
IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY SECTION

Received 21 December 2023, accepted 5 January 2024, date of publication 17 January 2024, date of current version 25 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355154

An Attentive Hough Transform Module for
Building Extraction From High Resolution
Aerial Imagery
SOUAD YAHIA BERROUIGUET 1,2, EHLEM ZIGH3, AND MOHAMMED DJEBOURI1
1Department of Electronics, Faculty of Electrical Engineering, University Djillali Liabes of Sidi Bel Abbes, Sidi Bel Abbès 22000, Algeria
2National Higher School of Telecommunication and I. C. T. Abdelhafid Boussouf, Oran 31000, Algeria
3Laboratoire de Codage et de la Sécurité de l’information, Department of Electronics, Faculty of Electrical Engineering, University of Science and Technology of
Oran—Mohamed Boudiaf, Oran 31000, Algeria

Corresponding author: Souad Yahia Berrouiguet (syberrouiguet@ensttic.dz)

ABSTRACT In the era of abundant high-resolution aerial imagery, the automatic extraction of buildings is
indispensable for applications like disaster response, environmental monitoring, and urban growth analysis.
Deep learning approaches, particularly fully convolutional networks, have exhibited remarkable performance
in this challenging task. Nevertheless, the accurate identification and delineation of building boundaries
pose persistent challenges hindering further improvements in building extraction precision. To tackle these,
we introduce a novel deep learning architecture explicitly designed for building extraction in high-resolution
aerial images. Our method addresses the precise identification of building borders by combining both local
and global contextual information.We efficiently preserve object boundaries and optimize the representation
of straight lines within buildings through the integration of the Attentive Hough Transform and Inverse
Hough Transform (AttHT-IHT) module into the U-Net architecture. Extensive experiments on the Potsdam
dataset showcase substantial enhancements in building extraction accuracy, with a 97.73% accuracy rating
and a 96.42% recall rate. Generalization capability on the WHU satellite dataset I was assessed to validate
the adaptability of our proposed method.

INDEX TERMS Aerial images, AttHT-IHT, building extraction, deep learning, U-Net.

I. INTRODUCTION
The rapid advancements in remote sensing technology has
rendered high-resolution aerial imagery more accessible
than ever before. This democratization has bestowed the
ability to discern and extract small man-made objects,
particularly buildings. The significance of building extraction
spans a plethora of practical domains, encompassing disaster
management [1], urban development analysis [2], [3],
and environmental monitoring [4]. However, the path to
automated building extraction from remote sensing imagery
remains strewn with challenges ranging from the diversity
of building appearances and sizes to the intricacies of scene
complexities and incomplete cue extraction [5]. In this
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context, deep learning techniques have risen as a formidable
answer to the challenges within the realm of computer
vision tasks [6], [7], [8], [9]. More specifically, Convolu-
tional Neural Networks (CNNs) have achieved exceptional
results [10], [11]. Unlike traditional methodologies that
require manual feature extraction, CNNs excel in automated
feature extraction and subsequent classification through
their convolutional and fully connected layers. CNNs offer
an integrated solution by merging feature extraction and
classification into a unified model. Furthermore, they often
showcase heightened generalization capabilities by directly
imbibing knowledge pertaining to feature extraction from the
dataset.

Additionally, Fully Convolutional Networks (FCNs) have
ushered in a pioneering approach, augmenting the capabilities
of CNNs with a specific focus on semantic segmentation
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tasks, thus exerting a profound influence on the domain of
building extraction from remote sensing images. Researchers
have diligently probed various architectural designs and
methodologies to amplify the precision and effectiveness of
this crucial task. Notably, Sherrah [12] introduced an FCN
refinement that substantially enhanced building delineation
accuracy. Maggiori et al. [13] devised a multiscale structure
to surmount the intricate trade-off between context expansion
and parameter augmentation. Meanwhile, Liu et al. [14]
introduced an ingenious dense FCN architecture to bolster
building recognition.

Another remarkable architecture, U-Net, which was ini-
tially conceived by Ronneberger et al. [15] for medical image
segmentation, has become pivotal in semantic segmentation.
U-Net excels in capturing intricate details whereas preserving
spatial information, leveraging upsampling and downsam-
pling techniques for contextual understanding and precise
localization. It outperforms sliding window convolution
networks in terms of performance, evenwithminimal training
data, and efficient feature extraction, effectively addressing
the limitations inherent in FCNs.

DeepLab models [16], [17] also marked significant
progress, harnessing Atrous convolutions and integrating
conditional random fields for refined post-processing. These
models have served as the foundation for the development of
several enhanced models [18], [19], [20], [21], [22]. Addi-
tionally, with the emergence and advancement of attention
mechanisms such as spatial attention [23], self-attention [24],
squeeze and excitation networks [25] and Convolutional
Block Attention Module (CBAM) [26], significant progress
has been achieved in building extraction. Various studies
have leveraged these attention mechanisms to boost network
capabilities, contributing unique insights into the field [19],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36].
For example, Yang et al. [27] utilized spatial attention

to enrich deep feature maps.Whereas Hosseinpoor and
Samadzadegan [29] recalibrated intermediate features using
a spatial attention module. Ye et al. [30] focused on precise
building extraction by employing re-weighting techniques
and a joint attention module. Shi et al. [31] combined
HRNET [32] with Class-Oriented Region Attention and
Context FusionModules, facilitating meaningful connections
between classes and regions. Innovative approaches such as
the integration of boundary-aware loss, as demonstrated by
Barnet [33] within a multilevel feature fusion block, have
been employed to enhance edge sharpness.

In SCAttNet [34], the authors applies sequential channel
and spatial attention modules to improve feature quality for
semantic segmentation in remote sensing images. In [35], the
authors use a lightweight RegNet network and a multiscale
depthwise separable atrous spatial pyramid pooling structure
for feature extraction in the encoding stage. They then employ
squeeze-and-excitation attention and lightweight residual
blocks, to refine and reconstruct building features in the
decoding stage. In [36], the authors introduce the SSDBN
model, incorporating an enhanced Res2Net encoder and a

dual-branch decoder with CBAM. This design emphasizes
the model’s proficiency in capturing both global and local
context details.

Simultaneously, other research efforts [37], [38], [39],
[40] explored the concept of incorporating prior knowledge
to enhance network performance and reduce reliance on
extensively annotated datasets.

In our study, we draw inspiration from the advantages
offered by both attention mechanisms and prior knowledge.
Through a synergistic fusion of these two mechanisms,
we introduce an innovative and effective approach tailored
to address the specific challenges associated with building
extraction. We present the AttHT-IHT module as the cor-
nerstone of our proposed methodology, which unites these
principles to achieve remarkable results in building extraction
tasks.

The contributions of this study include the following:
• We introduce an innovative AttHT-IHT module, skill-
fully integrated into an enhanced U-Net network,
aiming to achieve precise building edge detection and
enhanced building extraction accuracy. To the best of our
knowledge, this combination has not been explored or
implemented previously.

• We validate the efficacy of the proposed module by
comparing the building extraction results obtained with
and without the inclusion of the AttHT-IHT module in
the U-Net architecture.

• We conduct extensive experiments by comparing the
new U-Net-based architecture with a range of state-of-
the-art building extraction methods.

• We evaluate the overall architecture’s accuracy by
deploying it on two distinct datasets, namely, the ISPRS
Potsdam dataset and the WHU satellite dataset I.

II. OUR APPROACH/METHOD
This paper presents an architecture specifically designed
for building extraction from aerial images, which combines
the U-Net framework, attentive mechanisms, and the ASPP
block with different dilation rates. The overall architecture
is illustrated in Fig.1. In the following sections, we provide
detailed explanations of each component of our architecture
and how they work together to achieve state-of-the-art
performance in building extraction from remote sensing
imagery.

A. U-NET NETWORK
In this study, we utilize a version of U-Net as the baseline
design, which is a well-established encoder-decoder model
commonly used in tasks involving medical and remote
sensing image segmentation [15], [41], [42]. Fig.1 illustrates
the feature maps represented by the blue rectangular blocks
following the U-Net structure. In the encoder part, we employ
max pooling (red arrow) to reduce the dimensions of the
feature maps for efficient computation. Conversely,in the
decoder section, we use up-sampling techniques (purple
arrow) to restore input image dimensions. The green
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FIGURE 1. Our proposed architecture.

rectangle illustrate how we have incorporated the AttHT-IHT
block to enhance the architecture’s ability to identify patterns
related to buildings. Serving as a connection between the
encoder and decoder we have included an ASPP block that
helps gather information from the context. Finally, in order to
generate binary predictions we employ a 1 × 1 convolution,
with a Sigmoid activation function as the last layer of the
U-Net model.

Algorithm 1 Hough Transform
1: function HoughTransform(F , Noffsets, Nangles)

Initialize an empty Hough histogram H of size [Noffsets x
Nangles]

2: for each pixel (xi, yi) in image F do
3: for each angle index from 0 to Nangles − 1 do
4: Calculate ρ as xi · cos(angle_index ·

(360/Nangles)) + yi · sin(angle_index · (360/Nangles))
5: if ρ is in the range [0, Noffsets] then
6: Increment H at bin (ρ, angle_index) by
F(xi, yi)

7: end if
8: end for
9: end for

10: Remove all-zero lines in H for efficiency
11: return the resulting Hough histogram H
12: end function

B. ATTHT-IHT BLOCK
While deep networks excel in general feature extraction,
the Hough transform specifically enhances the model’s
performance in detecting linear structures, such as building
edges. Its robustness to small gaps, noise, and partial

occlusion makes it a valuable complement to deep networks,
ensuring accurate and comprehensive feature representation
for precise building extraction. This is particularly crucial
in scenarios where deep networks face challenges related
to the detection of intricate linear details. In the context
of our approach, and drawing inspiration from previous
research [37], we enhanced the existing module by inte-
grating the attention mechanism using CBAM to form
the AttHT-IHT block. This block operates as a trainable
attention module within the encoder, inferring attention maps
along channel and spatial dimensions. By harmonizing local
learned image features with global predictions from Hough
lines, the AttHT-IHT block sequentially refines features
and optimizes the attentive Hough transform weight matrix
during the training process. The structure of the AttHT-IHT
block, illustrated in Fig.2, comprises three key stages: HT,
CBAM Integration, and IHT. The appropriate pseudocode for
each stage is also provided below.
Step 1: Hough Transform application
The initial step involves applying the Hough transform to

the input feature map. This is accomplished by computing
votes of pixels along lines in the image, generating a
Hough histogram. The channels of the Hough histogram
are subsequently filtered and refined to extract relevant line
features.
Step 2: CBAM integration
The CBAM module [26] is strategically incorporated

between the HT and IHT stages. It generates attention maps
for both channel and spatial positions, assigning importance
weights to different features based on their relevance to the
task.These attention maps are then element-wise multiplied
with the input feature map, facilitating adaptive feature
refinement guided by learned attention patterns. CBAM

11522 VOLUME 12, 2024



S. Yahia Berrouiguet et al.: Attentive Hough Transform Module for Building Extraction

FIGURE 2. The proposed AttHT-IHT block structure.

also enhances features related to building structures by
emphasizing the most pertinent lines for building delineation.
In other words, CBAM functions as a selector mechanism
within the block, prioritizing details deemed relevant for line
extraction whereas mitigating the influence of less useful
information. This enables the model to focus on crucial
information related to building boundaries.

Algorithm 2 CBAMModule
1: function CBAM(F)
2: Compute Channel Attention Map Ac using global

average pooling of F
3: Compute Spatial Attention Map As using convolu-

tional layers and sigmoid activation
4: Apply Channel Attention to F : Fc = F · Ac
5: Apply Spatial Attention to Fc: Fcs = Fc · As
6: return Fcs
7: end function

Step 3: Application of IHT
The final stage entails the application of the inverse Hough

transform, which converts the Hough histogram into a feature
map in the image domain. This feature map is prepared for
precise building contour extraction.

In summary, our AttHT-IHT block seamlessly combines
three crucial steps: HT, CBAM, and IHT, to maximize
accuracy and quality in building extraction. The HT phase
lays the foundation by translating semantic features into
Hough space, whereas CBAM enhances feature refinement
and line selection. Finally, IHT converts the enhanced Hough
histogram back into a feature map for precise building
contour extraction. This sequence of transformations ensures
optimal accuracy and quality in obtaining building contours
from very high-resolution aerial images.

C. ASPP FOR EXTRACTING MULTISCALE FEATURES
The ASPP (Atrous Spatial Pyramid Pooling) module [16] is
a key component of our architecture, designed to effectively
capture contextual information at various scales. It employs
Atrous convolutions at different rates to combine the benefits

Algorithm 3 Inverse Hough Transform (IHT) Module
1: function IHT(Fcs, Noffsets, Nangles)
2: Initialize an empty output feature map Fiht of the

same size as Fcs
3: for each pixel (xi, yi) in Fcs do
4: Initialize sum sum_iht as 0
5: for each angle index from 0 to Nangles − 1 do
6: Calculate ρ as xi · cos(angle_index ·

(360/Nangles)) + yi · sin(angle_index · (360/Nangles))
7: if ρ is in the range [0, Noffsets] then
8: Increment sum_iht byH (ρ, angle_index)
9: end if
10: end for
11: Fiht (xi, yi) =

sum_iht
Nangles

12: end for
13: return Fiht
14: end function

of this technique, enabling the network to consider a broader
or narrower context without adding extra parameters. In our
architecture, the ASPPmodule consists of a 1×1 convolution
layer and three branches of Atrous convolutions with rates
of 6, 12, and 18 (Fig.3). This integration allows the network
to analyze aerial images at different scales, improving the
detection of buildings of varying sizes and the capture of
fine details, ultimately enhancing the accuracy of building
segmentation in aerial images.

III. DATASETS USED AND EVALUATION METRICS
In this section, we present an overview of the datasets used.
We delve into detailed discussions on data processing meth-
ods and experimental settings. Additionally, we introduce the
evaluation metrics employed in this study.

A. DATASETS
1) POTSDAM DATASET
The performance of the proposed network was assessed
using the well-established ISPRS 2D Potsdam semantic
benchmark dataset, a highly regarded dataset in the remote
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FIGURE 3. The ASPP structure in our network.

TABLE 1. Potsdam dataset characteristic.

sensing field [43]. This dataset comprises high-resolution
aerial images taken over Potsdam, Germany, with a total
of 38 patches, each measuring 6000 × 6000 pixels. The
dataset includes a true orthophoto (TOP), a digital surface
model (DSM), and utilizes the near infrared (NIR), red (R),
green (G), and blue (B) bands as features. The dataset is
categorized into six classes, each manually labeled using dis-
tinctive colors: cluster/background (red), Impervious surfaces
(white), trees (green), low vegetation (cyan), cars (yellow),
and buildings (blue). Only RGB bands of TOP are utilized as
features, excluding other bands.

To mitigate over-fitting concerns, the dataset is partitioned
into two subsets: a training set and a testing set. The
training set contains 24 patches, whereas the testing set
contains 14 patches. Due to hardware limitations, the data
is sliced into smaller patches measuring 800 × 800 pixels.
The training datasets incorporate a 200 pixel overlap to
minimize the potential impact of the slicing process. Table 1
provides an overview of the dataset’s specific characteristics.
Additionally, Fig.4 visually presents sample images from the
dataset, accompanied by their corresponding labels.

2) WHU SATELLITE DATASET I
The WHU Satellite Dataset I (global cities) [44], is a mosaic
of remote sensing data gathered from various satellites,
including QuickBird, worldview series, IKONOS, and ZY-
3. It encompasses 204 images with resolutions ranging from
0.3 to 2.5 meters. This dataset’s distinctive feature lies in its
diverse surface building textures and shapes, making it an
ideal yet challenging benchmark for evaluating the robustness
of building extraction algorithms. We specifically used this
dataset to assess the generalization capability of our method.

B. DATA PROCESSING
To address the limited number of labeled images available
in the Potsdam database and to mitigate over-fitting, data
augmentation was employed as an effective approach to
expand the dataset. In this research, data augmentation
involved applying vertical and horizontal flipping operations.
These augmentation techniques contribute to enlarging the
dataset and enhancing its diversity, thereby improving the
generalization capabilities of the model and reducing the risk
of over-fitting [45].

C. EXPERIMENT SETTINGS
The experiments were executed with the PyTorch [46] deep
learning framework, employing the Adam optimizer [47]
for training. Batch size and learning rate were determined
through experiments. In our approach, we used a loss function
known as the Binary Cross Entropy (BCE). It’s designed
specifically for tasks which we have two categories, such as
determining whether a pixel in the input image belongs to a
building or not. BCE helps us measure how well our model’s
predicted probabilities match the actual classification of each
pixel in the image.

D. EVALUATION METRICS
To ensure a fair comparison with existing literature, identical
metrics are used to evaluate the performance of our network.
We employed overall accuracy to assess the overall perfor-
mance of our network, along with four quantitative evaluation
metrics:

IoU, a widely employed metric for evaluating image
semantic segmentation results, is utilized to compare the
predicted output with the corresponding ground truth. The
IoU is calculated using (1):

IoU =
TP

TP+ FN + FP
(1)

Precision refers to the fraction of positive samples that
are correctly predicted as positive samples out of all positive
samples. The Precision calculation is displayed in (2).

Precision =
TP

TP+ FP
(2)

Recall, also known as true positive rate, measures the
fraction of actual positive samples that are correctly identified
as positive by the model. The recall computation is presented
in (3).

Recall =
TP

TP+ FN
(3)

Precision and recall are fully considered by F1-Score. The
F1-Score computation is given in (4).

F1 − Score = 2 ×
Precision × Recall
Precision + Recall

(4)

where TP represents correctly predicted positives (buildings),
FP is for incorrectly predicted negatives as positives,
TN stands for correctly predicted negatives, and FN denotes
incorrectly predicted positives as negatives.
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FIGURE 4. Potsdam Dataset [43].

IV. RESULTS
A. EXPERIMENTAL RESULTS ON THE POTSDAM DATASET
Over the Potsdam dataset, the architecture achieves overall
accuracy of 97.73% and F1-Score of 96.28%, the deep
learning frame performs exceptionally well in building
extraction. As observed in Fig.5, our model (column c)
demonstrates accurate and efficient building extraction capa-
bilities. It successfully captures buildings of various shapes,
including highly complex structures, closely resembling the
ground truth (column b). Notably, our model excels in
accurately extracting small buildings, showcasing its ability
to handle diverse architectural structures. These results
highlight the effectiveness and versatility of our proposed
model in accurately identifying and preserving the integrity
of buildings, regardless of their size or complexity.

B. COMPARISON EXPERIMENTS
In this section, we conduct a comprehensive comparison
between our modeling framework and several alternative
methods that employ attention mechanisms for building
extraction from the Potsdam dataset. It is important to note
that approach presented in [48] stands out from the others as
it utilizes direct fusion of 2D and 3D data where the 3D data is
obtained by converting Digital Surface Models (DSMs) data.
Table 2 presents a detailed overview of the performance of
these methods, focusing on quantitative metrics.

Our proposed method achieved the highest IoU score
of 92.88%, outperforming the second-best method by Bar-
net [33] which achieved an IoU score of 92.24%. The
difference between our method and the second-best is 0.64%.
In terms of Precision, our method ranked second among
the compared studies, with a Precision score slightly below
that of Jin et al. [33], who obtained the highest Precision
of 98.64%. Regarding Recall, our method demonstrated the
highest score of 96.42%, surpassing the second-best score
reported by Barnet [33] by 1.3%. In terms of F1-Score, our

method achieved the second-highest score of 96.28%, with
Jin et al. [33] obtaining the highest F1-Score of 96.84%.
Furthermore, our method achieved an accuracy of 97.73%,
which is the second-highest among the compared studies,
although the highest accuracy score was not reported for all
studies.

Overall, our proposed method consistently demonstrates
strong performance across multiple quantitative metrics,
positioning it as a competitive approach for building extrac-
tion from high-resolution aerial imagery.

Moreover, the qualitative comparison confirms the
obtained results. Through visual examination of our method
compared to method [29] which used a spatial attention
module only, it is evident that our approach successfully
extracts buildings with remarkable precision and consistency.
The building boundaries are well-defined and accurate, and
the structural details are preserved.

Additionally, our method demonstrates the ability to
identify buildings of various shapes, sizes, and orientations,
including those that other methods, such as Hosseinpoor and
Samadzadegan [29] failed to detect, as indicated by the blue
squares in the results. Furthermore, our approach excels in
detecting buildings with straight lines, as depicted by the
yellow circles in Fig.6. In contrast, the attention-based model
proposed by Hosseinpoor and Samadzadegan [29] struggles
to accurately capture the precise outlines of these straight
buildings. This highlights the superiority of our approach,
leveraging the AttHT-IHT attention module, in accurately
extracting straight building lines. However, it’s important
to note that there are certain limitations in our approach
compared to that of Hosseinpoor and Samadzadegan [29],
as indicated by the red circles in the results.

V. DISCUSSION
In this section, we analyze our proposed architecture,
examining its strengths, potential limitations, and key design
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TABLE 2. Potsdam dataset quantitative results compared to those of other authors. The best value is in bold, and the second-best value is underlined.

decisions. We explore how the foundational U-Net model,
along with the strategic placement of the AttHT-IHT module,
interacts and impacts building segmentation effectiveness.
Additionally, we address the generalization ability of our
model.

A. RESIDUAL CONNECTIONS IN ATTHT-IHT BLOCK: TO
USE OR NOT?
In the context of employing U-Net as the foundational
model for our architecture, the primary forward stream
of U-Net processes image information through encoding
and decoding stages. This sequential flow ensures the
preservation of original features without alteration. Notably,
U-Net incorporates skip connections to facilitate the recovery
and integration of low-level features with the original
feature maps. Our methodology builds upon this foundation
by selectively preserving the most relevant features using
AttHT-IHT. These preserved features are then merged with
the decoded features, contributing to an enhanced overall
representation.

Given the Hough transform’s exclusive application to
deep-level features, our approach deems it unnecessary to
reintroduce features before the Hough block.

B. PLACEMENT OF ATTHT-IHT
In our approach, the integration of the Differentiable Hough
Transform (DHT) into the AttHT-IHT at a specific deep
feature scale is a strategic decision driven by both efficiency
considerations and alignment with previously successful
applications [37], [38]. Applying AttHT-IHT at this level is
intended to amplify and emphasize the critical lines essential
for our primary objective of building segmentation. This
deliberate focus helps distinguish these significant lines from
less relevant ones that may emerge due to low-level feature
noise. Furthermore, to enhance the Hough Transform’s
performance in identifying key line features, we introduced
an attention mechanism within the Hough domain. This
mechanism selectively concentrates on line features most
relevant to our task, thereby boosting the overall effectiveness
of our approach. Additionally, the spatial proximity of the
Hough block to the original features during the encoding
process within the U-Net architecture ensures the effective
retention of essential image information in our forward
stream.

TABLE 3. Evaluation Results on the Potsdam dataset with and without
AttHT-IHT block.

TABLE 4. Evaluation Results on the Potsdam dataset with and without
ASPP block.

C. IMPACT OF ATTHT-IHT AND ASPP BLOCKS
In this section, we explore the pivotal impact of the
AttHT-IHT and ASPP blocks on our segmentation model’s
performance, emphasizing their crucial roles in improving
accuracy and overall effectiveness.

1) IMPACT OF ATTHT-IHT
To strengthen the credibility of our model’s outcomes
and emphasize the significance of the AttHT-IHT module,
we conducted supplementary experiments. The ablation
study on the Potsdam dataset, delineated in Table 3,
meticulously dissects the quantitative performance with and
without the AttHT-IHT module. The results showcase a
noteworthy improvement, yielding an F1-score of 96.28%,
an Overall Accuracy of 97.73%, and an IoU of 92.88% with
the assimilation of AttHT-IHT. These outcomes emphatically
underscore the substantial positive influence of integrating
the AttHT-IHT module, accentuating its contribution to the
enhancement of building segmentation performance.

2) IMPACT OF ASPP MODULE
Our choice to adopt the U-Net architecture enhanced with
ASPP as the foundational model is based on current research
trends and advanced methodologies, highlighting its con-
sistently superior performance, as demonstrated in previous
studies [22]. Furthermore, to scrutinize the influence of
ASPP in our approach, we undertake a comparative analysis
between our method with and without ASPP. The outcomes
reveal that the incorporation of ASPP results in elevated
overall accuracy, F1-score, and IoU on the Potsdam dataset,
showcasing its impact on model performance, as illustrated
in Table 4.

11526 VOLUME 12, 2024



S. Yahia Berrouiguet et al.: Attentive Hough Transform Module for Building Extraction

FIGURE 5. Building extraction maps obtained from the Potsdam dataset
(a) Original image. (b) Ground truth.(c) Our proposed model.

D. GENERALIZATION PERFORMANCE ASSESSMENT
In the assessment of generalization performance, we utilized
the WHU Satellite Dataset I. Table 5 presents the perfor-
mance of our model across various metrics. Specifically, our
model achieved outstanding scores on the WHU Satellite
Dataset I, with an Overall Accuracy of 92.13%, IoU
of 73.08%, F1-score of 84.32%, Recall of 82.80%, and
Precision of 85.91%.

FIGURE 6. Building Extraction Maps: Comparative Analysis. (a) Original
image. (b) Ground truth. (c) Extracted building map from [29] model.
(d) Proposed model.

TABLE 5. Results on the WHU satelllite Dataset I.

Furthermore, a direct comparison to SSDBN [36] in
Table 5 reveals our model’s superior performance, partic-
ularly in IoU and F1-score metrics. Notably, our model
exhibited a significant 15.9% increase in F1-score compared
to SSDBN [36], underscoring positive implications for its
generalization ability.

E. LIMITATIONS
While our approach prioritizes overall accuracy, focusing
on regional building characteristics, the decision to exclude
specific contour-related metrics was made thoughtfully. This
choice is driven by the primary goal of our application,
constraints within our experimental framework aligned with
state-of-the-art methodologies, and the lack of sufficient
data in our chosen datasets for a detailed contour analysis.
However, the current lack of such metrics in our assessment
underscores a limitation to be addressed in our future
perspectives.

VI. CONCLUSION
In this article, we present a CNN-based method for semantic
segmentation of remote sensing images. Our architecture
incorporates specialized modules to tackle challenges con-
cerning global context and boundary intricacies. Among
these modules is AttHT-IHT module, which effectively
enhances the quality of extracted results by isolating pertinent
straight lines that significantly contribute to defining building
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shapes. By integrating the AttHT-IHT modules into our
model, we achieve a fusion of global line priors with locally
learned image features. This fusion substantially bolsters the
architecture’s ability to identify straight lines associated with
buildings in aerial images. Additionally, we incorporate the
ASPP module into the U-Net architecture, allowing us to
capture multiscale features and refine classification accuracy.
The Encoder-Decoder network demonstrates adeptness in
both restoring image resolution and adeptly handling seg-
mentation intricacies. However, the current approach for
building extraction using RGB imagery does not capitalize
on additional types of information, such as multispectral data
and digital surface models. In future research, we will explore
efficient methods to incorporate this extra information
into deep learning models, aiming to enhance building
extraction. Furthermore, the utilization of more advanced
deep learning architectures like FCN andMask R-CNN holds
the potential for further improvements in building extraction
and scene.
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