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ABSTRACT With the recent advancements in machine learning technology, the accuracy of autonomous
driving object detection models has significantly improved. However, due to the complexity and variability
of real-world traffic scenarios, such as extreme weather conditions, unconventional lighting, and unknown
traffic participants, there is inherent uncertainty in autonomous driving object detection models, which may
affect the planning and control in autonomous driving. Thus, the rapid and accurate quantification of this
uncertainty is crucial. It contributes to a better understanding of the intentions of autonomous vehicles and
strengthens trust in autonomous driving technology. This research pioneers in quantifying uncertainty in the
YOLOv5 object detectionmodel, thereby improving the accuracy and speed of probabilistic object detection,
and addressing the real-time operational constraints of current models in autonomous driving contexts.
Specifically, a novel probabilistic object detectionmodel namedM-YOLOv5 is proposed, which employs the
MC-drop method to capture discrepancies between detection results and the real world. These discrepancies
are then converted into Gaussian parameters for class scores and predicted bounding box coordinates to
quantify uncertainty. Moreover, due to the limitations of the Mean Average Precision (MAP) evaluation
metric, we introduce a new measure, Probability-based Detection Quality (PDQ), which is incorporated
as a component of the loss function. This metric simultaneously assesses the quality of label uncertainty
and positional uncertainty. Experiments demonstrate that compared to the original YOLOv5 algorithm,
the M-YOLOv5 algorithm shows a 74.7% improvement in PDQ. When compared with the most advanced
probabilistic object detection models targeting the MS COCO dataset, M-YOLOv5 achieves a 14% increase
in MAP, a 17% increase in PDQ, and a 65% improvement in FPS. Furthermore, against the state-of-the-art
probabilistic object detectionmodels for the BDD100K dataset,M-YOLOv5 exhibits a 31.67% enhancement
in MAP and a 125.6% increase in FPS.

INDEX TERMS Uncertainty quantification, object detection, autonomous vehicles, YOLOv5, Monte Carlo
dropout.

I. INTRODUCTION
In recent years, deep learning has been increasingly utilized in
autonomous driving perception systems, where object detec-
tion models have made significant advancements in both
result accuracy and inference speed [1], [2], [3]. However,
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approving it for publication was Aysegul Ucar .

in facing edge cases such as heavy snow, fog, rain, or extreme
lighting conditions during the night, and unknown regu-
lar traffic participants, deep learning perception models are
still likely to make incorrect predictions with a considerable
probability [4], [5]. Fig. 1 illustrates the output results of
the probabilistic object detection model in multiple traffic
scenarios. The upper left portion represents a normal traf-
fic scene, the upper right is under low-light conditions and

33384

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-1597-1961
https://orcid.org/0000-0001-7179-7422
https://orcid.org/0000-0001-9020-6720
https://orcid.org/0000-0002-4623-3956
https://orcid.org/0000-0002-5253-3779


R. Zhao et al.: Leveraging Monte Carlo Dropout for Uncertainty Quantification

FIGURE 1. The figure compares traffic scenarios based on uncertainty.
‘Obj.Conf’ signifies object confidence, and ‘Location’ the uncertainty in
predicted bounding box location. Prediction box colors indicate certainty
levels: green for certainty, yellow for medium confidence, and red for
extreme uncertainty. Solid lines show the bounding box mean, while
dashed lines represent a 90% confidence range.

the lower half depicts extreme weather conditions, during
which the location of the object detection model’s output is
largely uncertain. Corresponding safety redundancy in cog-
nition and decision-making must be implemented based on
the quantified uncertainty. Acquiring the uncertainty in per-
ception model predictions can provide valuable information
to the decision-making layer and assist autonomous vehi-
cles in taking timely actions. Furthermore, human beings
have an intuitive ability to understand uncertainty, so per-
ceptual uncertainty information can help better interpret
the intentions of autonomous vehicles and increase trust in
autonomous driving technology [6]. Accurately quantifying
the uncertainty of perception model detections has become a
necessary condition for solving the safety long-tail effect in
autonomous driving.

The current mainstream autonomous driving object detec-
tion models primarily include the SSD series, R-CNN series,
YOLO series, and models based on Transformer network
structures [7], [8], [9], [10], [11], [12]. Early SSD series
models were fast but had low detection accuracy, failing
to meet the requirements of autonomous driving perception
systems. The emergence of R-CNN series detectors, such as
Fast R-CNN [7], Faster R-CNN [8], RFCN [9], compensated
for the low detection accuracy but significantly increased
detection time, not meeting the real-time requirements of
autonomous driving perception systems.

In pursuit of balancing accuracy and speed in object
detection, numerous algorithms have evolved, notably the
YOLO series [10]. These models segment images into grids
for simultaneous multi-object detection and have undergone
five iterations to date. YOLOv1 was limited in localizing
small or overlapping objects. YOLOv2, utilizing Darknet-19
and anchor boxes, enhanced localization but still struggled
with small objects. YOLOv3, with Darknet-53 and varied
feature map sizes, improved small object detection at a
reduced speed. YOLOv4 integrated technologies like Com-
plete Intersection over Union (CIoU), achieving higher accu-
racy without compromising the speed of YOLOv3. YOLOv5,

incorporating the SPPF module, minimized hardware needs,
gaining widespread application in academia and industry.
FollowingYOLOv5, YOLOv6, YOLOv7, andYOLOv8were
introduced. YOLOv6, by Meituan’s Vision AI, featured an
efficient design with advanced components. YOLOv7, from
YOLOv4 and YOLOR authors, excelled in speed and accu-
racy, demanding high computational resources. YOLOv8
utilized an anchor-free, decoupled head design for improved
accuracy (AP 53.9%) but required significant computational
power and training time. After YOLOv5, the series achieved
higher accuracy but at the cost of increased computational
demands and limited industrial applicability.

Currently, YOLOv5 remains prevalent in autonomous driv-
ing perception systems due to its rapid detection speed and
high accuracy. In the current technological framework of
major automotive companies, such as Tesla, Audi, BMW, and
Mercedes-Benz, YOLOv5 is employed for comprehensive
object detection, vehicle detection, pedestrian detection, and
lane line detection within the realm of autonomous driving.
This utilization positions YOLOv5 as a pivotal algorithm
in the perception systems of autonomous vehicles [11],
[12], [13], [14]. YOLOv5’s robustness, proven through its
long-term validation and critical use in the automotive indus-
try, extends beyond autonomous driving to other sectors. Its
applications range from detecting defects in manufacturing,
managing traffic and parking in transportation, to identifying
irregularities in medical imaging [15], [16], [17].

Subsequently, the Transformer has profoundly impacted
the entire field of deep learning, particularly in computer
vision. To overcome the limitations of CNNs, transformer
algorithms have abandoned traditional convolutional opera-
tors, instead opting for attentionmechanisms alone, achieving
a global scale receptive field. Recently, Chen et al. [18]
proposed a hybrid network transformer based on the Trans-
former for object detection, achieving superior accuracy.
Concurrently, Qi et al. [19] introduced an integration of
multi-scale feature extraction with transformers model in
single-stage object detection, effectively balancing detection
speed and precision. Additionally, Yuan et al. developed
a transformer-based object detection algorithm tailored for
autonomous driving [20]. Although these algorithms demon-
strate commendable detection capabilities, their limitations
in uncertainty modeling render them less suitable for appli-
cation in safety-critical domains such as autonomous driving.
For instance, they exhibit overconfidence in detection results
when faced with dynamic traffic participants with high
randomness.

Object detectors, which are primarily accuracy-focused,
struggle in edge cases like severe weather, risking incor-
rect autonomous driving decisions [21], [22]. Their key
limitation is poor uncertainty judgment in obstacle iden-
tification. This overconfidence in predictions can lead to
safety issues. Research now emphasizes enhancing machine
learning models in safety-critical areas, like autonomous
driving, by improving uncertainty estimation. In autonomous
driving, probabilistic object detection models assess output
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uncertainty, utilizing methods like error propagation, direct
modeling, ensemble methods, and MC-drop methods [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37].

Error propagation [23] calculates biases cumulatively but
isn’t ideal for autonomous systems due to its emphasis on
model confidence over actual uncertainty. Direct model-
ing expands detector output dimensions and is integrated
with detectors like SSD [24] and RCNN [25], [26], [27],
offering high-quality uncertainty estimates and fast detec-
tion but increasing training resource demands. Ensemble
methods, applied by researchers like Guo and Gould [28],
Lin et al. [29] and Lee et al. [30], train multiple networks
and compare outputs to estimate uncertainty. These meth-
ods match direct modeling in estimation quality but require
significant computational resources.

The MC-drop method [31], [32] leverages pretrained
weights for Gaussian modeling without needing network
changes. Initially applied to SSD by Miller et al. [33],
it was later adapted for [34] for better accuracy, though at
slower detection speeds. Choi et al. [35] effectively merged
MC-drop with YOLOv3, balancing speed and accuracy.
Azevedo et al. [36] further refined this, enhancing speed
and uncertainty estimation. The Bayes OD model [37] then
emerged, targeting the BDD100K dataset with Bayesian
methods for improved detection accuracy and uncertainty
assessment, but at the cost of computational efficiency, chal-
lenging its use in real-time autonomous driving. Despite
progress in probabilistic object detection, these methods still
trail behind accuracy-centric models in autonomous systems,
underscoring the need for uncertainty quantification.

Uncertainty quantification in object detection is a recent
development lacking a unified standard. Traditional evalu-
ation, like MAP [38], ranks predicted boxes by confidence
scores and measures localization accuracy via IoU. AP is
derived from the P-R curve, and MAP is the mean AP across
categories. The mean MAP over different IoU thresholds
indicates overall accuracy. However, MAP has limitations
in evaluating perception model confidence, often misrep-
resenting the correlation between confidence and accuracy.
This leads to overconfidence or under confidence in predic-
tions, making it unsuitable for probabilistic object detectors.
Recently, Hall et al. [39] introduced PDQ, a new metric for
evaluating label and spatial uncertainty in object detection,
which appears more appropriate for evaluating probabilistic
models in autonomous driving, but is yet to be widely adopted
in related research.

The current research issues are summarized as fol-
lows: Firstly, the main development direction of object
detection algorithms has been towards improved accuracy
and speed. However, in safety-critical applications such as
autonomous driving, there is an urgent need for proba-
bilistic object detection algorithms that concurrently offer
real-time performance, accuracy, and uncertainty estima-
tion – an area where current research is relatively lacking.
Secondly, research on uncertainty assessment in object

detection is still in its exploratory phase. The MC-drop
method shows potential for high fidelity and accuracy in
uncertainty estimation. Yet, current research does not suf-
ficiently explore how internal parameters of the MC-drop
method affect model performance. This, combined with uni-
dimensional performance evaluations, leads to suboptimal
uncertainty assessment results when using the MC-drop
method.

To address gaps in current research, we introduce M-
YOLOv5, a probabilistic object detection model that offers
enhanced detection speed, accuracy, and uncertainty assess-
ment over existing models. Despite YOLOv5’s industrial
popularity, its lack of interpretability limits its autonomous
driving application. M-YOLOv5 integrates YOLOv5 with
uncertainty modeling, employing an adapted MC-drop
method to estimate class and location uncertainties using
Gaussian parameters. This adaptation improves its appli-
cability in autonomous driving. We also propose the PDQ
metric, a more effective alternative to the traditional MAP
system. Our study includes a sensitivity analysis of crucial
hyperparameters like Dropout probability and layer con-
figuration, impacting uncertainty estimation and accuracy.
Extensive experiments validate M-YOLOv5’s superiority in
probabilistic object detection.

The main contributions and innovations of this paper are
as follows:
• This research introduces M-YOLOv5, a sophisticated
probabilistic object detection algorithm utilizing the
MC-drop method to adeptly identify anomalies in image
data, inaccuracies in neural network-extracted image
features, and variances between network perceptions
and actual detections, effectively quantifying the inher-
ent uncertainty in detection results. It also resolves
the stringent real-time performance requirements in
autonomous driving through a cleverly designed struc-
ture. This algorithm can be directly applied in the field
of autonomous driving and possesses strong portability.

• A sensitivity analysis of significant hyperparameters in
the MC-drop method has been conducted to identify the
optimal way of incorporating Dropout layers into object
detection models. To our knowledge, there has not yet
been any research exploring the sensitivity analysis of
the positions and quantities of Dropout layers in object
detection models.

• Extensive experiments were conducted, showing that
compared to the original YOLOv5 algorithm, the M-
YOLOv5 algorithm achieves a 74.7% improvement in
PDQ. Against Hall et al.’s probFRCNN [39], a state-
of-the-art probabilistic object detection model targeting
the MS COCO dataset, M-YOLOv5 demonstrates a
14% increase in MAP, a 17% increase in PDQ, and a
65% increase in Frames Per Second (FPS). Furthermore,
compared to the advanced probabilistic object detection
model proposed by Feng et al. [37] for the BDD100K
dataset, M- YOLOv5 shows a 31.67% improvement in
MAP and a 125.6% increase in FPS.
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The remainder of this paper is organized as follows:
Section II outlines the design of the M-YOLOv5 model,
including problem definition, constructed model, and model
evaluation indicators. Section III conducts a sensitivity
analysis of the hyperparameters that greatly influence the per-
formance ofMC-dropmethods. Section IV presents extensive
experiments and discusses the results, highlighting the supe-
riority of theM-YOLOv5 algorithm. Finally, conclusions and
future work are provided in Section V.

II. M-YOLOv5 MODEL
This section describes the proposed probabilistic object
detection algorithm M-YOLOv5, which employs the
MC-Dropmethod to incorporate class uncertainty and bound-
ing box location uncertainty into the model’s predictions.
The section begins by defining the problem, followed by an
introduction to the network structure of M-YOLOv5, which
includes the CSPnet structure, the design of the MC-Drop
method, and the process of uncertainty quantification. Sub-
sequently, the design of the loss function is elaborated, and
finally, the computation of the PDQ evaluation metric is
detailed.

A. PROBLEM FORMULATION
This work aims to perform uncertainty modeling on the
YOLOv5 model. Assuming that there are existing input data
for object detection, the YOLOv5 model, and the original
YOLOv5 network weights that have been trained, the task
is to quantify the uncertainty in label and location of the
YOLOv5 detection results.

To appropriately define this problem, specific symbols
and parameters are first introduced. Let a labeled test set
comprisingN pairs of data be represented as T = {dn, rn}Nn=1,
where dn is randomly selected input image data from the set
D, and rn =

{
r̄c, r̄l, rp

}
corresponds to the target output data

from the object detection result set R. Here, r̄c represents the
type of object and the probability of each class, r̄l represents
the position of the object in the image, and rp denotes the
uncertainty of the detection result. Let cϵ {1, 2, . . . ,C} rep-
resent the category code corresponding to the target, where
C is the total number of target classes. Let iϵ {1, 2, . . . , I }
indicates the current number of samples, where I represents
the sampling times of the object detector. Let objiϵ {1, . . . ,C}
represents the class of the object, and p0i, p1i, . . . , pCi respec-
tively represent the probability of each class. Then define

r̄c =
∑I

i=1 r
i
c

I , where r ic =
(
obji, p0i, p1i, . . . , pCi

)
. Let xi, yi

represent the coordinates of the center of the predicted box,wi
the width, and hi the height of the box, then r̄i is expressed as

r̄i =
∑I

i=1 r
i
l

I , where r il = (xi, yi,wi, hi). Define pc (r̄c|d, D)

as the probability that the input data d leads to an object class
of r̄c under a specific object detection model, and pl (r̄l |d, D)

as the probability that the object location is ¯rl, then r ip is
expressed as r ip = (pc (r̄c|d, D) , pl (r̄l |d, D)).

FIGURE 2. M-YOLOv5 model structure diagram.

The goal of this paper is to provide an accurate estimate
of object detection class uncertainty pc

(
r ic|d, D

)
and loca-

tion uncertainty pl
(
r il |d, D

)
, along with the detection class

results r̄c and location results r̄l , based on the original object
detection model f , by designing the MC-drop method, and
according to the input image data {dn}Nn=1.

B. NETWORK STRUCTURE
To ensure the unambiguous safety compliance of ego vehicle,
The network structure of M-YOLOv5 consists of three parts:
Backbone, Neck, and Head, as illustrated in Fig. 2. The
Backbone structure is responsible for extracting key features
from the image, the Neck is tasked with fusing the extracted
image features, and the Head part is in charge of transforming
the fused features into the data’s output format. To ensure
that the features extracted by the Backbone structure are not
disrupted, a Dropout layer is embedded between the Neck and
Head structures.

When an image is input into the M-YOLOv5 network as
the first layer input d0 of the CNN, it first passes through
the Backbone layer, resulting in the input dneck to the Neck
structure:

dneck = Backbone (d) (1)

The Backbone network structure is crucial for extracting
image features, and its output is a linear or nonlinear combi-
nation of the intermediate layer outputs. Therefore, the output
of a k-layer CNN can be represented as:

dneck = F
(
d0

)
= Hk

(
dk−1,Hk−1

(
dk−2

)
, . . . ,H1

(
d0

))
(2)

where F represents the CNN network model, and Hk is the
operation function of the k-th layer in the network structure.
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FIGURE 3. Description of the key building blocks of the YOLOv5 and M-YOLov5 models, including prediction, format conversion, and
evaluation. M-YOLOv5 first obtains

{
ri

}I
i=1 through multiple sampling, then acquires rnms via non-maximum suppression, and finally

attains r through format conversion. Output detections for 2D images are visualized as bounding box mean (line) and bounding box
extent at 90% confidence (dashed line).

To avoid gradient accumulation leading to the relearning
of redundant information, the Backbone network structure
focuses optimization on each layer’s network model Hi, and
the output of the k-th layer is expressed as:

dk = M
([
dk−1

′

,T
(
F

(
dk−1

′′
))])

(3)

Here, dk−1′ and dk−1′′ are two parts of dk−1 divided along
the channel, T is a transition function truncating the gradi-
ent flow of H1,H2, . . . ,Hk , and M is a transition function
used to blend the two segmented parts. The Backbone block
comprises five convolutional layers Conv, four connecting
layers C3, and a fast Spatial Pyramid Pooling Fast layer
SPPF . SPPF is a pooling strategy that transforms feature
maps of varying sizes into vectors of a fixed length. This is
achieved by performing pooling operations at multiple scales
and concatenating the results into a single feature vector.
Additionally, this structure has been optimized to enhance the
operational speed of the model. The output of the Backbone
network structure will serve as the input for the Neck network
structure.

The primary function of the Neck network structure is to
fuse and optimize the features obtained from the Backbone at
multiple scales, thus providing richer andmore discriminative
features for subsequent object detection. Specifically, the
Neck network structure addresses the issue of scale invariance
in object detection. By embedding a Dropout layer after
the Neck structure, it ensures that the Dropout layer does
not disrupt the image features extracted by the Backbone.
When the Neck network structure receives the input from the
Backbone network, it leads to the Dropout module’s input
ddropout :

ddropout = Neck (dneck) (4)

The Neck block, aside from the Dropout layer, includes
convolutional layers Conv, connecting layers C3, fusion lay-
ers Concat , and upsampling layers Upsample. It comprises
three output results that are fed into the ‘‘Head’’ block,
corresponding to the detection of large, medium, and small
objects in the final target detection outcome. Notably, the first
column of fusion layers in the Neck block is integrated from
different positions of the Backbone block, enabling a more
comprehensive and effective capture of the image’s features.

The MC-drop method can approximate the posterior dis-
tribution of Bayesian inference through the Dropout method,
and thereby quantify the uncertainty of the object detection
model using Bayesian inference. Upon inputting ddropout into
the Dropout layer, the input dhead to the detection head is
obtained:

dhead = ddropout ∗ diag
[
mij

]Ki
j=1

(5)

mij ∼ Bernoulli (p) for j = 1, . . . ,Ki (6)

where mij represents the j-th neuron in the i-th layer, with a
value of 0 indicating that the neuron is in an inactive state,
and a value of 1 indicating that it is normal. It follows a
Bernoulli distribution with a probability of p. After process-
ing through the Dropout layer, a new model weight matrix
will be obtained, and for a given input, there will be different
output results. Subsequently, dhead is input into the Head
to obtain the raw output results ri without non-maximum
suppression:

ri = Head (dhead ) (7)

Here, i represents the number of sampling times.
Fig. 3 illustrates the uncertainty quantification process

of M-YOLOv5. To accelerate the uncertainty quantification
speed of the M-YOLOv5 model, the network structure pre-
ceding the Dropout layer is run once for each detection, and
the results are cached. Then, the cached results are sam-
pled I times through the Dropout layer and the subsequent
network. Since the network parameters before the Dropout
layer are determined, caching to reduce the running times
of the network structure before the Dropout layer will not
affect uncertainty prediction. After the sampling is completed
using the M-YOLOv5 algorithm, {ri}Ii=1 is obtained. This is
followed by non-maximum suppression to yield rnms, and
then a format conversion is performed to produce the output
result r , which is suitable for PDQ evaluation.
Because the M-YOLOv5 model’s results will have a large

number of overlapping bounding boxes in each sampling,
NMS technology is needed to obtain the highest-scoring
prediction box. The functions of NMS include: removing
prediction boxes with confidence below a certain threshold
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α; removing prediction boxes with at least one coordinate
outside the image boundary; retaining the bounding box with
the higher classification score and removing the other one
when two prediction boxes have an IOU intersection greater
than u.

The output format of the M-YOLOv5 model after each
sampling, but before non-maximum suppression, is as
follows:

ri = {xi, yi,wi, hi, obji, p0.i, . . . , pC .i} (8)

where i represents the number of samples, and then the result
is transformed into:

mean =
{
x̄, ȳ, w̄, h̄, p0, . . . , pC

}
(9)

Through n sampling iterations, the covariance matrix
∑
i of

the bounding box’s upper-left and bottom-right coordinate
values is calculated. After ri undergoes non-maximum sup-
pression, the first four items are taken, namely the center
coordinates of the prediction box as well as its width and
height. These values are then transformed into the coordinates
of the two diagonal points of the prediction box.

bi = {x1.i, y1.i, x2.i, y2.i} (10)

Then, the covariance matrices for the two coordinate values
are computed:

Ct =
[

6ixx 6ixy
6iyx 6iyy

]
(11)

where t = 1, 2 represent the upper-left and bottom-right
coordinates, respectively. Since bi represents the two diagonal
coordinates of the predicted box, the two covariance matrices
C1 andC2 must be calculated. These will be used in the subse-
quent calculation of the PDQprocess. If the covariancematrix
is not positive semi-definite, we transform it by calculating
the eigenvalue decomposition and then reconstruct the matrix
where previously negative eigenvalues are set to zero. The
mean is then transformed after non-maximum suppression as
follows:

rnms = {x, y,w, h, obj, p0, . . . , pC } (12)

Combine it with the covariance matrix computed from
Equation (11), and calculate the label uncertainty pc (r̄c|d, D)

and the location uncertainty pl (r̄l |d, D) using the Gaussian
distribution through C1,C2 and the scores of each category.
Finally, transform the results into.

r = {x, y,w, h, obj, p0, . . . , pc, pc (r̄c|d, D) , pl (r̄l |d, D)}

(13)

where x, y,w, h represent the final predicted box’s center
coordinates and its width and height. The object category
corresponding to this predicted box is obtained by the model
through max{p0, . . . , pc}.

Algorithm 1M-YOLOv5 and Calculate PDQ
Input: PictureData = d
Output: PDQ score and detection result r
i = 1;
Cacsh← Picture;
for i ≤ 10 do

1: dneck = Backbone (d);
2: dneck = F

(
d0

)
=

Hk
(
dk−1,Hk−1

(
dk−2

)
, . . . ,H1

(
d0

))
3: dk = M

([
dk−1

′
,T

(
F

(
dk−1

′′
))])

;
4: ddropout = Neck (dneck )

5: dhead = ddropout ∗ diag
[
mij

]Ki
j=1

6: mij ∼ Bernoulli (p) forj = 1, . . . ,Ki;
7: ri = Head (dhead )

8: ri =
{
xi, yi,wi, hi, obji, p0.i, . . . , pc.i

}
;

9: mean =
∑10

i=0 ri/10, i++;
10: bi = {x1.i, y1.i, x2.i, y2.i};

11: Ct =
[ ∑

i xx
∑

i xy∑
i yx

∑
i yy

]
;

12: Calculate pc (r̄c|d, D) , pl (r̄l |d, D) and
rnms based on C1,C2;

13: r = rnms + pc (r̄c|d, D)+ pl (r̄l |d, D);
14: Calculate Dni according to r and G

n
i is ground-

truths;
15: for pairs(Dni ,G

n
i ) do

16: calculate Qs(Dni ,G
n
i );

17: calculate QL (Dni ,G
n
i );

18: pPDQ
(
Dni ,G

n
i
)
=
√
Qs × QL ;

19: Calculate PDQ;
20: return (PDQ, r);
21: end for

C. LOSS FUNCTION
For the problem of object detection, a good bounding box
loss function should include three factors: overlap area, cen-
ter distance, and aspect ratio. M-YOLOv5 adopts the CIoU
loss function, which takes these three factors into account
simultaneously, and its penalty term can be expressed as:

RCIou =
ρ2

(
b, bgt

)
c2

+ αv (14)

where α is a positive balancing parameter, b = {x, y} and
bgt =

{
xgt , ygt

}
represent the center coordinates of the

predicted bounding box B and the ground truth bounding
box Bgt t, respectively. ρ (·) denotes the Euclidean distance,
c is the diagonal length of the smallest bounding box that
encompasses both boxes, and v measures the consistency of
the aspect ratio of the detected bounding box.

v =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

(15)

where w, h, represent the width and height of the predicted
bounding box, respectively, and wgt , hgt represent the width
and height of the ground truth bounding box. Consequently,
the CIoU is defined as:

LCIoU = 1− IoU + RCIou (16)
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where IoU is defined as:

IoU =

∣∣B ∩ Bgt ∣∣
|B ∪ Bgt |

(17)

A positive tradeoff α is defined as:

α =
v

(1− IoU)+ v
(18)

D. PROBABILITY-BASED DETECTION QUALITY
As a measure for assessing the quality of two-dimensional
probabilistic object detection in images, PDQ aims to
jointly evaluate label uncertainty and spatial uncertainty in
image-based object detection. The evaluation of label uncer-
tainty is achieved by matching the predicted classification
scores with the ground-truth labels for each object instance
in the image. Spatial uncertainty is calculated through covari-
ance matrices, assuming a Gaussian distribution for the
top-right or bottom-left corners of the bounding box. Optimal
PDQ can be obtained when a prediction probability is corre-
lated with prediction error, for instance, when a larger spatial
uncertainty is associated with an inaccurate bounding box
prediction. PDQ utilizes the Hungarian algorithm to assign an
optimal corresponding detection for each ground-truth value,
eliminating the dependency on the IOU threshold required
by MAP. Additionally, PDQ measures the probability quality
assigned to true positive detection results and evaluates it
on a single classification score threshold, requiring object
detection algorithms to filter low-scoring output detection
results before assessment. The specific calculation method
for PDQ is as follows:

PDQ (G,D)=
1∑NF

n=1 N
n
TP+N

n
FN + N

n
FP

∑NF

f=1

∑N n
TP

i=1
qn (i)

(19)

where N n
TP,N

n
FN .N n

FP represent the numbers of true positives,
false negatives, and false positives detected by the detector

at that frame number, respectively. qn =
[
qn1, . . . , q

n
N n
TP

]
represents the collection of non-zero pPDQ values at that
frame number.

The value of pPDQ is determined by two parts: label
quality and spatial quality, and the calculation formula is as
follows:

pPDQ
(
Gni ,D

n
i
)
=

√
Qs

(
Gni ,D

n
i

)
· QL

(
Gni ,D

n
i

)
(20)

where Gni represents the set of the i-th ground truth objects in
frame f , this set includes the actual bounding box, class label,
and the object’s segmentation mask itself.
Dni is the set of the i-th detected objects in frame f , which

includes a probability function, the detected segmentation
mask (with non-zero pixels), and scores for all possible class
labels. Qs denotes the spatial quality:

Qs
(
Gni ,D

n
i
)
= exp

(
−

(
LFG

(
Gni ,D

n
i
)
+ LBG

(
Gni ,D

n
i
)))
(21)

where LFG is the foreground loss, representing the detector’s
average negative log-probability assigned to the pixels of the
ground truth object. LBG is the background loss, penalizing
any probability mass that the detector erroneously assigns to
pixels outside the ground truth bounding box. Qs takes the
maximum value of 1 when the detector allocates a probability
of 1 to all true pixels within the ground truth. These two
components can be calculated throughmatrix association. For
details of the computation, readers are referred to [39].
Spatial quality describes the goodness of an object’s loca-

tion within the image, while label quality QL describes the
effectiveness of the detection in recognizing what the object
is. QL is the detector’s probability estimate for the ground
truth class of the object, regardless of whether this class ranks
highest in the detector’s probability distribution.
It is calculated as follows:

QL
(
Gni ,D

n
i
)
= Inj

(
ĉni

)
(22)

Unlike MAP this value is explicitly used to influence the
quality of detection, rather than merely ranking the detector’s
predicted label probabilities without considering the actual
label probabilities. The PDQ score can evaluate the detec-
tor’soverall performance in terms of both label uncertainty
and spatial uncertainty.
The running process of the M-YOLOv5 model and the

algorithmic procedure for PDQ computation are shown in
Algorithm.1. Within the algorithm, the Model, representing
the M-YOLOv5 model, is divided into two parts: cache and
last. ‘‘Cache’’ refers to the network structure prior to the first
Dropout layer, and ‘‘last’’ refers to the first Dropout layer
and all subsequent network structures. The algorithm takes
as input the image data that needs to be detected and outputs
the detected categories, location, quantified uncertainty, and
PDQ score. Lines 1 to 14 describe the prediction and uncer-
tainty quantification process of the M-YOLOv5model, while
lines 15 to 19 detail the calculation process for the PDQ.

III. SENSITIVITY ANALYSIS OF MC-DROP METHOD
The design key to the MC-drop uncertainty modeling method
lies in the placement of the Dropout layer, the number
of Dropout layers, and the Dropout probability. Therefore,
we conduct a sensitivity analysis on these key influenc-
ing factors. We first carry out a sensitivity analysis for the
location of the Dropout layer and the Dropout probability.
To avoid disrupting the effective sampling process of the
YOLOv5 model, we only position it after different modules
at the detection head. The experiment analyzed the effect of
the Dropout layer’s position on MAP, PDQ, Avg_label, and
Avg_spatial, where Avg_label represents the average label
quality andAvg_spatial represents the average spatial quality.
Fig. 4 shows the sensitivity analysis results for Dropout prob-
ability and Dropout layer location. Each plot contains three
curves corresponding to Dropout probabilities p = 0.15,
p = 0.2, p = 0.25; the horizontal axis represents the posi-
tion where the Dropout layer is added, and the vertical axes
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FIGURE 4. Dropout probability and dropout location sensitivity analysis, a MAP, b PDQ, c Avg_label and d
Avg_spatial at MS COCO.

FIGURE 5. Dropout probability and dropout location sensitivity analysis, a MAP, b PDQ, c Avg_label and d
Avg_spatial at MS COCO.
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FIGURE 6. Sensitivity analysis of dropout layers and dropout probability, a MAP, b PDQ, c Avg_label and d
Avg_spatial at MS COCO.

FIGURE 7. Sensitivity analysis of dropout layers and dropout probability, a MAP, b PDQ, c Avg_label and d
Avg_spatial at BDD100K.
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of Fig. 4(a), 4(b), 4(c), and 4(d) represent the MAP, PDQ,
Avg_label, and Avg_spatial scores, respectively.

From Fig. 4, one can observe that the three curves share
the same trend. This is because the effect of p on the rating
indicators has a low correlation with the effect of the added
Dropout position on the evaluation indicators, meaning the
size of p does not affect the optimal position for adding
the Dropout layer. Apart from this, MAP and PDQ have
negatively correlated features, but a more precise detector can
achieve higher MAP and PDQ scores simultaneously. This is
because the randomness introduced by Dropout affects the
quality of object detection, and the introduced randomness is
the source of uncertainty prediction. When evaluating with
PDQ, better scores appear at positions 17, 18, 21, while
scores at positions 16, 19, 22, 24 drop significantly. This
is because positions 17, 18, 21 are characterized by being
in the middle layers of the detection head and located after
Concat or C3 modules. In contrast, positions 16, 19, 22,
24 are characterized by being at the convolution modules,
subsampling modules, or the end of the detection head, where
the Dropout layer has a smaller impact on the convolution
layer. Therefore, adding Dropout before the convolution layer
is a better MC-Dropout solution. The label quality trend
aligns with theMAP score, and the spatial quality trend aligns
with the PDQ score, indicating that label quality has a high
correlation with the MAP indicator, while spatial quality has
a better correlation with the PDQ evaluation indicator.

Fig. 6 illustrates the sensitivity analysis results concern-
ing Dropout probability and the number of Dropout layers.
Each plot contains three curves corresponding to different
numbers of Dropout layers n: when n = 1, a Dropout layer
is added after the first detection head’s C3 module; when
n = 2, Dropout layers are added after the first and second
detection heads’ C3 modules; when n= 3, Dropout layers are
added after the C3 modules of the three detection heads. The
horizontal axis represents the Dropout probability, while the
vertical axes of Fig. 6 (a), (b), (c), and (d) indicate the MAP,
PDQ, Avg_label, and Avg_spatial scores, respectively.

From Fig. 5, it can be observed that the three PDQ curves
exhibit a trend of initially increasing and then decreasing,
with the peak of the curves gradually shifting forward as
the number of Dropout layers increases. This is because
there is a certain correlation between the number of Dropout
layers and Dropout probability; increasing either can enhance
randomness. The three curves for the spatial quality indi-
cator do not follow a similar trend. This is because an
excessive number of Dropout layers and a large Dropout
probability will cause irreversible damage to detection qual-
ity, and thus, a higher number of Dropout layers should
not be paired with an excessively high Dropout proba-
bility. The MAP and label quality curves share the same
trend: as the Dropout rate and the number of Dropout
layers increase, the quality gradually decreases. This is
because a high level of randomness can cause a certain
degree of disruption to the features extracted by the neural
network.

TABLE 1. Ablation experiment of MC-drop.

FIGURE 8. Performance comparison of models targeting the BDD100K
dataset.

Fig. 5 and Fig. 7 represent sensitivity analyses conducted
on the BDD100K dataset, with experimental settings identi-
cal to those used for the MS COCO dataset, except for the
change in dataset. This was done to verify that the above
conclusions are not unique to the MS COCO dataset. From
the figures, it is evident that the characteristics exhibited are
similar to those of the MS COCO dataset.

IV. EXPERIMENTS
This section first introduces the experimental environment
configuration and then compares the performance of the
M-YOLOv5 model with typical probabilistic object detec-
tion models, highlighting the superiority of the M-YOLOv5
model. Finally, the detection results of the M-YOLOv5
algorithm on some edge-case scenarios are presented.

A. EXPERIMENTAL ENVIRONMENT CONFIGURATION
The experiment used an i7-13700fk CPU and a P100 16G
GPU as the hardware system, with Ubuntu 20.04 as the
operating system. The M-YOLOv5 model was built based on
Python tools and accelerated using CUDA 11.7.

This paper selects the MS COCO 2017 dataset as the train-
ing and validation dataset, which includes 118,287 and 5,000
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TABLE 2. A summary of performance comparison between state-of-the-art probabilistic object detectors and M-YOLOv5 at MS COCO.

FIGURE 9. Comparison of P-R curves between MS COCO dataset and BDD100K dataset.

images, respectively. In line with the edge-case standards
proposed in ISO 21448 [40] and byBogdoll [41], 20 groups of
edge-case scenarios are selected from the MS COCO dataset
for testing, and a set of results containing all types of edge
cases is chosen for presentation. The model also underwent
training and validation on the BDD100K dataset, comprising
70,000 training images and 10,000 testing images, primar-
ily captured on roads and serving as a real-world dataset

for autonomous driving training. During experimentation,
sampling is performed ten times, with a label confidence
threshold of 0.5 and an IoU confidence threshold of u =
0.6. In addition, the model parameters are the same as those
of the original model. The weights used to detect edge
cases are obtained by training for 30 rounds on the basis
of YOLOv5 pre-trained weights, with each round of train-
ing the YOLOv5 model requiring 50 minutes. Conducting
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FIGURE 10. Comparison of running time of uncertainty modeling
methods.

comparative experiments using deep ensemble methods, the
weights are trained ten times using YOLOv5 pre-trained
weights with different data augmentation techniques, with
each 30-round training session yielding ten different weights.

B. ABLATION EXPERIMENT OF MC-DROP
In order to investigate the performance improvement of the
embedded MC-drop method on the YOLOv5 algorithm, this
study conducted ablation experiments on four models of
the YOLOv5 algorithm. The results are shown in Table 1.
Based on the results of sensitivity analysis, a comparative
experiment was carried out using a combination of a favor-
able 25% dropout rate and a single dropout. In terms of
conventional evaluation metrics, there is a slight decline in
the performance of the four M-YOLOv5 detection algo-
rithms compared to the original YOLOv5 algorithm. This is
because the MC-drop method randomly drops some neurons.
Despite the low probability of dropout and its embedding in
layers that don’t affect feature extraction, the discarding of
some key neurons is inevitable. From the perspective of the
PDQ metric, the scores of the four M-YOLOv5 algorithms
show a significant improvement compared to YOLOv5. This
demonstrates the pronounced effect of the MC-drop method
in enhancing the probability quality of the detector. The
M-YOLOv5 algorithm significantly enhances the quality of
detection probability in the results without sacrificing detec-
tion accuracy, thereby strengthening its safety and robustness
for use in autonomous driving.

C. MODEL PERFORMANCE COMPARISON
To demonstrate the superiority of the M-YOLOv5 model,
this paper compares it with mainstream probabilistic object
detection models targeting the MS COCO dataset, such as
probFRCNN by Hall et al. [39], and MC-Drop SSD by
Miller et al. [43]. Additionally, the same uncertainty mod-
eling method as M-YOLOv5 was applied to object detectors
like SSD-300 by Liu et al. [44], YOLOv3 by Redmon and
Farhadi [45], the FRCNN series by Yang et al. [46], and the
FRCNN+FPN series by Massa and Girshick [47], followed
by performance testing. The comparative results are pre-
sented in Table 2. The paper applies the proposed MC-drop

method to the four varying network depths of YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. These modifiedmod-
els are respectively named M-YOLOv5s, M-YOLOv5m,
M-YOLOv5l, and M-YOLOv5x.

The aim of modeling uncertainty in the detection results
of the target detection model is to maintain high uncertainty
evaluation quality without significantly compromising detec-
tion accuracy. MAP is the quantification metric for detection
accuracy, while Probability-based PDQ is the metric for
uncertainty evaluation quality. The factors for calculating
MAP and PDQ include pPDQ, Sp, Lbl, FG, BG, TP, FP, and
FN.Additionally, considering the application scenario of high
real-time safety-critical applications, this paper compares the
real-time performance of all methods. Table 2 presents the
comparison results for all methods in terms of the detection
accuracy metric MAP, the uncertainty evaluation quality met-
ric PDQ, and real-time performance. It also lists the values of
factors pPDQ, Sp, Lbl, FG, BG, TP, FP, and FN used in the
calculation of MAP and PDQ.

The first four rows of the table represent the M-YOLOv5
models of varying depths, with M-YOLOv5s, M-YOLOv5m,
M-YOLOv5l, and M-YOLOv5x having progressively
increasingmodel depths. The table shows that with increasing
model depth, both MAP and PDQ scores gradually increase,
but FPS decreases. This implies that deeper models have
higher detection accuracy and uncertainty evaluation quality
but poorer real-time performance. Compared to the current
state-of-the-art probabilistic object detection models, our
proposed M-YOLOv5x model demonstrates the best perfor-
mance in both MAP and PDQ, with a detection speed of
21.76 frames/s. The probFRCNN algorithm has a similar but
slightly lower accuracy performance; however, its detection
speed is 55.28% lower than that of M-YOLOv5x. Models
like MC-Dropout SSD, SSD-300, and YOLOv3, which have
detection accuracy, as indicated by their lowerMAP and PDQ
scores, making them unsuitable for practical applications in
the field of autonomous driving. higher detection speeds,
achieve this at the significant cost of compared to the best
performance among these three algorithms, our M-YOLOv5l
model shows an 8.76% increase in detection speed, along
with a 15.58% increase inMAP score and a 151.32% increase
in PDQ score, thereby proving that the model proposed in this
work has the optimal overall performance.

Furthermore, the performance of the M-YOLOv5x model
was compared with the advanced Bayes OD probabilis-
tic object detection algorithm [37] targeting the BDD100K
dataset, demonstrating the versatility of the M-YOLOv5
algorithm. The experimental results are illustrated in Fig. 8.
To visually represent the variation in key metrics among
different algorithms, the MAP, PDQ, and FPS results of the
four algorithms are depicted in a line graph. It is evident from
the graph that the M-YOLOv5 algorithm, with minimal loss
in PDQ accuracy, shows significant improvements in MAP
and FPS, meeting the real-time requirements of autonomous
driving. The comparison of the P-R curves for the MS COCO
and BDD100K datasets is shown in Fig. 9.
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FIGURE 11. Visual comparison of M-YOLOv5 with current advanced probabilistic object detection algorithms in edge case
scenarios.
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Additionally, using YOLOv5m as an example, this paper
compares the time required for the MC-Drop method in
optimizing the uncertainty quantification process with the
Ensemble method, as depicted in Fig. 10. The experiments
were conducted using a P100 16G GPU, where YOLOv5m
represents the original YOLOv5m model, M-YOLO repre-
sents the uncertainty modeling using the MC-Drop method
with ten samplings, Ensemble-5 represents the ensemble of
five weights, and Ensemble-10 represents the ensemble of
ten weights. In Fig. 10, the horizontal axis represents the
algorithm, and the vertical axis represents the time required
to detect a single image. Each algorithm was tested twenty
times in the experiments, and the size of the box in the boxplot
represents the fluctuation in detection time. It can be inferred
from the figure that compared to the original YOLOv5
model without uncertainty quantification,M-YOLOv5 shows
a slight increase in detection time. However, it has a shorter
detection time compared to the ensemble method with five
weights, and its detection time is significantly lower than that
of the ensemble method with ten weights. This advantage
is attributed to the optimization of the MC-Drop uncertainty
quantification process. Furthermore, the M-YOLOv5 model
exhibits the smallest time fluctuation, demonstrating the best
robustness of the M-YOLOv5 algorithm.

Finally, we compared our M-YOLOv5 with advanced
object detection algorithms tailored for the MS COCO
dataset, achieving a reduction in spatial complexity by 25.6%
and in temporal complexity by 53.2%. Additionally, when
against probabilistic object detection algorithms designed
for the BDD100K dataset, the M-YOLOv5 demonstrated
superior performance, reducing spatial complexity by 27.6%
and temporal complexity by 55.3%, thereby affirming the
exceptional capabilities of the M-YOLOv5 model.

D. M-YOLOv5 CORNER CASE TEST
This paper employs the M-YOLOv5 model to test some
edge-case scenarios within the MS COCO dataset, finding
that in comparison to regular conditions, our model can
offer higher spatial uncertainty in object detection within
these scenarios. We conducted a total of twenty test groups,
and the tests indicate that the uncertainty quality of the
M-YOLOv5 model is higher. We chose a test set includ-
ing extreme weather, natural disasters, abnormal lighting,
with the results shown in Fig. 11. It can be observed that
in these edge-case scenarios, the predictive confidence of
the M-YOLOv5 model is relatively low, indicating that the
detection results are unreliable, and necessitating correspond-
ing behavior from the decision-making layer to ensure the
safety of autonomous vehicle operation. Compared to object
detection models without uncertainty estimation, probabilis-
tic object detection models, in these cases, allow the decision
system to recognize the insufficiency of the reliability in
the perception system’s output. This understanding enables
the implementation of conservative safety measures to avoid
collisions.

As shown in Fig. 11, we visualized the model detec-
tion results of BayesOD, Pre-NMS Ensemble and Post-NMS
Ensemble. To facilitate the comparison of these visualiza-
tions, we standardized the format of various algorithms to
match our own, selecting the outcomes derived from their
models accordingly. The images reveal that the M-YOLOv5
algorithm possesses superior quality of uncertainty in
adverse weather conditions and with abnormal traffic par-
ticipants. For instance, in each algorithm’s second image,
the vision is extremely blurred due to heavy rain, leading
to M-YOLOv5’s uncertainty regarding the detected object’s
location, whereas the Pre-NMS Ensemble algorithm is very
confident in its detection result. Similarly, in the fourth
image, M-YOLOv5 remains uncertain about its detection
outcome, while Post-NMS Ensemble is highly confident in
its result. Overconfidence in detection results under extreme
conditions can pose a threat to the safety of autonomous
driving.

V. CONCLUSION AND FUTURE DIRECTIONS
This research systematically introduces the M-YOLOv5
model, an extension of the YOLOv5 object detection
algorithm with uncertainty modeling using the MC-Drop
method. Sensitivity analysis of hyperparameters that signif-
icantly impact MC-Drop was conducted, shedding light on
the intricate relationship between the Dropout layers and
detection quality. Recognizing the limitations of the MAP
evaluation metric, the study also incorporates PDQ, offering
a more comprehensive evaluation system. Performance com-
parisons with leading probabilistic object detection models
highlight the superiority of the M-YOLOv5 algorithm. The
research represents a significant step in advancing probabilis-
tic object detection, delivering both enhanced performance
and valuable insights into modeling uncertainty, demonstrat-
ing the advantages of the M-YOLOv5 model for applications
demanding reliability and efficiency, such as autonomous
driving.

However, there is still significant room for improvement
in the detection speed, detection progress, and uncertainty
prediction quality of the M-YOLOv5 method. In the future,
we plan to continue optimizing the operation mechanism of
MC-drop to reduce the prediction time of the probabilis-
tic object detection model. In addition, current probabilistic
object detection algorithms can only model the uncertainty of
detection results as a whole, without being able to ascertain
the extent to which different sources of noise contribute to this
uncertainty. For instance, M-YOLOv5 can detect the com-
bined impact of weather conditions, sensor accuracy, and data
annotation on the uncertainty of detection results, but it can-
not determine which of these factors has the most significant
impact. Moving forward, we will explore how to decompose
and quantify the individual contributions of different sources
of uncertainty, which will aid in improving the detector’s
performance and enhancing the interpretability of detection
results.
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