deng, J. Yan, W. Wu, J. Shao, and C.-L. Liu,
‘‘BlockQNN: Efficient block-wise neural network architecture gen-
eration,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 7,
pp. 2314–2328, Jul. 2021.

[37] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture
search,’’ in Proc. 7th Int. Conf. Learn. Represent. (ICLR), 2019, pp. 1–13.

[38] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter,
‘‘Understanding and robustifying differentiable architecture search,’’
2019, arXiv:1909.09656.

[39] Y. Bi, B. Xue, P. Mesejo, S. Cagnoni, and M. Zhang, ‘‘A survey on
evolutionary computation for computer vision and image analysis: Past,
present, and future trends,’’ IEEE Trans. Evol. Comput., vol. 27, no. 1,
pp. 5–25, Feb. 2023.

[40] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, ‘‘A survey
on evolutionary neural architecture search,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 2, pp. 550–570, Feb. 2023.

[41] X. Zhou, A. K. Qin, M. Gong, and K. C. Tan, ‘‘A survey on evolutionary
construction of deep neural networks,’’ IEEE Trans. Evol. Comput.,
vol. 25, no. 5, pp. 894–912, Oct. 2021.

[42] K. T. Chitty-Venkata, M. Emani, V. Vishwanath, and A. K. Somani,
‘‘Neural architecture search benchmarks: Insights and survey,’’ IEEE
Access, vol. 11, pp. 25217–25236, 2023.

[43] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ‘‘Completely automated CNN
architecture design based on blocks,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 31, no. 4, pp. 1242–1254, Apr. 2020.

[44] Y. Sun, B. Xue,M. Zhang, G. G. Yen, and J. Lv, ‘‘Automatically designing
CNN architectures using the genetic algorithm for image classification,’’
IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840–3854, Sep. 2020.

[45] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ‘‘Evolving deep convolutional
neural networks for image classification,’’ IEEE Trans. Evol. Comput.,
vol. 24, no. 2, pp. 394–407, Apr. 2020.

[46] B. Wang, Y. Sun, B. Xue, and M. Zhang, ‘‘A hybrid differential evolution
approach to designing deep convolutional neural networks for image
classification,’’ in Advances in Artificial Intelligence (Lecture Notes in
Computer Science, Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 11320. Cham, Switzerland: Springer, 2018,
pp. 237–250.

[47] T. Lawrence, L. Zhang, C. P. Lim, and E.-J. Phillips, ‘‘Particle swarm
optimization for automatically evolving convolutional neural networks
for image classification,’’ IEEE Access, vol. 9, pp. 14369–14386, 2021.

[48] F. E. Fernandes Jr. and G. G. Yen, ‘‘Particle swarm optimiza-
tion of deep neural networks architectures for image classifica-
tion,’’ Swarm Evol. Comput., vol. 49, pp. 62–74, Sep. 2019, doi:
10.1016/j.swevo.2019.05.010.

[49] B. Wang, B. Xue, and M. Zhang, ‘‘Surrogate-assisted particle swarm
optimization for evolving variable-length transferable blocks for image
classification,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8,
pp. 3727–3740, Aug. 2022.

[50] H. Chen, F. Miao, and X. Shen, ‘‘Hyperspectral remote sensing image
classification with CNN based on quantum genetic-optimized sparse
representation,’’ IEEE Access, vol. 8, pp. 99900–99909, 2020.

[51] B. Wang, Y. Sun, B. Xue, and M. Zhang, ‘‘Evolving deep convolutional
neural networks by variable-length particle swarm optimization for image
classification,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2018,
pp. 1–8.

[52] T. Hassanzadeh, D. Essam, and R. Sarker, ‘‘An evolutionary DenseRes
deep convolutional neural network for medical image segmentation,’’
IEEE Access, vol. 8, pp. 212298–212314, 2020.

[53] K. R. G. Operiano, H. Iba, and W. Pora, ‘‘Neuroevolution architecture
backbone for X-ray object detection,’’ in Proc. IEEE Symp. Ser. Comput.
Intell. (SSCI), Dec. 2020, pp. 2296–2303.

[54] A. Baldominos, Y. Saez, and P. Isasi, ‘‘Evolutionary design of convo-
lutional neural networks for human activity recognition in sensor-rich
environments,’’ Sensors, vol. 18, no. 4, p. 1288, Apr. 2018.

[55] A. ElSaid, S. Benson, S. Patwardhan, D. Stadem, and T. Desell,
‘‘Evolving recurrent neural networks for time series data prediction of
coal plant parameters,’’ in Proc. 22nd Int. Conf. Appl. Evol. Comput. Evo
Appl. EvoStar, Leipzig, Germany. Cham, Switzerland: Springer, 2019,
pp. 488–503.

[56] S. S. Mostafa, F. Mendonça, A. G. Ravelo-Garcia, G. Gabriel Juliá-Serdá,
and F. Morgado-Dias, ‘‘Multi-objective hyperparameter optimization of
convolutional neural network for obstructive sleep apnea detection,’’
IEEE Access, vol. 8, pp. 129586–129599, 2020.

[57] H. Xie, L. Zhang, and C. P. Lim, ‘‘Evolving CNN-LSTM models for
time series prediction using enhanced grey wolf optimizer,’’ IEEE Access,
vol. 8, pp. 161519–161541, 2020.

[58] T. N. Fatyanosa and M. Aritsugi, ‘‘An automatic convolutional neural
network optimization using a diversity-guided genetic algorithm,’’ IEEE
Access, vol. 9, pp. 91410–91426, 2021.

[59] N. Klyuchnikov, I. Trofimov, E. Artemova, M. Salnikov, M. Fedorov,
A. Filippov, and E. Burnaev, ‘‘NAS-Bench-NLP: Neural architecture
search benchmark for natural language processing,’’ IEEE Access,
vol. 10, pp. 45736–45747, 2022.

[60] J. P. Perez and C. A. Perez, ‘‘Face patches designed through neuroevolu-
tion for face recognition with large pose variation,’’ IEEE Access, vol. 11,
pp. 72861–72873, 2023.

[61] F. Boutros, P. Siebke, M. Klemt, N. Damer, F. Kirchbuchner, and
A. Kuijper, ‘‘PocketNet: Extreme lightweight face recognition network
using neural architecture search and multistep knowledge distillation,’’
IEEE Access, vol. 10, pp. 46823–46833, 2022.

[62] A. Baldominos, Y. Saez, and P. Isasi, ‘‘Evolutionary convolutional neural
networks: An application to handwriting recognition,’’ Neurocomputing,
vol. 283, pp. 38–52, Mar. 2018, doi: 10.1016/j.neucom.2017.12.049.

[63] P. Chrabaszcz, I. Loshchilov, and F. Hutter, ‘‘A downsampled vari-
ant of ImageNet as an alternative to the CIFAR datasets,’’ 2017,
arXiv:1707.08819.

[64] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ in Proc. 33rd AAAI Conf. Artif.
Intell. (AAAI), 31st Innov. Appl. Artif. Intell. Conf., 9th AAAI Symp. Educ.
Adv. Artif. Intell. (EAAI), vol. 33, 2019, pp. 4780–4789.

[65] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[66] D. Zhou, X. Zhou, W. Zhang, C. C. Loy, S. Yi, X. Zhang, andW. Ouyang,
‘‘EcoNAS: Finding proxies for economical neural architecture search,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 11393–11401.

[67] T. Domhan, J. T. Springenberg, and F. Hutter, ‘‘Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation
of learning curves,’’ in Proc. 24th Int. Joint Conf. Artif. Intell., 2015,
pp. 3460–3468.

[68] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, ‘‘Learning curve
prediction with Bayesian neural networks,’’ in Proc. 5th Int. Conf. Learn.
Represent. (ICLR), Toulon, France, Apr. 2017. [Online]. Available:
https://openreview.net/pdf?id=S11KBYclx

[69] B. Deng, J. Yan, and D. Lin, ‘‘Peephole: Predicting network performance
before training,’’ 2017, arXiv:1712.03351.

[70] R. Istrate, F. Scheidegger, G. Mariani, D. Nikolopoulos, C. Bekas, and
A. C. I. Malossi, ‘‘TAPAS: Train-less accuracy predictor for architecture
search,’’ in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, no. 1,
pp. 3927–3934.

[71] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, ‘‘Surrogate-
assisted evolutionary deep learning using an end-to-end random forest-
based performance predictor,’’ IEEE Trans. Evol. Comput., vol. 24, no. 2,
pp. 350–364, Apr. 2020.

[72] Y. Sun, X. Sun, Y. Fang, G. G. Yen, and Y. Liu, ‘‘A novel training protocol
for performance predictors of evolutionary neural architecture search
algorithms,’’ IEEE Trans. Evol. Comput., vol. 25, no. 3, pp. 524–536,
Jun. 2021.

11998 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-1-4899-7687-1_594
http://dx.doi.org/10.1016/j.swevo.2019.05.010
http://dx.doi.org/10.1016/j.neucom.2017.12.049


J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

[73] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, ‘‘SMASH: One-shot
model architecture search through hypernetworks,’’ inProc. 6th Int. Conf.
Learn. Represent. (ICLR), Vancouver, BC, USA, May 2018. [Online].
Available: https://openreview.net/pdf?id=rydeCEhs-

[74] B. Wang, B. Xue, and M. Zhang, ‘‘A transfer learning based evolutionary
deep learning framework to evolve convolutional neural networks,’’ in
Proc. Genetic Evol. Comput. Conf. Companion (GECCO), Jul. 2021,
pp. 287–288.

[75] S. Hu, R. Cheng, C. He, Z. Lu, J. Wang, and M. Zhang, ‘‘Accelerating
multi-objective neural architecture search by random-weight evaluation,’’
Complex Intell. Syst., vol. 9, no. 2, pp. 1183–1192, Apr. 2023, doi:
10.1007/s40747-021-00594-5.

[76] H. Tan, R. Cheng, S. Huang, C. He, C. Qiu, F. Yang, and P.
Luo, ‘‘RelativeNAS: Relative neural architecture search via slow-fast
learning,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 1,
pp. 475–489, Jan. 2023.

[77] G.-A. Vargas-Hákim, E. Mezura-Montes, and H.-G. Acosta-Mesa,
‘‘A review on convolutional neural network encodings for neuroevolu-
tion,’’ IEEE Trans. Evol. Comput., vol. 26, no. 1, pp. 12–27, Feb. 2022.

[78] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
‘‘Hierarchical representations for efficient architecture search,’’ in
Proc. 6th Int. Conf. Learn. Represent. (ICLR), Vancouver, BC,
Canada, Apr./May 2018. [Online]. Available: https://openreview.net/
pdf?id=BJQRKzbA-

[79] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le,
and A. Kurakin, ‘‘Large-scale evolution of image classifiers,’’ in Proc.
Int. Conf. Mach. Learn., 2017, pp. 2902–2911.

[80] F. Johnson, A. Valderrama, C. Valle, B. Crawford, R. Soto, and
R. Ñanculef, ‘‘Automating configuration of convolutional neural net-
work hyperparameters using genetic algorithm,’’ IEEE Access, vol. 8,
pp. 156139–156152, 2020.

[81] Z. Chen, Y. Zhou, and Z. Huang, ‘‘Auto-creation of effective neural
network architecture by evolutionary algorithm and ResNet for image
classification,’’ in Proc. IEEE Int. Conf. Syst., Man Cybern. (SMC),
Oct. 2019, pp. 3895–3900.

[82] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search
for mobile,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2815–2823.

[83] L. Frachon,W. Pang, and G.M. Coghill, ‘‘ImmuNeCS: Neural committee
search by an artificial immune system,’’ 2019, arXiv:1911.07729.

[84] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[85] R. K. Srivastava, K. Greff, and J. Schmidhuber, ‘‘Training very deep
networks,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 28, 2015,
pp. 1–9.

[86] R. Zhang, ‘‘Making convolutional networks shift-invariant again,’’ in
Proc. 36th Int. Conf. Mach. Learn., vol. 97, 2019, pp. 12712–12722.

[87] B. Wang, Y. Sun, B. Xue, and M. Zhang, ‘‘A hybrid GA-PSO method
for evolving architecture and short connections of deep convolutional
neural networks,’’ in Trends in Artificial Intelligence (Lecture Notes in
Computer Science, Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 11672. Cham, Switzerland: Springer, 2019,
pp. 650–663.

[88] X. Yao and Y. Liu, ‘‘A new evolutionary system for evolving artificial
neural networks,’’ IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 694–713,
May 1997.

[89] K. O. Stanley and R. Miikkulainen, ‘‘Evolving neural networks through
augmenting topologies,’’ Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002.

[90] A. M. Anter, A. W. Mohamed, M. Zhang, and Z. Zhang, ‘‘A robust
intelligence regression model for monitoring Parkinson’s disease based
on speech signals,’’ Future Gener. Comput. Syst., vol. 147, pp. 316–327,
Oct. 2023.

[91] H. Zhang, K. Hao, L. Gao, B. Wei, and X. Tang, ‘‘Optimizing deep neural
networks through neuroevolution with stochastic gradient descent,’’ IEEE
Trans. Cognit. Develop. Syst., vol. 15, no. 1, pp. 111–121, Mar. 2023.

[92] L. Xie and A. Yuille, ‘‘Genetic CNN,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1388–1397.

[93] J. Ren, Z. Li, J. Yang, N. Xu, T. Yang, and D. J. Foran, ‘‘EIGEN:
Ecologically-inspired GENetic approach for neural network structure
searching from scratch,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 9051–9060.

[94] M. Suganuma, S. Shirakawa, and T. Nagao, ‘‘A genetic programming
approach to designing convolutional neural network architectures,’’ in
Proc. Genetic Evol. Comput. Conf. (GECCO), Jul. 2017, pp. 497–504.

[95] J.-Y. Li, Z.-H. Zhan, J. Xu, S. Kwong, and J. Zhang, ‘‘Surrogate-assisted
hybrid-model estimation of distribution algorithm for mixed-variable
hyperparameters optimization in convolutional neural networks,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 34, no. 5, pp. 2338–2352,
May 2023.

[96] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc. 32nd Int.
Conf. Mach. Learn., vol. 37. Lille, France: PMLR, 2015, pp. 448–456.

[97] L. M. Schmitt, ‘‘Theory of genetic algorithms,’’ Theor. Comput. Sci.,
vol. 259, nos. 1–2, pp. 1–61, 2001.

[98] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[99] Y. Sun, G. G. Yen, and Z. Yi, ‘‘IGD indicator-based evolutionary
algorithm for many-objective optimization problems,’’ IEEE Trans. Evol.
Comput., vol. 23, no. 2, pp. 173–187, Apr. 2019.

[100] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

[101] Y. Leung, Y. Gao, and Z.-B. Xu, ‘‘Degree of population diversity—
A perspective on premature convergence in genetic algorithms and
its Markov chain analysis,’’ IEEE Trans. Neural Netw., vol. 8, no. 5,
pp. 1165–1176, Sep. 1997.

[102] B. L. Miller and D. E. Goldberg, ‘‘Genetic algorithms, tournament
selection, and the effects of noise,’’ Complex Syst., vol. 9, no. 3,
pp. 193–212, 1995.

[103] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[104] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine
Learning. New York, NY, USA: Springer, 2006, vol. 4.

[105] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
‘‘An empirical evaluation of deep architectures on problems with
many factors of variation,’’ in Proc. ACM Int. Conf., vol. 227, 2007,
pp. 473–480.

[106] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of
features from tiny images,’’ Univ. Toronto, Toronto, ON, Canada,
Tech. Rep. TR-2009, 2009. [Online]. Available: https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf

[107] Q. Liu, X. Wang, Y. Wang, and X. Song, ‘‘Evolutionary convolutional
neural network for image classification based on multi-objective genetic
programming with leader–follower mechanism,’’ Complex Intell. Syst.,
vol. 9, no. 3, pp. 3211–3228, Jun. 2023.

[108] A. Ghosh, N. D. Jana, S. Mallik, and Z. Zhao, ‘‘Designing optimal
convolutional neural network architecture using differential evolution
algorithm,’’ Patterns, vol. 3, no. 9, Sep. 2022, Art. no. 100567.

[109] M. Pinos, V. Mrazek, and L. Sekanina, ‘‘Evolutionary approximation and
neural architecture search,’’ Genetic Program. Evolvable Mach., vol. 23,
no. 3, pp. 351–374, Sep. 2022.

[110] Y. Yao, L. Rosasco, and A. Caponnetto, ‘‘On early stopping in
gradient descent learning,’’ Constructive Approximation, vol. 26, no. 2,
pp. 289–315, Aug. 2007.

[111] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
Jun. 2014.

[112] S. Park and N. Kwak, ‘‘Analysis on the dropout effect in convolutional
neural networks,’’ in Proc. 13th Asian Conf. Comput. Vis. (ACCV), Taipei,
Taiwan. Cham, Switzerland: Springer, Nov. 2017, pp. 189–204.

[113] A. Mao, M. Mohri, and Y. Zhong, ‘‘Cross-entropy loss functions:
Theoretical analysis and applications,’’ 2023, arXiv:2304.07288.

[114] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA,
USA, May 2015. [Online]. Available: https://arxiv.org/abs/1412.6980

[115] T. DeVries and G. W. Taylor, ‘‘Improved regularization of convolutional
neural networks with cutout,’’ 2017, arXiv:1708.04552.

[116] Student, ‘‘The probable error of a mean,’’ Biometrika, vol. 6, no. 1,
pp. 1–25, Mar. 1908.

[117] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, ‘‘Dual path
networks,’’ in Advances in Neural Information Processing Systems,
vol. 30. Red Hook, NY, USA: Curran Associates, 2017.

[118] I. Loshchilov and F. Hutter, ‘‘SGDR: Stochastic gradient descent with
warm restarts,’’ in Proc. 5th Int. Conf. Learn. Represent. (ICLR), Toulon,
France, Apr. 2017, pp. 1–16.

VOLUME 12, 2024 11999

http://dx.doi.org/10.1007/s40747-021-00594-5


J. I. Pilataxi et al.: Improved Search in Neuroevolution Using a NAC

[119] H. Abdi and L. J. Williams, ‘‘Tukey’s honestly significant difference
(HSD) test,’’ Encyclopedia Res. Design, vol. 3, no. 1, pp. 1–5, 2010.

[120] A. M. Anter, M. A. Elaziz, and Z. Zhang, ‘‘Real-time epileptic
seizure recognition using Bayesian genetic whale optimizer and adaptive
machine learning,’’ Future Gener. Comput. Syst., vol. 127, pp. 426–434,
Feb. 2022.

[121] A. M. Anter and Z. Zhang, ‘‘RLWOA-SOFL: A new learning model-
based reinforcement swarm intelligence and self-organizing deep fuzzy
rules for fMRI pain decoding,’’ IEEE Trans. Affect. Comput., doi:
10.1109/TAFFC.2023.3285997.

JHON I. PILATAXI (Graduate Student Member,
IEEE) was born in Quito, Ecuador, in 1990.
He received the B.S. degree in electronics
and control engineering from Escuela Politec-
nica Nacional (EPN), in 2014. He is currently
pursuing the Ph.D. degree in electrical engi-
neering with Universidad de Chile, Santiago.
From 2015 to 2021, he was a Lecturer with EPN.
His research interests include neuroevolution,
human activity recognition, machine learning, and
deep learning.

JORGE E. ZAMBRANO (Graduate Student
Member, IEEE) was born in Latacunga, Ecuador,
in 1991. He received the B.S. degree in electronics
and instrumentation engineering from Escuela
Politécnica del Ejército (ESPE), in 2015. He is
currently pursuing the Ph.D. degree in electrical
engineering with Universidad de Chile, Santiago.
His research interests include biometrics as well
as medical image analysis by means of image
processing, machine learning, and deep learning.

CLAUDIO A. PEREZ (Senior Member, IEEE)
received the B.S. degree in electrical engineer-
ing, the P.E. degree in electrical engineering,
and the M.S. degree in biomedical engineering
from Universidad de Chile, in 1980 and 1985,
respectively, and the Ph.D. degree from The Ohio
State University, in 1991. He was a Fulbright
Student with The Ohio State University, where
he received a Presidential Fellowship, in 1990.
He was a Visiting Scholar with UC Berkeley,

in 2002, through the Alumni Initiatives Award Program from the Fulbright
Foundation. He was the Department Chairperson, from 2003 to 2006, and
the Director of the Office of Academic and Research Affairs, School of
Engineering, Universidad de Chile, from 2014 to 2018. He is currently
a Professor with the Department of Electrical Engineering, Universidad
de Chile. His research interests include biometrics, image processing
applications, convolutional neural networks, and pattern recognition. He is a
Senior Member of the IEEE, Systems, Man and Cybernetics Society and the
IEEE Computational Intelligence Society.

KEVIN W. BOWYER (Fellow, IEEE) is currently
a Schubmehl-Prein Family Professor with the
Department of Computer Science and Engineer-
ing, University of Notre Dame, and the Director of
the College of Engineering Summer International
Programs. His main research interests include
computer vision and pattern recognition, including
biometrics, data mining, object recognition, and
medical image analysis. He is a fellow of IEEE for
contributions to algorithms for recognizing objects

in images and a fellow of IAPR for contributions to computer vision, pattern
recognition, and biometrics. He was a recipient of the IEEE Computer
Society Technical Achievement Award ‘‘for pioneering contributions to the
science and engineering of biometrics,’’ and the inaugural IEEE Biometrics
Council Meritorious Service Award. He served as the inaugural Editor-in-
Chief for the new IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY
SCIENCE (TBIOM).

12000 VOLUME 12, 2024

http://dx.doi.org/10.1109/TAFFC.2023.3285997

