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ABSTRACT Unmanned Aerial Vehicles (UAVs) have been extensively researched and used in civil and
military applications due to their effectiveness and flexibility. However, when identifying obstacles and
avoiding them, most of the existing path planning methods fail to accurately perceive the environment,
such as without considering the differences between obstacles, which leads to low timeliness and easy fall
into a local minimum. In this work, an improved artificial potential field UAV path planning algorithm
(G-APF) guided by the rapidly-exploring random tree (RRT) based on an environment-aware model is
designed to overcome the limitations of traditional methods. The model can perceive different objects in
the environment through the addition of supervised environment modeling to traditional unsupervised path
planning. Specifically, an environment-aware model based on YOLOv8 is used to establish the UAV flight
environment model, and an adaptive optimal threat distance calculation module is used to construct the
repulsive potential field. Secondly, to improve the timeliness of path planning and the global awareness of the
model, we first use the G-APF algorithm to plan the rough flight path based on the UAV flight environment.
Then, the initially generated trajectory is replanned by building an attractive potential field and combining
it with a repulsive potential field. Finally, the problems of local minimum and target unreachability and
local trajectory oscillation generated by the artificial potential field (APF) algorithm are solved by G-APF.
Experiments with generated regions are performed to demonstrate the efficiency and effectiveness of the
proposed approach.

INDEX TERMS UAV, path planning, object detection, perception, supervised learning, modeling.

I. INTRODUCTION
In recent years, unmanned aerial vehicles (UAVs) have seen
significant advancements due to the rapid development of
autonomy technology, automatic control, and artificial intelli-
gence [1], [2], [3]. The applications of UAVs include civilian
or scientific deployments such as agricultural plant protec-
tion [4], [5], target tracking [6], [7], traffic monitoring [8],
[9], as well as military utilizations such as disaster relief [10],

The associate editor coordinating the review of this manuscript and

approving it for publication was Mark Kok Yew Ng .

[11], anti-terror campaign [12]. Ensuring accurate obsta-
cle avoidance and stable path planning is pivotal for UAV
mission success. UAVs must navigate around obstacles in
the field while maintaining stability and finding optimal
paths.

Thus, precise obstacle avoidance tailored to different
objects is crucial for successful and effective task com-
pletion. Moreover, in complex environments, path planning
using local planning algorithms fails to provide the UAV
with global information, which easily leads to path planning
failure. Combining global and local planning approaches
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TABLE 1. The relevant studies of apf.

enhances work efficiency, accelerates target task completion,
reduces system consumption, and bolsters UAV flight robust-
ness [13]. Algorithm fusion planning methods will be the
trend for current and future UAV path planning [14], [15],
[16], [17].

To achieve efficient and stable path planning, various algo-
rithms have been proposed, which can be divided into two
groups [18]: Heuristic algorithms and deterministic algo-
rithms.

Heuristic algorithms are a class of search algorithms based
on problem domain knowledge and experience for solving
complex optimization problems, such as the particle swarm
algorithm [19], the ant colony algorithm [20], and the simu-
lated annealing algorithm [21]. Due to their non-deterministic
nature, heuristic methods exhibit considerable variability in
results, making them less suitable for scenarios requiring high
timeliness. While swarm intelligence algorithms, such as the
artificial fish swarm algorithm [22], enhance the efficiency
of heuristic algorithms, their reliance on collaboration and
self-organizing behavior may lead to challenges influenced
by factors like population size and iteration frequency [23].
Furthermore, a significant limitation they face remains their
relatively low timeliness in certain applications.

Deterministic algorithms are methods that use deter-
ministic models and algorithms for computation and

decision-making in path planning, without considering ran-
dom or probabilistic factors, such as the A∗ algorithm [24],
the Dijkstra algorithm [25], and the artificial potential field
algorithm (APF) [26]. As the computation time of A∗ and
Dijkstra algorithms is proportional to the size and complex-
ity of the search space, they are typically unsuitable for
high-dimensional environments. APF, known for its ease of
implementation and excellent timeliness, is a primary deter-
ministic algorithm in high-dimensional environments, often
used in combination with other algorithms or enhancements.
However, APF, as a local path planning method, faces the
challenge of local minima. Once the UAV becomes trapped
in a local minimum region, equal-magnitude repulsive and
gravitational forces impede path planning progression. Con-
sequently, APF is frequently used in conjunction with other
algorithms or after self-improvement. Relevant APF studies
are summarized in Table 1.

The Rapidly-exploring Random Tree (RRT) algorithm is a
global path planning algorithm based on random sampling.
It is capable of handling complex environments, rapidly
exploring solution spaces, and does not require an explicit
environmental model, making it one of the most widely used
global path planning algorithms [35]. However, the stochas-
tic nature of the RRT algorithm makes it very sensitive to
the choice of initial sampling points, and different initial
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sampling points may lead to different path results, which
leads to uncertainty and instability in path planning. In certain
cases, the RRT algorithm may fall into a situation of poor
search quality.

However, conventional methods often apply uniform
obstacle avoidance criteria to diverse obstacles, leading to
two challenges:

1) Using a smaller obstacle avoidance distance for both
immovable obstacles (e.g., rocks, walls) and movable
obstacles (e.g., twigs, electric wires). Due to the limited
deformation ability of immovable obstacles, the drone
can still safely avoid obstacles within a safe distance
using a smaller obstacle avoidance distance. Applying
the same short distance to movable obstacles could lead
to collisions, for example, tree branches susceptible to
wind could collide with the UAV;

2) Employing a larger obstacle avoidance distance for
both immovable and movable obstacles significantly
increases the flight path length.

Effective path planning relies on accurate, real-time, and
robust perception of the environment. UAVs need to cate-
gorize and locate ‘‘flight environmental objects,’’ defined as
objects related to flight, such as buildings, trees, and other
obstacles. Therefore, building an explicit model of the UAV
flight environment is equally crucial. Most current methods
use unsupervised learning for object detection and obsta-
cle avoidance, employing sensors like distance sensors and
binocular vision cameras to determine obstacle locations and
employ algorithms for avoidance. UAVs perform obstacle
avoidance based on distance information only, andmay not be
able to accurately identify and recognize the characteristics of
complex obstacles such as trees and buildings. This results in
the UAV being unable to perform effective path planning and
obstacle avoidance.

Synthesizing the above discussion, this paper proposes a
guided Artificial Potential Field (G-APF) algorithm based on
environmental awareness. The algorithm is improved through
the following key steps:

• YOLOv8-based environment awareness model: Explic-
itly modeling the UAV flight environment using a
YOLOv8-based environment-aware model, enabling the
UAV to gain a comprehensive understanding of the envi-
ronment and its obstacles.

• Adaptive threat distance calculation: An adaptive threat
distance calculation module is introduced to construct
the repulsive potential field model for the Artificial
Potential Field (APF). This allows the UAV to dynam-
ically adjust its repulsion from obstacles based on their
characteristics, preventing potential collisions.

• Global path planning with improved rapidly-exploring
random tree (IRRT): By incorporating the idea of sam-
pling the APF gravitational potential field, the IRRT
efficiently guides the tree toward the target point, ensur-
ing faster convergence.

• Path replanning using improved artificial potential field
(IAPF): To address the APF algorithm’s tendency to fall
into local minima, sub-target points are created by using
IRRT, and path replanning is performed using the IAPF.

• Overcoming target unreachability and path oscillation:
In this paper, the target unreachability and local path
oscillation problems associated with APF are solved by
incorporating a distance weighting function for target
points and introducing a direction weighting factor.

Furthermore, the model is enriched through supervised
learning, where it is trained to learn and recognize the
characteristics and attributes of different types of obstacles.
This empowers the UAV to more accurately identify various
obstacles and provides more detailed and precise obstacle
information to the path planning algorithm. By combining the
strengths of RRT and APF for path planning, the proposed
G-APF algorithm achieves more efficient and safer trajec-
tory planning for UAVs. The incorporation of environmental
awareness and adaptive parameters ensures the UAV can
avoid obstacles effectively, maintain stability, and reach its
target points with improved accuracy.

The structure of this paper is organized as follows:
Section II introduces two key algorithms. The limitations and
drawbacks of the APF algorithm are discussed, emphasiz-
ing the need for alternative approaches. Then explores the
benefits and importance of accurate environment modeling
in the context of path planning. Section III presents the
G-APF algorithm as a solution to address the path planning
problem. Section IV evaluates the superiority of the proposed
algorithm through simulation experiments conducted in dif-
ferent environments.

II. RELATED WORKS
A. THE RAPIDLY-EXPLORING RANDOM TREE
RRT is a widely used path planning algorithm for finding
collision-free paths in complex environments. It was first
proposed in 1998 by Steven M. LaValle [36]. It is designed
to find collision-free paths in complex environments.

The core idea of RRT is to randomly sample points in the
feasible space and gradually connect these sampled points to
the growing tree structure to form a path. As the algorithm
expands the branches of the tree, it rapidly explores different
regions of the environment and adapts to complex obstacle
shapes, making it suitable for planning paths in complex and
dynamic scenarios.

The initialization phase commences with the selection of
an initial point, which serves as the starting position for the
mobile entity. This selected point functions as the root node
for the creation of the exploration tree. The construction of the
path tree unfolds as an iterative process. Initially, a random
sampling point is generated within the unoccupied space.
Subsequently, we identify the nearest node to this randomly
sampled point within the existing exploration tree. A new
node is then generated by taking a small step from the nearest
node towards the randomly sampled point. Subsequently,
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FIGURE 1. The expansion schematic of the RRT tree.

a collision check is executed to ascertain whether the newly
generated node collides with any obstacles. If no collisions
are detected, the new node is incorporated into the exploration
tree, with its parent node being designated as the closest node.
Moreover, we evaluatewhether the new node lies in proximity
to the target point or has reached the target point itself. If the
target conditions are met, the algorithm concludes. Upon
successful termination of the algorithmwith a path discovery,
the path can be extracted from the exploration tree through
a backtracking process. This process involves tracing from
the target node back to the starting node and establishing
connections via the parent nodes to derive the complete path.

The expansion schematic of the RRT tree is visually illus-
trated in Figure 1, showing how the tree structure expands to
explore the environment and find potential paths.

The detailed algorithm flow of RRT is outlined in
Algorithm 1, providing a step-by-step description of the
process, from random sampling to tree expansion, until the
algorithm reaches its termination condition or finds a valid
path.

RRT is recognized for its efficiency and effectiveness in
addressing complex environments featuring obstacles, ren-
dering it a pivotal algorithm in the realms of robotics and
path planning, enjoying widespread adoption. Nevertheless,
the RRT algorithm exhibits a propensity for rapid expansion
within the search space, without a guarantee of uncovering
the global optimal solution. Additionally, its performance
may be suboptimal in high-dimensional spaces, with slower
convergence or potential failure in instances of expansive
search spaces and heightened complexity.

In Algorithm 1, the variables are: R, T , Xinit , Xgoal ,
Xobs, StepSize, Xrand , Xnear , Xnew; The functions are: init(),
Sample(), Near(), Steer(), CollisionFree(), addNode(). The
variables and functions along with their meanings are shown
in Table 2.

B. THE ARTIFICIAL POTENTIAL FIELD
The basic idea of the artificial potential field method is
to detect the obstacle situation of the environment by sev-
eral environmental sensors and to generate gravitational and
repulsive potential fields for the target point and the obstacle,

Algorithm 1 RRT Algorithm
Input:R, Xinit , Xgoal , Xobs, StepSize
Result: A path T = {X1, . . .Xn} from Xinit to Xgoal
T .init();
for i = 1 to n do

Xrand ← Sample(R);
Xnear ← Near(Xrand , T );
Xnew← Steer(Xrand ,Xnear , StepSize);
if CollisionFree(Xnew,Xobs) then
T .addNode(Xnew);

if Xnew = Xgoal then
return T ;

respectively. In a combined potential field environment con-
sisting of a gravitational potential field and multiple repulsive
potential fields, the UAV will move in the direction of the
falling potential field. The combined gravitational and repul-
sive forces act on the UAV to generate a safe path from the
start point to the target point. Compared to generating a full
path, the algorithm only considers the combined potential
field at the current path point, resulting in high real-time
performance.

The gravitational and repulsive potential field functions
can be expressed as follows:

Uatt (X ) = ckatt [d(X ,Xe)]2 (1)

Urep(X ) =

 ckrep(
1

d(X ,Xt )
−

1
ρ
)2, d(X ,Xt ) ≤ ρ

0, d(X ,Xt ) > ρ

(2)

where, c is the constant term, katt and krep are the gravitational
and repulsion coefficient, X = (x, y, z) is the current position
of the UAV, Xe = (xe, ye, ze) is the location of the target point,
Xt = (xt , yt , zt ) is the location of the obstacle, d(X ,Xe) =√
(Xe − X )2is the Euclidean distance between the UAV and

the target point, d(X ,Xt ) =
√
(Xt − X )2 is the Euclidean

distance between the UAV and the obstacle, and ρ is the
obstacle threat distance.

Themagnitude of the gravitational and repulsive forces can
be obtained by finding the negative gradient of the gravita-
tional and repulsive potential fields, expressed as follows:

Fatt (X ) = −∇(Uatt ) = −2ckattd(X ,Xe)
∂d(X ,Xe)

∂X
(3)

Frep(X ) = −∇(Urep)

=


2ckrep

[d(X ,Xt )]2
(

1
d(X ,Xt )

−
1
ρ
)
∂d(X ,Xt )

∂X
,

d(X ,Xt ) ≤ ρ

0, d(X ,Xt ) > ρ

(4)

The combined force of the UAV (as shown in Figure 2)
is determined by several repulsive forces and a gravitational
force together. The combined force provides the UAV’s next
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TABLE 2. Variables and functions of RRT.

FIGURE 2. The combined force model of the UAV.

flight direction, which allows the UAV to safely reach the
target point while avoiding obstacles, expressed as follows:

Fall(X ) = Fatt (X )+
n∑
i=1

Frep_i(X ) (5)

The APF method is simple to implement, but since the
combined force is only a simple iteration of the gravitational
force and the repulsive force, this method has the following
drawbacks:

1) Target unreachability problem: As the UAV approaches
the target point, the gravitational potential field gen-
erated by the target decreases, while the repulsive
potential field generated by nearby obstacles increases.
In certain situations, the repulsive force may exceed the
gravitational force, causing the combined force to point
away from the direction of the target point. This can
result in the UAV being unable to reach the target, lead-
ing to a target unreachability problem (Figure 3(a)).

2) Local minimum trap: During path planning, the UAV
only has access to local information about its current

position, lacking a global perspective. In complex envi-
ronments, this limited local information may lead to
situations where the combined force becomes zero,
leaving the UAV unable to choose a better path. This
can result in the UAV becoming trapped in a local
minimum, hindering its ability to find an optimal path
(Figure 3(b)).

3) Local path oscillation: As the UAV approaches the
target point, the gravitational potential field dominates,
guiding the UAV towards the target. However, when
the UAV encounters an obstacle, the repulsive potential
field takes precedence, causing the UAV to move away
from the obstacle. This continuous interaction of gravi-
tational and repulsive forces in the vicinity of obstacles
can lead to a back-and-forth oscillatory motion pattern,
causing the UAV to repeatedly approach and move
away from obstacles. This behavior results in local path
oscillation (Figure 3(c)).

C. ACCURATE OBJECT DETECTION IN PATH PLANNING
Most UAVs typically rely directly on sensors for obstacle
location information during obstacle avoidance, without ade-
quately considering crucial factors such as the type, size,
and possible deformation or movement of the obstacle. This
generalized categorization of all objects as ‘‘obstacles’’ gives
rise to the following issues:

1) The same avoidance strategy for objects of different
sizes or categories (e.g., trees, poles, walls) may result
in the UAV not being able to distinguish between obsta-
cle types and accurately calculate the avoidance space,
which may cause the UAV to be overly conservative or
risky in the avoidance process and not fully utilize the
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FIGURE 3. Problems with APF in different situations. (a) Target unreachability problem; (b) Local minimum problem; (c) Local path oscillation problem.

available space. This limits the UAV’s maneuverability
and mission effectiveness.

2) Some objects in real-world scenarios do not remain
stationary, they may deform or move (e.g., trees, flags),
for fixed objects, UAVs can choose to go around or
static avoidance, while for shifting or moving obstacles
we need a more flexible avoidance strategy.

To ensure the safe operation of UAVs, a precise perception
and perception of the environment are paramount. The per-
ception system of UAV transforms sensory data into semantic
information, such as identification and recognition of objects’
positions and classes. Notably, the object detection task is of
fundamental importance, as any failure to accurately identify
and recognize objects has the potential to lead to safety-
related incidents [37]. Therefore, it is crucial to address the
aforementioned issues in UAV obstacle avoidance systems to
enhance safety and overall performance.

III. PROPOSED METHODOLOGY
A. OVERVIEW
From the above discussion, since the UAV is incapable of
detecting the size and category of objects in the environment,
the traditional unsupervised learning method for obstacle
avoidance strategy will reduce the efficiency of path planning
and even lead to planning failure. In addition, using a single
global algorithm for path planning will have uncertainty,
resulting in increased planning time costs or even planning
failure. By using a single local algorithm for path planning,
the UAV will be unable to obtain global information and will
be prone to falling into a local minimum, resulting in planning
failure.

Traditional path planning algorithms typically rely on sen-
sor data and image extraction algorithms for environment
understanding and single algorithm path planning. Object
detection through supervised learning fusion provides more
accurate and richer perceptual information for path plan-
ning [38], [39]. The fusion of planning algorithms fully
exploits the advantages of different algorithms to compensate
for their respective shortcomings and improve the perfor-
mance, robustness, and reliability of the system [40].

The method in this paper consists of an environment-aware
module and a path-planning module. The environment sens-
ing module adopts the idea of deep learning to detect objects
in the UAV flight environment through self-aware learning
and proposes an adaptive threat distance calculation module
to establish the explicit model and potential field model of the
flight environment. The path planning module improves RRT
and APF and fuses them to obtain G-APF, a local path replan-
ning method guided by global planning. The path planning
module improves and fuses RRT and APF to obtain G-APF,
a local path replanning method under the guidance of global
planning. We introduce the concept of APF to direct the
expansion of the exploration tree towards the target point in
RRT. This addition enhances the goal-oriented nature of tree
expansion, moving away from random expansion strategies.
To enhance the effectiveness of the APF, we tackle three
pivotal issues: firstly, we resolve the local minimum prob-
lem by establishing sub-target points. Secondly, we address
the challenge of target unreachability by introducing a tar-
get point distance weight function. Finally, we mitigate the
problem of path oscillation by incorporating a directional
weighting factor. A schematic of the above methodology is
shown in Figure 4. By integrating environment awareness and
fusion of planning algorithms, the approach presented in this
paper aims to overcome the limitations of traditional meth-
ods, ultimately leading to improved efficiency, robustness,
and reliability in UAV path planning and obstacle avoidance.

B. ENVIRONMENT AWARE MODULE
For high-accuracy path planning, precise obstacle detection
is essential. However, most algorithms suffer from imprecise
obstacle detection. In addition, different types of obsta-
cles have different effects on path planning. We design an
environment-aware model based on YOLOv8 to address
these issues.

YOLOv8 is a powerful deep learning model that enables
fast and accurate detection and classification of objects in
images [41]. Our environment-awaremodel uses YOLOV8 to
detect and classify obstacles in the UAV flight environment.
Through the integration of the environment-aware model,
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FIGURE 4. Schematic of UAV path planning.

we can attain highly accurate obstacle detection results,
which serve as essential inputs for the path planning pro-
cess. Moreover, we recognize that different types of obstacles
can have varying impacts on path planning. To account for
this, our model takes into consideration the specific effects
of different obstacle types, enabling a more intelligent and
optimized path planning solution for the UAV.

Considering that the flight environment of the UAV in
this paper is low to medium altitude, cars and pedestri-
ans are less threatening to the UAV, thus only objects
such as trees, buildings, traffic poles, and billboards are
detected and classified. We used the VisDrone dataset [42]
for validation, and the detection results are shown in
Figure 5.
In object detection, objects such as trees are easily

deformed and are more threatening to UAVs and are
considered ‘‘non-rigid objects’’; objects such as buildings
and traffic poles are less threatening to UAVs and are
considered ‘‘rigid objects’’. The classification is shown
in (6).

To store essential information about each detected object,
we utilize the data structure

[
L̂
]
i
. This data structure contains

four key attributes for each object:

• Position X : This attribute represents the position of the
object in the UAV’s flight environment, providing spatial
information for further analysis and planning.

• Classification result k: The classification result denotes
the category or type of the detected object, distinguish-
ing between non-rigid and rigid objects.

• Confidence level τ : The confidence level represents the
certainty or reliability of the object detection process,
indicating how confident themodel is in its classification
result.

• Threat distance ρ: The threat distance indicates the prox-
imity of the object to the UAV, signifying the potential
risk or danger it poses to the UAV during its flight.

Class =
RigidObs(Storeto

[
L̂
]
i
), k ∈ {Sign,Pole,Building}

NonRigidObs(Storeto
[
L̂
]
i
), k ∈ {Tree}

Discard, others

(6)

Based on this feature, we established an adaptive optimal
threat distance calculation module based on environment
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FIGURE 5. Detection results.

awareness: This module assigns different threat distances
to different types of objects, ensuring a more tailored and
intelligent approach to obstacle avoidance.

The threat distance for each detected object is deter-
mined by the adaptive threat distance calculation module,
as depicted in (7).

ρi = ρ0 · τ
−1
i · ηk , k ∈ {Tree,Pole, Sign,Building} ,

i = 1, 2, . . . n (7)

The calculation incorporates three main factors:
• Base threat distance ρ0: This represents the ini-
tial threat distance assigned to all objects as a
baseline.

• Confidence level τi: The confidence level associated
with each detected object is taken into account. Objects
with higher confidence levels are considered more reli-
able in their detection results, potentially warranting a
reduced threat distance.

• Weighting factor ηk : The weighting factor, denoted as
ηk , is utilized to further adjust the threat distance based
on the type of object. Different weighting factors are
specified for various categories of objects. Specifically,
ηTree = 1.5, ηPole = 1.3, ηSign = 1.2, ηBuilding =

1.0 are the predefined values for the weighting
factors.

The aforementioned steps enable us to gather compre-
hensive information about each obstacle’s location, shape,
size, category, and threat distance, allowing us to construct
an explicit flight environment model. This model serves as

a representation of the environment surrounding the UAV,
providing crucial data for path planning and flight decision-
making processes.

In the explicit model of the flight environment, obstacles
are identified and depicted on the map or virtual environ-
ment based on their precise location and shape. Additionally,
the adaptive threat distance calculation module determines
the threat distance for each obstacle, which is then visually
differentiated using distinct icons or colors. This intuitive
representation helps in better understanding the complexity
of the flight environment.

The different threat distances assigned to each obstacle
correspond to various obstacle avoidance decisions. Conse-
quently, when establishing the artificial potential field, these
varying threat distances result in different potential field
sizes, effectively addressing the issue of using the same obsta-
cle avoidance strategy for all obstacles.

The repulsive potential field is formulated as shown in (8),
which differs from (2) in that the repulsive potential field of
different classes of objects is influenced by their respective
threat distances. By incorporating the threat distance infor-
mation, the repulsive potential field becomes more adaptable
to the specific characteristics of each obstacle, allowing the
UAV to plan its path with greater precision and safety.

Urep(X ) =

 ckrep(
1

d(X ,Xt )
−

1
ρi
)2, d(X ,Xt ) ≤ ρi

0, d(X ,Xt ) > ρi

(8)
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C. PATH PLANNING MODULE
1) THE GLOBAL PATH PLANNING
IRRT algorithm builds upon the RRT by incorporating the
concept of the APF as a guiding function. While RRT
involves free sampling in space, which can lead to significant
randomness, the addition of the APF potential field in IRRT
serves as a guidance mechanism.

In Algorithm 2, the detailed flow of the IRRT algorithm
is presented. The algorithm employs the APF potential field
function to guide the sampling process. By doing so, each
sampling point is steered gradually towards the target point.
This intelligent guidance provided by the potential field
ensures that the sampling points are selected in a more
informed manner, resulting in improved efficiency during the
path search. Consequently, the search space and search time
are reduced.

Algorithm 2 The Global Path Planning Algorithm
Input:R, Xinit , Xgoal , Xobs, Stepsize
Result: A path T = {X1, . . .Xn} from Xinit to Xgoal
T .init();
T = {Xinit } ;Xnew = Xinit ;
for i = 1 to n do

Xrand ← Sample(R);
Frand ← CalPotential(Xrand );
Fnew← CalPotential(Xnew);
if Frand < Fnew then
Xnear ← Near(Xrand , T );
Xnew← Steer(Xrand ,Xnear , StepSize);

else
continue;

if CollisionFree(Xnew,Xobs) then
T .addNode(Xnew);

if Xnew = Xgoal then
return T ;

In the algorithm, CalPotential() is the function to calculate
the potential field. If the potential field of Xrand is smaller
than the potential field of Xnew, it means that Xrand is the
point closer to the endpoint than Xnew, otherwise Xrand will
be removed and resampled.

The above steps are taken to ensure that each sampling
point gradually approaches the target point. By increasing
the guidance of the potential field, the sampling points are
selected more intelligently and the efficiency of the path
search is improved, thus reducing the search space and search
time.

2) THE LOCAL PATH PLANNING
In the path planning process, we first obtain a global path
using the IRRT algorithm. The UAV will follow this global
path during its flight. However, to ensure safe obstacle avoid-
ance, we perform path replanning using the IAPF method.

As the UAV encounters obstacles during its flight, IAPF
dynamically adjusts the path to safely avoid these obstacles.
If the UAV becomes trapped in a local minimum during path
planning, IRRT guides the UAV to break free from the local
minimum and continue its path towards the target.

In Section III, we leverage supervised learning to detect
and classify obstacles in the flight environment, assigning dif-
ferent threat distances based on their characteristics. During
path planning with IAPF, the UAV adopts distinct obsta-
cle avoidance strategies for obstacles with different threat
distances. For objects with small threats, the UAV flies as
close as possible to minimize the flight range. In contrast,
for objects with larger threats, the UAV maintains a greater
distance to ensure flight safety.

Furthermore, we have addressed two challenges associated
with the APF algorithm. To overcome the target unreacha-
bility problem, we have improved the potential field model.
Additionally, to mitigate the local path oscillation problem,
we introduced directional weighting factors.

The detailed steps are argued as follows:

1) Improvement of local minimum problem

To effectively overcome the issue of local minima in the
potential field, our algorithm introduces the concept of sub-
target points. When the UAV becomes trapped in a local
minimum during the potential field-based path planning,
we identify the closest global path point that was planned by
the RRT from the UAV’s current position. This closest point
is then designated as a sub-target point, which becomes the
new target point for the local planning process.

The UAV follows an optimal path determined by local
planning, which guides it out of the local minimum and
towards the sub-target point. Once the UAV successfully
navigates out of the local minimum and reaches the sub-target
point, the local goal point is reset to the original goal point
of the path planning process. This allows the algorithm to
continue generating the path until the UAV ultimately reaches
the final target point.

The detailed flow of this process is presented in
Algorithm 3. This approach ensures that the UAV effectively
jumps out of local minima, thus preventing it from getting
stuck in these situations during the path planning process.
By incorporating sub-target points and redefining the local
goal point, the algorithm optimizes the UAV’s path planning,
enhancing its efficiency and robustness in complex environ-
ments.
CalForce() is a function to calculate the potential field

force, MinDist() is a function to calculate the point corre-
sponding to the shortest distance, and CalLocation() is a
function to calculate the coordinates of the next position.
Through the above steps, the robustness and reliability of
path planning can be improved by setting sub-goal points
to guide the UAV to jump out of the local minimum and
continue path planning. Local path planning uses the nearest
point in the global path as a subgoal point, allowing the UAV
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Algorithm 3 Improvement of Local Minimum Problem
Input:R, T , Xinit , Xgoal , Xobs, Stepsize
Result: A path ζ =

{
X ′1, . . .X

′
n
}
from Xinit to Xgoal

ζ.init(); X ′1 = Xinit ;
for i = 1 to n do

Fi← CalForce(X ′i ,Xobs,Xgoal);
if Fi = 0 then
Xsub← MinDist(X ′i , T );
F ′i ← CalForce(X ′i ,Xobs,Xsub);
X ′i+1← CalLocation(X ′i ,F

′
i , Stepsize);

else X ′i+1← CalLocation(X ′i ,Fi, Stepsize);
ζ.addNode(X ′i+1);
if X ′i = Xgoal then
return ζ ;

to quickly optimize the path in a local area. This reduces
the path length and improves the efficiency and optimization
of the path. After jumping out of the local minimum, reset
the final target point as the target point for path planning to
ensure continuity and consistency of the path. This avoids
interruptions or discontinuities in the path, allowing the drone
to reach the target point smoothly.

2) Improvement of target unreachability problem
For the target unreachability problem, this paper improves

the potential field function to ensure that the gravitational
force of the target point can still pull the UAV to the tar-
get position when the target is unreachable. In improving
the potential field function, the gravitational potential field
function is defined as in the traditional method, but the target
point distance weighting function ϕ(X ,Xe) = 1

2 −
1

1+e−d(X ,Xe)

is added to the repulsive potential field function, and the
improved repulsive potential field function is as follows:

Urep(X ) =


ckrep(

1
d(X ,Xt )

−
1
ρi
)2ϕ(X ,Xe), d(X ,Xt )

≤ ρi

0, d(X ,Xt )
> ρi

(9)

where, c is a constant term. The new repulsive function is
obtained by finding the negative gradient of the repulsive
potential field function as:

Frep(X ) = −∇(Urep) =

{
Frep1 + Frep2, d(X ,Xt ) ≤ ρi

0, d(X ,Xt ) > ρi

(10)

where, Frep1 is the repulsive force of the obstacle facing the
UAV and Frep2 is the gravitational force of the target point
facing the UAV, defined as follows:

Frep1(X ) = (
1

d(X ,Xt )
−

1
ρi
)

2ckrep
d(X ,Xt )2

ϕ(X ,Xe)
∂d(X ,Xt )

∂X
(11)

FIGURE 6. The Improved combined force model.

Frep2(X ) = (
1

d(X ,Xt )
−

1
ρi
)2e−d(X ,Xe) ckrep

(1+ e−d(X ,Xe))2

×
∂d(X ,Xe)

∂X
(12)

As theUAVgradually approaches the target point, d(X ,Xe)
gradually decreases and Frep1 gradually converges to 0.
At this point, the UAV’s repulsive force is mainly composed
of Frep2. Frep1 and Frep2, which together determine the mag-
nitude and direction of the new repulsive force, as shown in
Figure 6.

Through the above steps, when the UAV gradually
approaches the target point, the gravitational force of the tar-
get point on the UAV decreases, thereby causing the problem
that the target cannot be reached. By introducing a target point
distance weighting function, the balance of the combined
force can be effectively regulated when the UAV approaches
the target point. As the distance between the UAV and the
target point decreases, the influence of the repulsive force is
gradually weakened, while the gravitational force is enhanced
to ensure that the UAV continues to be attracted by the
gravitational force when it encounters obstacles, while the
influence of the repulsive force is reduced to continue to guide
the UAV close to the target point.

3) Improvement of local path oscillation problem
For the local path oscillation problem, this paper proposes

an optimization method based on the steering angle and the
introduction of a directional weighting factor, which sup-
presses the steering angle and thus the oscillation when the
UAV makes a large steering at two adjacent path points.

The combined force of the UAV at the current position Xn
to fly to the next path point at the theoretical position Xn+1 is
calculated as Fn+1, and by introducing the combined force Fn
from the previous path point Xn−1 to the current position Xn,
the angle change 1α between Fn and Fn+1 is calculated, and
the actual position to fly to the next path point is determined
by the magnitude 1α of the expression as follows:

Xn+1 =

{
Xn + L · (m1 · wn + m′1 · wn+1), 1α ≤ θ

Xn + L · (m2 · wn + m′2 · wn+1), 1α > θ

(13)

where, mi and m′i (mi + m′i = 1) are the directional weight
factors, wn = Xn − Xn−1 and wn+1 = Xn+1 − Xn are the
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FIGURE 7. Force diagram of UAV when calculating the next position.

directional vectors of Fn and Fn+1, respectively, L is the
motion step, and θ is the angular threshold. The values of
the directional weighting factor and the angular threshold can
be referred to as follows: mi = m′i, if 1α ≤ π

6 ; mi > m′i,
if π

6 < 1α ≤ π
3 ; mi ≫ m′i, if 1α > π

3 .
When the UAV’s angle of deviation from the current head-

ing is small, it is considered a minor deviation, and the UAV
will continue to fly in the preset direction without making
significant adjustments. This fine-tuning ensures that the
UAV maintains its course when encountering slight devia-
tions, avoiding unnecessary corrections that could lead to
instability. However, when the UAV’s angle of deviation from
the current heading is large, the path is prone to oscillation.
To mitigate this oscillation, the algorithm introduces a direc-
tion weighting factor. The direction weighting factor works
to guide the UAV’s heading as close as possible to the initial
heading. By doing so, excessively large turning angles are
avoided, and the oscillation is suppressed.

As shown in Figure 7, Xn−1 and Xn are the previous path
point position and the current position of the UAV; Xn+1 is the
theoretical position of the next path point of the UAV; Fatt ,
Frep and Fall are the theoretical gravitational force, repulsive
force, and the combined force of the UAV; X ′n+1 is the actual
position of the next path point of the UAV; F ′att , F

′
rep and

F ′all are the actual gravitational force, repulsive force and
combined force of the UAV, respectively.

IV. SIMULATION EXPERIMENT AND ANALYSIS
This paper presents a comprehensive evaluation of the G-APF
algorithm’s performance through a series of simulation exper-
iments conducted in MATLAB. The experiments cover
various environments to validate the method’s feasibility, and
it is compared against several existing algorithms, including
RRT and APF, as well as improved versions IRRT and IAPF.
Additionally, to provide a more comprehensive assessment,
we incorporate comparative experiments with two recently
introduced algorithms, namely APF-PSO [43] and MOD-
RRT∗ [44].
To simulate the obstacles, spherical obstacles are approx-

imated as non-rigid objects, while columnar obstacles are
approximated as rigid objects. To provide a visual represen-
tation of the different threat distances associated with these

FIGURE 8. A simple simulation environment for path planning.

TABLE 3. Parameter setting.

obstacles, the spheres and columns are colored accordingly,
this article sets a total of four different threat distances.
Lighter colors are used to depict small threat distances, while
darker colors represent larger threat distances.

A. PATH PLANNING IN A SIMPLE ENVIRONMENT
The path planning simulation environment is shown in
Figure 8, the size of the area is 15 m∗15 m∗15 m. The red
point is the starting point with coordinates (0, 0, 0) and the
blue point is the target point with coordinates (15, 15, 10). The
parameter settings in this experiment are shown in Table 3.

Figure 9(a-g) shows the planning results of each algorithm.
The comparison of the different path planningmethods shows
that there are significant differences in the path characteris-
tics. The characteristics are as follows:
• The paths generated by APF (Figure 9(a)) have a higher
degree of tortuosity and unnecessary turns compared to
those generated by IAPF (Figure 9(b)). This observation
highlights the inherent limitations of APF in achieving
optimal and smooth path planning.

• On the other hand, the RRT algorithm (Figure 9(c))
shows a higher level of complexity when compared to
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the sampling process used by IRRT (Figure 9(d)). The
inherent complexity of the RRT algorithm stems from
its more involved sampling strategy, resulting in a more
extensive exploration of the configuration space.

• The inherent complexity of the RRT algorithm stems
from its more involved sampling strategy, resulting in
a more extensive exploration of the configuration space.
Conversely, the expansion of the tree structure in IRRT is
significantly hampered by the influence of the potential
field, thus limiting its potential for extensive exploration
and path expansion.

• In comparison to the path planning results of the
APF-PSO algorithm (Figure 9(e)), the generated path by
G-APF (Figure 9(g)) is more direct, successfully avoid-
ing unnecessary turns. In contrast to APF-PSO, the path
planning of G-APF exhibits more efficient and intuitive
characteristics during obstacle avoidance. On the other
hand, when compared to the path planning results of
the MOD-RRT∗ algorithm (Figure 9(f)), we distinctly
observe that the exploration of the MOD-RRT∗ tree
surpasses that of G-APF. In G-APF, the tree expansion
is notably more efficient, resulting in a simpler and
more straightforward planned path. In contrast, the tree
expansion of MOD-RRT∗ is more complex, leading to
increased curvature in the planned path.

• The G-APF algorithm incorporates a localized replan-
ning mechanism. Building on the initial path generated
by IRRT, this adaptive algorithm uses the insights gained
from the IRRT exploration process to identify areas
of suboptimal path planning. By recalculating the path
locally, the algorithm aims to minimize unnecessary
turns and ensure closer adherence to obstacles, thereby
improving the overall efficiency and effectiveness of the
trajectory planning process.

Table 4 presents the performance evaluation of each
algorithm based on 100 iterative trials. The results show
that the G-APF algorithm outperforms the other algorithms
in terms of planning time. It achieves an average planning
time reduction of 23.1% compared to the traditional APF
algorithm, 9.8% compared to IAPF, 51.7% compared to RRT,
35.1% compared to IRRT, 18.9% compared to APF-PSO, and
53.3% compared to MOD-RRT∗.
Regarding planning path lengths, the IAPF algorithm pro-

duces the shortest lengths among all the algorithms tested.
However, even though the G-APF algorithm increases the
path length by 47.4% compared to IAPF, 41.2% compared
to APF, and 31.5% compared to APF-PSO, it still man-
ages to decrease the path length by 20.2% compared to
RRT, 19.9% compared to IRRT, and 18.4% compare to
MOD-RRT∗.

Figure 10 visually illustrates the time performance data
for each algorithm. The error bars in the figure represent the
minimum and maximum planning times for the correspond-
ing algorithms, and the columnar bars represent the average
planning time for each algorithm.

TABLE 4. Performance of each algorithm.

In a simple environment, the APF algorithm demonstrates
high time efficiency and generates short path lengths com-
pared to other algorithms. The reason for this lies in the
local nature of APF path planning. It only needs to calculate
the local potential field of each position during the planning
process, resulting in faster computation. Additionally, the
paths generated by APF tend to be shorter due to its focus
on local obstacle avoidance.

In contrast, the RRT algorithm explores the entire free
space, which can be highly time-consuming. Moreover, the
paths generated by RRTmay not always be optimal as its tree
expansion process relies on random sampling.

The IRRT algorithm, which incorporates the concept of
a potential field, achieves a better balance between time
efficiency and path length compared to RRT.

The APF-PSO algorithm lags in time performance com-
pared to G-APF as it requires iterations to find the optimal
value for the artificial potential field factor. Additionally,
due to APF’s sole reliance on potential field computation
for optimal path determination, G-APF falls slightly short
in terms of path length compared to APF-PSO. The MOD-
RRT∗ algorithm introduces a multi-objective mechanism and
employs RRT for path planning as prior knowledge. How-
ever, its performance, both in terms of time and path length,
is slightly behind that of G-APF.

By combining the advantages of RRT and APF, the G-APF
algorithm is able to effectively improve the timeliness of
path planning and reduce path lengths. This hybrid approach
benefits from the efficient exploration capabilities of RRT
and the local optimization of APF, leading to more efficient
and effective path planning in simple environments.

B. PATH PLANNING IN COMPLEX ENVIRONMENT
The simulation environment of path planning is shown in
Figure 11(a-c), the size of the area is 30 m∗30 m∗30 m. The
red point is the starting point with coordinates (0, 0, 0) and
the blue point is the target point with coordinates (30, 25, 15).
Other settings and parameter definitions are the same as those
in the previous section.

Figure 12(a-f) depicts the path planning outcomes in
diverse environmental scenarios, showing the comparative
performance of the APF and IAPF algorithms. The charac-
teristics are as follows:
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FIGURE 9. Results of path planning: (a) APF; (b) IAPF; (c) RRT; (d) IRRT; (e) APF-PSO; (f) MOD-RRT∗; (G) G-APF.

• In Figure 12(a), the APF algorithm encounters a local
minimum, causing the path planning process to abruptly
halt. However, in Figure 12(d), the IAPF algorithm
effectively resolves the local minimum issue, allowing
for continued path planning by dynamically adjusting
the path around obstacles.

• Figure 12(b) illustrates a scenario in which the APF
algorithm faces a target unreachability problem due
to an obstacle obstructing the direct path to the tar-
get point. In contrast, Figure 12(e) demonstrates the
successful resolution of this problem using the IAPF
algorithm. By dynamically adjusting the gravitational
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FIGURE 10. Time performance of each algorithm.

force to exceed the repulsive force near the obstacle, the
IAPF enables the UAV to navigate closer to the target
point. In addition, since the IAPF in Figure 12(e) does
not incorporate a mechanism to improve path oscilla-
tions, it can be clearly seen that the problem of localized
oscillations arises.

• Figure 12(c) shows a path planning scenario near an
obstacle, which is prone to oscillations when using
the APF algorithm. However, Figure 12(f) illustrates
the improvement achieved by employing the IAPF
algorithm, which effectively smooths out the path and
mitigates oscillation-related issues.

These comparative results clearly highlight the advantages
of the IAPF algorithm over the traditional APF method. The
IAPF’s ability to address local minimum, target unreacha-
bility, and oscillation problems contributes to smoother and
more efficient path planning.

Figures 13(a-f) show the planning results for IAPF,
APF-PSO, RRT, IRRT, MOD-RRT∗ and G-APF in the envi-
ronment of Figure 11(a). Since APF-PSO introduces the
PSO mechanism, it can effectively jump out of the local
minimum to complete the planning. In contrast to IRRT, the
tree expansion process employed by RRT is characterized
by a higher level of complexity, while MOD-RRT∗ adopts
a multi-objective mechanism to expand the tree more simply
than IRRT. Building upon the foundation of IRRT, the G-APF
algorithm further enhances path planning capabilities by
incorporating path replanning techniques. By considering the
influence of the potential field, G-APF aims to optimize and
refine the path, resulting in improved trajectory planning out-
comes. G-APF offers the potential to achieve better-quality
paths and enhance overall path planning performance.

Table 5 presents the performance of each algorithm
under 100 iterative trials in the environment depicted in
Figure 10(a). The results demonstrate that the G-APF
algorithm outperforms the other algorithms in terms of plan-
ning time.

Specifically, G-APF achieves a remarkable 63.2% reduc-
tion in average planning time compared to the IAPF. It also
exhibits a 57.9% reduction in planning time compared to

TABLE 5. Performance of each algorithm.

the RRT and a 50.2% reduction compared to the IRRT. The
average planning time is also significantly reduced by 61.8%
compared to the APF-PSO and 32.9% compared to MOD-
RRT. However, when considering planning path lengths, the
IAPF performs the best, producing the shortest path lengths
among all the algorithms tested, followed by APF-PSO.
On the other hand, the G-APF shows a 27.4% increase in
path length compared to IAPF, a 20.1% increase compared to
the APF-PSO, a 34.3% decrease compared to RRT, a 33.7%
decrease compared to IRRT, and a 3.9% decrease compared
to the MOD-RRT∗.
Despite the fact that the average path length of G-APF

is slightly longer compared to IAPF, G-APF outperforms
algorithms like IAPF in terms of overall performance.
This superiority stems from G-APF’s exceptional timeli-
ness. In UAV path planning, high timeliness is a critical
performance indicator as it determines whether the UAV
can swiftly plan a path to avoid obstacles. In fast decision-
making and obstacle avoidance scenarios, the G-APF is able
to provide timely and efficient path planning, even if this
results in a slightly longer average path length. Ultimately,
the ability to navigate safely and efficiently in dynamic envi-
ronments takes precedence over path length considerations.
Figure 14 visually illustrates the time performance of six
algorithms.

As the complexity of the scene increases, the efficiency
of the APF algorithm diminishes compared to the RRT
algorithm. This is because APF needs to calculate the poten-
tial fields of all obstacles in the environment, which can be
time-consuming. While APF excels at obstacle avoidance
based on local information and often produces shorter path
lengths than RRT, its computational burden becomes a lim-
itation in complex environments where numerous obstacles
need consideration.

On the other hand, RRT utilizes random sampling to
explore paths towards the target point. Although these paths
might not be optimal, RRT’s search efficiency is significantly
higher in complex scenes as it doesn’t need to consider every
obstacle explicitly.

By combining the strengths of both algorithms, it is
possible to achieve excellent performance in complex envi-
ronments. The optimization of the APF algorithm with RRT
enables the efficient search capabilities of RRT to support the
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FIGURE 11. Complex simulation environments for path planning.

FIGURE 12. The planning situation of APF and IAPF in three different environments: (a, b, c) demonstrates that APF creates local minimum, target
unreachability, and local path oscillations problems in a particular setting; (e, d, f) demonstrates that the IAPF method is effective in solving these
problems alone, respectively.

path planning process of APF. This hybrid approach benefits
from the optimal planning of APF in the local environment
and the efficient exploration of RRT to navigate through

complex scenarios. As a result, the combined method leads to
improved path planning outcomes in challenging and intricate
environments.
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FIGURE 13. Results of path planning: (a) IAPF; (b) APF-PSO; (c) RRT; (d) IRRT; (e) MOD-RRT∗; (f) G-APF.

FIGURE 14. Time performance of the algorithm.

V. CONCLUSION
In this paper, we propose an efficient path planning algorithm
called G-APF, which combines the strengths of the RRT and
APF algorithms and integrates the idea of supervised learning
based on environment awareness. The algorithm leverages
supervised learning for object detection and creates an
explicit environment model using an adaptive threat distance

calculation module. By incorporating the APF potential field
into the RRT for global path planning, the algorithm achieves
faster tree search.

The introduction of environment awareness allows the
algorithm to overcome the limitations of traditional methods
that struggle to accurately perceive the environment. The abil-
ity to assign different threat distances to each object enhances
the path planning process, leading to improved results.

During local path replanning, the algorithm optimizes the
path based on the global path generated by the RRT. This
approach addresses the problem of APF getting stuck in local
minima. Furthermore, improvements to the potential field
model and the introduction of a directional weighting factor
overcome the issues of target unreachability and local path
oscillations in the APF.

We conduct simulation experiments to evaluate the perfor-
mance of G-APF in both simple and complex environments.
The results demonstrate that G-APF outperforms APF in
terms of planning time, reducing it by 23.1% in simple
environments and overcoming APF’s limitations in complex
environments. Compared to IAPF, G-APF achieves planning
time reductions ranging from 9.8% to 63.2%. Planning times
are between 51.7% and 57.9% shorter than for RRT. Finally,
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compared to IRRT, planning time is reduced by 33.7% to
35.1%. In comparison with the APF-PSO and MOD-RRT∗,
the G-APF also demonstrated its high performance. Com-
pared to APF-PSO, planning time in complex environments
was reduced by a staggering 61.8% with only a 20.1%
increase in path length. Compared to MOD-RRT∗, the path
length in complex environments was reduced by 3.9% and the
planning time by 32.8%.

Overall, the proposed G-APF algorithm shows signifi-
cant improvements over existing approaches and provides
superior performance in both simple and complex environ-
ments. The algorithm demonstrates faster planning times and
addresses key limitations of APF, making it a promising
solution for efficient path planning.

The idea of G-APF is to introduce the APF potential field
when RRT performs random sampling to guide the random
sampling to move to the target point. In the follow-up work,
in order to make G-APF get a shorter path, we can improve
the random sampling strategy to be more precise. Guide the
RRT exploration process in an intelligent way. The heuristic
search algorithm can also be used to guide path search, which
can better explore the optimal path while maintaining time
efficiency. The method in this article will be deployed on
UAVs in future work, and the feasibility of the method will
be further verified through real experiments.
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