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ABSTRACT This paper focuses on Sleep Apnea Syndrome (SAS) and proposes the novel eXplainable
AI (XAI) method that extracts characteristics of SAS by comparing the datasets of the SAS patients and
the non-SAS subjects. For this issue, this paper (i) employs ‘‘two’’ Random Forests (RFs) to respectively
learn the models for the SAS patients and the non-SAS subjects to classify the WAKE/non-WAKE stage,
(ii) compares the two learned RFs to find their difference as the physiological characteristic of SAS, and
(iii) proposes the SAS detection method based on the difference between the two learned RFs. Through
the human subject experiment of the SAS detection based on the biological vibration data acquired from
the mattress sensor during sleep, the following implications have been revealed: 1) RF learned from the
SAS patient data classifies the WAKE/non-WAKE stage from the viewpoint of the ‘‘low’’ frequencies of the
biological vibration data, while RF learned from the non-SAS subject data classifies it from the viewpoint
of its ‘‘high’’ frequencies; and 2) the SAS patients have the WAKE stage with the low frequencies of the
biological vibration data caused by disturbances in the autonomic nervous system due to apnea/hypopnea,
while the non-SAS subjects do not have it but have the usual WAKE stage with the high frequencies caused
by large body movements, which has a potential of the new characteristic of SAS instead of respiration as a
traditional characteristic of SAS.

INDEX TERMS XAI, random forests, sleep apnea syndrome, feature importance, mattress sensor.

I. INTRODUCTION
The accumulation of sleep debt increases the risk of industrial
and traffic accidents [1], [2], [3] and also increases the
risk of developing diseases such as depression, dementia,
and lifestyle-related diseases [4], [5], [6]. For these reasons,
sufficient sleep is necessary for a productive daily life and
a healthy life. Even in such sufficient sleep, however, sleep
deprivation can be caused by sleep disorders. Sleep apnea
syndrome (SAS) is one of the most common sleep disorders.
SAS causes hypopnea (i.e., weakening of breathing) and
apnea (i.e., cessation of breathing) during sleep, which
worsens sleep quality. According to the global survey of
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obstructive sleep apnea syndrome (OSAS), the population
of OSAS patients is estimated to be 78 million in the USA,
242 million in China, and 31 million in Japan [7]. Although
the estimated number of patients is large, many of them are
unaware of their suffering from OSAS. Furthermore, they
unconsciously suffer from lifestyle-related diseases such as
hypertension, myocardial infarction and so on [8], which
increase the national cost of medical care [9]. From the
facts, a regular diagnosis of SAS is necessary. The gold
standard method of diagnosis needs a polysomnography
(PSG) test which measures EEG, EOG, EMG and so on, and
through the PSG test the sleep quality (sleep stage) is also
defined based Rechtschaffen & Kales (R&K) method [10].
To define the severity of the SAS, the Apnea-Hypopnea
Index (AHI) is employed, AHI counts apnea and hypopnea
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events per sleep hour. An AHI score of 5-15 indicates mild,
15-30 moderate, and over 30 severe sleep apnea. This PSG
test requires a subject to attach multiple sensors to his/her
head and body and takes high cost which makes it difficult
to get the PSG test regularly.

For this reason, the SAS detection methods have been
developed. Concretely, most of them judge SAS according to
the number of detected apnea/hypopnea from the respiration
amplitude and the frequency analysis of the biological vibra-
tion data acquired from a mattress sensor [11], [12], [13].
However, it is difficult to detect apnea and hypopnea
from a mattress sensor because labored breath (i.e., effort
respiration) caused by apnea and/or hypopnea is very similar
to normal respiration. Furthermore, it is also difficult to
detect ‘‘hypopnea’’ from a mattress sensor in comparison
with ‘‘apnea’’ because weak respirations in hypopnea are
hard to be detected due to a similarity of normal respiration.

To tackle this problem, this paper focuses on the WAKE
stage (i.e., shallow sleep) in the sleep stages as a new
characteristic of SAS, instead of respiration as a traditional
characteristic of SAS. This is because (1) the WAKE stage
in the SAS patients often occurs in comparison with that
in the non-SAS subjects due to apnea/hypopnea; (2) our
previous research [14] found that it is difficult to detect the
WAKE stage in the SAS patients by the Machine Learning
(ML) model learned for the non-SAS subjects. These facts
hypothesize that the characteristic of the WAKE stage in the
SAS patients differs from the non-SAS subjects. To clarify
such characteristics, this paper proposes the novel eXplain-
able AI (XAI) method that extracts characteristics of SAS
by comparing a classification ofWAKE/non-WAKE between
the SAS patients and the non-SAS subjects. Concretely, this
paper (i) employs ‘‘two’’ Random Forests (RFs) [15] as
one of ML to respectively learn the models for the SAS
patients and the non-SAS subjects to classify WAKE/non-
WAKE using the biological vibration data acquired from the
mattress sensors, (ii) compares the two learned RFs to find
their difference as the characteristics of the WAKE stage in
SAS, and (iii) proposes the SAS detection method based on
the difference between the learned two RFs. We employ RF
because of the following reasons: (1) the accuracy of RF is
high thanks to the advantage of the ensemble method; (2) the
rules in the decision tree constructed by RF are easier to
be extracted than any other black-boxed models (e.g., deep
learning); and (3) the feature importance, which measures
how the features contribute to classifying training data, helps
us to briefly understand what RF learned.

What should be noted here is that the proposed approach
based on ‘‘two’’ RFs can provide more understanding of
what RF learned than the conventional approach based on
‘‘one’’ RF which trains both data of the SAS patients and
the non-SAS subjects at the same time. This is because the
proposed approach based on ‘‘two’’ RFs makes it easy to
identify the different tendencies of the SAS patients and the
non-SAS subjects by comparing their feature importance,
while the conventional approach based on ‘‘one’’ RF can

calculate the feature importance but cannot tell us to
understand how to classify SAS/non-SAS (see Section VI for
detail). From this advantage, the proposed approach based
on ‘‘two’’ RFs contributes to another understanding of SAS
by extracting its characteristics from the biological vibration
data acquired from mattress sensors.

This paper is organized as follows. The next section
summarizes the related works. Section III describes the RF,
and Section IV proposes the novel XAI method for extracting
the characteristics of SAS. The experiment is conducted in
Section V, and the results are discussed in Section VI. Finally,
our conclusion is given in Section VII.

II. RELATED WORK
A. NON-CONTACT SAS DETECTION
1) MATTRESS SENSOR
Most of the methods with a mattress sensor focus on apnea
(not hypopnea) and were designed to detect apnea from the
respiration amplitude calculated from the biological vibration
data (i.e., a pressure value acquired from amattress sensor) or
the spectrum analysis of the biological vibration data filtered
for respiration [12]. However, it is difficult to apply these
methods to mild SAS patients who often cause hypopnea
because hypopnea is difficult to be detected due to weak
respirations. As another approach, abnormal respiration is
detected by applying principal component analysis (PCA)
for the filtered respiration signal acquired from a mattress
sensor [11]. However, labored breath (i.e., effort respiration)
caused by apnea and hypopnea are hard to be detected as
abnormal respiration due to a similarity of normal respiration.

2) MICROPHONE
A severity of OSAS is estimated by a Gaussian mixture
regression based on the features extracted from the time and
the spectra domains of the recorded audio acquired from the
ambient microphones [16]. This work revealed that the cor-
relation coefficient of the estimated AHI (Apnea Hypopnea
Index) and the correct AHI was 89.2% with 7.35 events/hr
error of AHI. However, thismethod cannot always detect SAS
because the AHI error is too large to precisely detect SAS
(e.g., mild SAS subjects (whose AHI ≥ 5) may be wrongly
detected as a healthy subject (AHI<5) when AHI is estimated
with 7.35 smaller than the correct AHI).

3) RADAR
The abnormal respiration is detected by the algorithm in
SleepMinder [17] which estimates AHI by measuring the
breathing and body movement of a subject in bed from data
of the radio-frequency sensor. This work revealed that the
estimated AHI and the correct AHI have a correlation of
91% and moderate subjects (AHI>15) can be detected with
a sensitivity of 89% and a specificity of 92%. However, mild
subjects (AHI>5) are hard to be detected due to a difficulty
in estimating AHI with high accuracy (which a specificity
is 46%).

12002 VOLUME 12, 2024



I. Nakari, K. Takadama: Explainable Non-Contact SAS Detection Based on Comparison of RFs

B. XAI METHODS ON SAS DETECTION
Some recent studies applied the XAI method in SAS
detection. One is the study that applied LIME (Local
Interpretable Model-Agnostic Explanations) [18] to an apnea
detection ML model which is trained with signals acquired
from PSG test [19]. This approach aimed to identify which
specific features and their ranges were most significant in
predicting apnea, thereby enhancing the explainability of ML
models in SAS diagnosis. Although the method provides
what features and values make the ML models predict apnea
for the input data, themethod is not effective if theMLmodels
cannot predict apnea correctly or if the features of the input
data are difficult to interpret.

The other study employs Grad-CAM (Gradient-weighted
Class Activation Mapping) [20] for the model composed
with CNN and RNN and the model predicts apnea [21].
Grad-CAM is a visual method of showing the basis for
predictions, and in this work, it visualizes what input data
(i.e., the signal of airflow and SpO2) are predicted as apnea.
This method only visualizes the input data and doctors need
to analyze the result in detail.

III. RANDOM FORESTS
RF [15] is an ensemble learning method composed of
multiple decision trees as a weak classifier, and determines
the output (i.e., classification result) by the majority vote of
the classification results of decision trees.

A. ALGORITHM OF RF
FIGURE 1 shows the overview of RF, which is executed
as follows: (1) the training datasets are generated by RF
randomly sampling from the whole training dataset, (2) the
decision trees are constructed according to their own training
datasets, and (3) the output is determined by the majority
classification results of the decision trees. In this research,
Gini impurity [22] is employed to determine the condition in
the nodes of the decision trees. The value of Gini impurity
decreases when the ratio of the same label in the sampled
data in the node increases. The learning process of RF is
summarized as follows:

1) The training datasets Sj, where j = 1 . . .Ntree,
is generated from the whole training dataset S by the
bootstrap samplingwhich allows to select the same data
from S. Note that Ntree is the number of the decision
trees to be constructed.

FIGURE 1. Overview of random forests.

2) The decision trees Tj, where j = 1 . . .Ntree, are
constructed according to Sj. In this construction, the
following process is executed to generate the condition
in the nodes of the decision tree.
a) The different mtry features are randomly selected

(by not allowing to select the same features).
In the classification problem, it is recommended
to set mtry as the square root of the total number
of features.

b) The feature with its threshold value is selected
among many features with various threshold val-
ues to maximize the difference in Gini impurity
before and after dividing the data. The condition
of dividing data in the node is represented by the
selected feature and its threshold value.

c) For the divided data, repeat b) until reaching the
pre-defined depth of the decision tree.

B. FEATURE IMPORTANCE
The feature importance is the contribution of the feature
in classifying data. Concretely, the importance of the i-th
feature yi is calculated by an average of the difference in Gini
impurity before and after dividing the data in all nodes. The
formula of this calculation is shown in Eq. (1) as follows,

Imp(yi) =

∑Ntree
j=1 1(Tj(yi))

Ntree
(1)

where 1(Tj(yi)) indicates the difference of Gini impurity
before and after dividing the data according to the feature yi
in the decision tree Tj. Since the feature importance of yi
increases when its impurity in the node decreases, the large
feature importance means that the feature is important to
classify the data.

IV. COMPARISON OF RFS FOR EXTRACTING SUBJECT
CHARACTERISTICS
A. OVERVIEW
FIGURE 2 shows the overview of the proposed XAI method
that extracts characteristics of SAS from the viewpoint of
the WAKE stage as follows: (1) two RFs are independently
trained from the datasets of the SAS patients and the non-
SAS subjects, which are composed of the biological vibration
data acquired from the mattress sensor and the correct label
of WAKE/non-WAKE acquired from the PSG test (which
determines the sleep stage from EEG, EOG and EMG
acquired by attaching the electrodes to the body and head of
the subjects); (2) two RFs are compared to find the difference
rules in the generated decision trees between SAS/non-SAS.
For example, the rules C and D show the difference
between SAS/non-SAS, which rules respectively indicate the
characteristics of SAS/non-SAS.

B. FEATURE BY POWER SPECTRUM
To extract characteristics of SAS by investigating the
WAKE/non-WAKE stage, the power spectrum is employed
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FIGURE 2. Overview of the comparison of RF.

and calculated from the biological vibration data. This is
because the raw data of the biological vibration data make
it difficult to capture the characteristics of the vibration with
heartbeat, respiration, and body movement, and the power
spectrum can decompose these vibrations which is helpful to
take account of all characteristics in the WAKE/non-WAKE
stage. Concretely, the Fast Fourier Transform (FFT) [23] is
applied to the biological vibration data with the 64-second
window to convert it to the power spectrum. Note that, the
apnea/hypopnea often lasts from 10 to 60 seconds in patients
with mild and moderate SAS, a 60-second window is suitable
and 64 (where the sampling frequency of the mattress sensor
employed in this paper is 16 Hz and data size is 64 × 16 =

1024) was employed as the closest value in the factorial of
2 to which the FFT could be applied. Since the frequency
of the data can be analyzed up to 8 Hz by FFT according
to the sampling theorem [24], the data size of the power
spectrum is 512 (= 64 × 8) and the frequency resolution
is 1/64Hz. FIGURE 3 shows the power spectrum calculated
from the biological vibration data, where the vertical and
horizontal axes indicate the density of the power spectrum
and the frequency, respectively. In particular, the frequency
band between 0.1 Hz and 0.3 Hz is related to respiration, and
the frequency band between 0.6 Hz and 1.5 Hz is related to
heart rate. Regarding the body movement, the density of the
power spectrum becomes higher/lower as the bodymovement
becomes larger/smaller. This power spectrum is calculated
per second, and its frequency is employed for RF to learn a
classification of the WAKE/non-WAKE stage.

C. EXTRACTION WHAT RF LEARNED BY FEATURE
IMPORTANCE
To clarify the difference between SAS/non-SAS from the
viewpoint of the WAKE stage, the proposed method employs
the feature importance (described in section III-B.2) of the
frequency of the biological vibration data of the SAS patients
and the non-SAS subjects. FIGUREs 4(a) and 4(b) show the
feature importance in the learned RFs of the SAS patient
and the non-SAS subject, where the vertical and horizontal
axes indicate the frequency and the feature importance,
respectively. As shown in FIGURE 4, the distribution of
the feature importance of the SAS patients is different from
that of the non-SAS subject. Concretely, RF learned the low

FIGURE 3. Power spectrum calculated from data of mattress sensor.

frequencies as the significant feature of the SAS patient
while the high frequencies as the significant feature of the
non-SAS subject. This implies that low frequencies (i.e.,
correspond to the vibrations of respiration and heart rate) are
important for the SAS subjects when classifying the WAKE
stage. Following this observation, Section VI-A presents
a more detailed analysis highlighting the distinct feature
importance patterns observed between SAS subjects and non-
SAS subjects. Looking back on FIGURE 2, the rule C is
regarded to classify the data according to the low frequencies
while the rule D is regarded to classify the data according to
the high frequencies.

To quantify such a difference, this paper proposed the
index of Spectrum Importance Feature (SIF). To calculate
SIF, the distribution of the feature importance is divided
into the upper and lower sides according to the border of
the frequency. This process corresponds to the two-class
classification, and the border of the two classes is determined
by the smallest Gini impurity when dividing the upper and
lower sides. The detailed process is shown in Algorithm 1.
The detailed process is shown in Algorithm 1. First, the
feature importance (FI) of all frequencies determined by RF,
is set to Imp[ ] (i.e., Imp[0] =FI of 1/64Hz, Imp[1]=FI
of 2/64Hz, . . . , Imp[511] =FI of 512/64Hz(=8Hz)), and
the classification threshold of the feature importance (which
classifies feature importance into small or large) is set
to th[ ] by dividing the average of the feature importance
of all frequencies (aveFI) into 20 partitions (i.e., th[0] is
aveFI*1/20, th[1] = aveFI*2/20, . . . , th[19] =aveFI*20/20)
(lines 1 and 2). Note that th[ ] is indicated by the red vertical
line in FIGURE 4 and the number of partitions (20) is
determined by the pre-experiment. Next, the initial values of
the maximum impurity difference (maxDiff ) and the division
frequency (divideIndex) are both set to 0 (lines 3 and 4).
From the line 5, the optimal division frequency is searched
from 1/10 * Imp.Length to 9/10 * Imp.Length to appropriately
divide the upper and lower sides. Note that the division
frequency is not searched for the first and last one-tenth of
the total length because they are susceptible to noise. Given
the current division frequency (i), the feature importances of
all frequencies (Imp[k]) are classified into small or large by
comparing with th[j] by varying th[j]. Concretely, if Imp[k] <

th[j] in the case of k < i (i.e., the frequency k is smaller
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FIGURE 4. Feature importance of (a) SAS patient and (b) non-SAS subject.

than i, meaning the lower side), SL (i.e., the number of the
feature importance which is Smaller than th[j] in the Lower
side) increases; otherwise LL (i.e., the number of the feature
importance which is Larger than th[j] in the Lower side)
increases (lines 9 and 10). Similarly, if Imp[k] < th[j] in
the case of k ≥ i (i.e., the frequency k is same or larger
than i, meaning the upper side), SU (i.e., the number of the
feature importance which is Smaller than th[j] in the Upper
side) increases; otherwise LU (i.e., the number of the feature
importance which is Larger than th[j] in the Upper side)
increases (lines 11 and 12). Note that SL,LL, SU ,LU are
set to 0 when the current division frequency (i) is updated
(line 7). After counting SL,LL, SU ,LU in all frequencies (k)
in a certain i and j, the difference in Gini impurities before
and after dividing into the lower and upper side (currentDiff )
is calculated (line 15). This calculated difference of Gini
impurity is compared every time to find the maximum
difference (lines 16 to 18).

In FIGURE 4, the red horizontal line represents the
borderline of dividing into the upper and lower sides of
the distribution of the feature importance. After dividing
the distribution horizontally, SIF is calculated by Eq.(2),

SIF =
Undermax × Overwidth

Overave
(2)

where Undermax indicates the maximum feature importance
of the lower side, Overwidth indicates the range of the upper
side from the red borderline to the last frequency, andOverave
indicates the average of the feature importance in the upper
side. Since the large feature importance in the SAS patients
is shown together in the narrow range in the lower side
(not shown separately in the wide range) in comparison with
the non-SAS subjects, Undermax and Overwidth increase in
the SAS patients while Overave increases in the non-SAS
subjects. In detail, Undermax becomes large in the SAS
patients because the maximum size of the feature importance
in the lower side in the SAS patients is larger than the non-
SAS subjects. Overwidth becomes large in the SAS patients
because the distribution of the large feature importance is
shown in the narrow range of the lower side in the SAS
patients while such a distribution is shown in the wide range
in the non-SAS subjects. Finally, Overave becomes large
in the non-SAS subjects because of the same reason of
Overwidth. From this difference, the SIF value of the SAS

Algorithm 1 Divide the Distribution of Feature Importance
1: Imp[ ]: Feature importance of all frequencies
2: th[ ]: Classification threshold of feature importance
3: maxDiff ⇐ 0: Maximum impurity difference
4: divedeIndex ⇐ 0: Division frequency
5: for i = Imp.Length/10 to 9 ∗ (Imp.Length)/10 do
6: for j = 0 to th.Length do
7: SL,LL, SU ,LU ⇐ 0
8: for k = 0 to Imp.Length do
9: if k < i then
10: if Imp[k] < th[j] then SL++else LL++

11: else
12: if Imp[k] < th[j] then SU++else LU++

13: end if
14: end for
15: currentDiff ⇐

calculateImpurityDiff(SL,LL, SU ,LU )
16: if maxDiff < currentDiff then
17: maxDiff ⇐ currentDiff
18: devideIndex ⇐ i
19: end if
20: end for
21: end for

TABLE 1. Details of SAS subjects.

TABLE 2. Details of non-SAS subjects.

patients becomes large while that of the non-SAS subjects
becomes small.

V. EXPERIMENT
To investigate the effectiveness of the proposed method,
the human subject experiment was conducted with the
nine SAS patients and the nine non-SAS subjects. In this
experiment, the proposed method was compared with the
single RF as the conventional method which is directly
trained to classify SAS/non-SAS from the entire subjects.
By comparing the proposed method and the single RF,
this paper also investigates whether the proposed method

VOLUME 12, 2024 12005



I. Nakari, K. Takadama: Explainable Non-Contact SAS Detection Based on Comparison of RFs

can provide high SAS decision accuracy while ensuring
interpretability. Note that the proposed method trained RFs
for each subject to classify WAKE/non-WAKE, while the
conventional method trained one RF for the entire subjects to
classify SAS/non-SAS. In order to match the learningmethod
of the proposed method, the conventional method also learns
an epoch-by-epoch. For this issue, the power spectrum of the
epoch (i.e., 30 seconds) with the correct label of WAKE/non-
WAKE was employed as the training data in the proposed
method, while that with the correct label of SAS/non-SAS
was employed as the training data in the conventionalmethod.
This means that both classification results in the proposed
method (i.e., WAKE/non-WAKE) and in the conventional
method (i.e., SAS/non-SAS) are evaluated in a unit of one
epoch. However, since the conventional method should be
evaluated in a unit of one person (not one epoch), it classifies
SAS when the ratio of the classification result of SAS in all
epochs is greater than 0.5. For example, if one subject has
100 epochs and the RF in the conventional method classifies
more than 50 epochs as SAS, then the subject is classified as
SAS. Finally, both methods were evaluated by the leave-one-
out cross-validation (i.e., themethods train themodel with the
data of the eight SAS patients or the eight non-SAS subjects
and test the model with the remaining one SAS patient or one
non-SAS subject), and continue this evaluation by changing
the patent/subject to be excluded.

The parameters of RF in the proposed and conventional
method are set as follows: (1) the maximum depth of the
decision tree is 10; (2) the number of the decision tree is 300;
(3) the number of features employed to construct the decision
tree is 23 (≒

√
512) as described Section III-A. The following

evaluation criteria are employed: accuracy, precision, recall
and F-measure for the SAS detection.

A. DATASET
TABLE 1 shows the details of the SAS subjects, where
the row of ‘‘SAS ID,’’ ‘‘Severity,’’ ‘‘Num. of epoch’’ and
‘‘WAKE’’ indicate the labeled ID of the SAS patients, the
severe category of SAS, the number of epochs during one
night, and the number of epochs labeled with the WAKE
stage, respectively. These nine SAS subjects were originally
suspected of having SAS and were actually diagnosed with
mild to moderate SAS by a doctor through a PSG test. Note
that this paper employs many mild SAS patients who are dif-
ficult to be detected as described in Section I and II TABLE 2
shows the details of non-SAS subjects, where the row of
‘‘Non-SAS ID’’ indicates the labeled ID of the Non-SAS sub-
jects. These nine non-SAS subjects have no apnea/hypopnea
symptoms during sleep and self-identified as healthy.

The biological data of the patients/subjects is measured by
PSG and the mattress sensor is placed under the mattress of
the bed. In this paper, TANITA sleep scan SL511 (Tokyo,
Japan) with a sampling rate is 16 Hz was employed as the
mattress sensor. After the sleep, the sleep stage is determined
according to the R&K method based on EEG, EOG and
EMG, and the biological vibration data is converted to the

TABLE 3. Result of SAS detection by the conventional method.

TABLE 4. Result of non-SAS detection by the conventional method.

power spectrum.When conducting this experiment, the ethics
community of Ota General Hospital approved this study
in agreement with Helsinki’s declaration. All the subjects
were explained about our study by the hospital staff before
the human subject experiment and signed their consent. For
the protection of privacy, we only received the data from the
hospitals, without the names and addresses of the subjects.

B. RESULTS
1) PROPOSED METHOD: COMPARISON OF RFS
FIGUREs 5 and 6 respectively show the feature importance
of the frequency of the biological vibration data of the SAS
patients and the non-SAS subjects in the proposed method,
where the vertical and horizontal axes have the samemeaning
of FIGURE 4 and the alphabet in the upper right corner of
each graph indicates the subject ID. As shown in FIGURE 5,
the feature importance of the low frequencies tends to be large
while that of the high frequencies tends to be small. As shown
in FIGURE 6, on the other hand, the large andmedium feature
importance is shown separately in the whole frequencies.

FIGURE 7 shows the SIF value of all patients/subjects,
where the vertical and horizontal axes indicate the SIF value
and the IDs of patients/subjects, respectively. In detail, the
red and blue bars respectively indicate the results of the
SAS patients and non-SA subjects, and the black dotted line
is a threshold for the SAS detection determined manually.
In determining the threshold, this paper set it to be able
to detect all SAS patients. As shown in FIGURE 7, all
SAS patients can be completely separated from all non-SAS
subjects when setting the appropriate threshold even with
manymild patients in the dataset. This suggests that accuracy,
precision, recall, and F-measure become 100%. Note that,
this manually determined thresholdwill be changed due to the
dataset, so that it is important to decide the optimal threshold
by adding sufficient subjects.
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FIGURE 5. Feature importance of SAS patients trained with
WAKE/non-WAKE.

FIGURE 6. Feature importance of non-SAS subjects trained with
WAKE/non-WAKE.

FIGURE 7. SIF values of SAS patients and non-SAS subjects.

2) NORMAL METHOD: SINGLE RF
TABLEs 3 and 4 respectively show the results of the SAS and
non-SAS subjects in the conventional method, where the row
of ‘‘SAS/non-SAS ID,’’ ‘‘SAS count,’’ ‘‘non-SAS count’’ and
‘‘SAS ratio’’ indicate the subject ID, the number of the epochs
classified as SAS, the number of the epochs classified as non-
SAS, and the ratio of the epochs classified as SAS and non-
SAS, respectively. Considering that the conventional method
classifies SAS when the SAS ratio is greater than 50.0%,
TABLEs 3 and 4 show that all SAS patients are classified as
SAS while all non-SAS subjects are classified as non-SAS.
This suggests that accuracy, precision, recall, and F-measure
are 100%.

VI. DISCUSSION
A. EXPLAINABILITY OF COMPARISONS OF RFS
To understand what RFs learned by the proposed method,
the feature importance in the learned RFs is analyzed from
the viewpoint of the spectrogram, which is represented
by the three-dimensional values (i.e., time, frequency and

power spectrum density (PSD)). FIGUREs 8 and 9 show the
spectrograms of the non-SAS subject (ID: h) and SAS patient
(ID: G) in one hour extracted from the whole sleep, where the
vertical and horizontal axes indicate the frequency and the
time, respectively. The color represents PSD which becomes
dark/bright when its value becomes small/large. The orange
solid line in the upper side of the figure indicates the sleep
stage of PSG, and the orange/sky-blue color arrows indicate
theWAKE stage with the large/small body movements which
have the large/small PSD above 1Hz frequency, respectively.
The green thin bar in the lower figure indicates the time when
apnea/hypopnea occurs.

As shown in the non-SAS subjects shown in FIGURE 8,
it is easy to classify WAKE/non-WAKE by the large/small
PSD in the high frequencies (i.e., above 1 Hz frequency)
occurred by the large/small body movement. In the SAS
patients shown in FIGURE 9, on the other hand, it is difficult
to classify WAKE/non-WAKE by the large/small PSD in
the high frequencies because both the large and small body
movements are found in the WAKE stage (i.e., the large body
movements are found in the WAKE stage indicated by the
orange color arrows, while the small ones are also found in
the WAKE stage indicated by the sky-blue color arrows).
Focusing on the small body movements in the WAKE stage,
PSD around 0.3 Hzmarked by the sky-blue circles tends to be
large, and RF for the SAS patients learned this tendencywhile
RF for the non-SAS subjects did not learn it. This suggests
that the SAS patients have the different types ofWAKE stages
from the viewpoint of biological vibration data, while the
non-SAS subjects do not have them.

This phenomenon can be explained from the viewpoint of
the relationship between the autonomic nervous system and
apnea/hypopnea. During sleep, the parasympathetic activity
in the autonomic nervous system of the non-SAS subjects
is generally stronger than the sympathetic activity. However,
the sympathetic activity of the SAS patients becomes high
during apnea/hypopnea, in order to promote breathing against
hypoxia [25]. In such a situation, the sleep stage changes to
the WAKE stage with the small body movement. FIGURE 9
shows this relationship that most of the WAKE stage with
the small body movement (indicated by the sky-blue color
arrows) appears when apnea/hypopnea (indicated by the
green thin bars) occurs. Precisely, the WAKE stage with the
small body movement starts to appear when the sympathetic
activity becomes large, and then the apnea/hypopnea occurs.
This is the reason why the small body movements in the
WAKE stage are only found in the SAS patients. Furthermore,
machine learning (i.e., RF in this paper) can learn the
characteristics of WAKE in each subject by training each
subject with a specialized model and the above facts have
appeared in the feature importance distribution of each RF.

What should be noted here is that this implication cannot
be found by the conventional method (i.e., the single RF)
but only found by the proposed method which compares RFs
for the SAS patients and the non-SAS subjects. The detailed
implications are revealed as follows: (1) theWAKE stagewith
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FIGURE 8. Spectrogram of the non-SAS subject (ID: h).

FIGURE 9. Spectrogram of the SAS subject (ID: G).

FIGURE 10. Feature importance extracted from RF trained with
SAS/non-SAS for the entire subjects.

the small body movement (i.e, a high PSD in the low frequen-
cies of the biological vibration data around 0.3 Hz) is only
found in the SAS patients, which is caused by disturbance of
the autonomic nervous system due to apnea/hypopnea; and
(2) the WAKE stage with the large body movement is found
in both the SAS patients and the non-SAS subjects. This
suggests that theWAKE stage with the small body movement
has a potential of the new characteristic of SAS instead of
respiration as a traditional characteristic of SAS.

B. EXPLAINABILITY OF SINGLE RF
FIGURE 10 shows the feature importance of the frequency of
the biological vibration data of the non-SAS subjects in the
conventional method. This figure suggests that the frequency
bands around 1 Hz and 3 Hz are effective in classifying
SAS/non-SAS, but cannot tell us how RF classifies

FIGURE 11. Example of decision trees in the learned RF.

SAS/non-SAS. To clarify this issue (i.e., to understand what
RF learned), FIGURE 11 shows one of the decision trees
in the learned RF, where the blue and orange squares show
the rules for classifying SAS and non-SAS, respectively. The
following rules are marked with the red lines in FIGURE 11.

• if PSD (0.39Hz) ≤ 45777 & PSD (0.58Hz) ≤ 235665 &
PSD (3.14Hz) > 38444 then SAS

• if PSD (0.39Hz) > 45777 & PSD (1.31Hz) ≤ 181178 &
PSD (0.31Hz) > 20874853 then SAS

The above rules can be roughly interpreted to classify
SAS/non-SAS according to the low frequencies of the
biological vibration data around 0.3 Hz (represented with
the underline) in addition to around 1Hz and 3Hz, this
suggests that it is important that the strength of vibration
with around 0.3 Hz which corresponds to the respiration
(note that when it is the normal respiration, the density of
the power spectrum between 0.2 Hz to 0.26 Hz gets large).
However, it is still difficult to grasp the tendency of the
rules because of its complexity based on the multi-layered
conditions. Furthermore, these rules are just two examples
among all rules in all decision trees, which means that we
cannot entirely understand what RF learned by analyzing
a few rules. It is almost impossible to understand it as the
number of trees increases and the depth of trees deepens.
This is a fatal limitation of the single RF, although RF is
categorized as an interpretable ML with a high expandability.

VII. CONCLUSION
This paper proposed the novel XAI method that extracted the
characteristics of SAS by comparing RFs and investigated
its effectiveness through the SAS detection based on the
biological vibration data acquired from a mattress sensor.
Concretely, the proposed method (i) learned the two RFs of
the SAS patients and the non-SAS subjects independently
to classify the WAKE/non-WAKE stage, (ii) compared the
two learned RFs to find their differences as the physiological
characteristics of SAS, and (iii) detected SAS according to
the found difference of RFs.

Through the human subject experiment, the following
implications have been revealed: (1) RF learned from the
SAS patient data classifies theWAKE/non-WAKE stage from
the viewpoint of the ‘‘low’’ frequencies of the biological
vibration data, while RF learned from the non-SAS subject
data classifies it from the viewpoint of its ‘‘high’’ frequencies;
and (2) the SAS patients have the WAKE stage with the
low frequencies of the biological vibration data caused
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by disturbances in the autonomic nervous system due to
apnea/hypopnea, while the non-SAS subjects do not have it
but have the usual WAKE stage with the high frequencies
caused by large body movements, which suggests that the
WAKE stage with the small body movement has a potential
of the new characteristic of SAS instead of respiration as a
traditional characteristic of SAS.

What should be noticed here is that the implications have
only been obtained from the small number of the SAS patients
and the non-SAS subjects, and therefore further careful
qualifications and justifications, such as an increase of the
patients/subjects, are needed to investigate the generality of
our implications. Such important directions must be pursued
in the near future in addition to (1) an investigation of whether
the implications found in this paper are the same among mild,
moderate and severe SAS patients; (2) the same analysis by
estimating the WAKE/non-WAKE stage instead of providing
the correct WAKE/non-WAKE stage in this paper.
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