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ABSTRACT Understanding and slowing down biodiversity loss are critical tasks for the survival of
our planet. They are difficult because much of the earth’s biodiversity is concentrated in abundant and
species-rich groups of invertebrates like insects. Traditionally, bulk samples of insects had to be analyzed
manually by experts using morphology. Not only did this require much taxonomic expertise, but it was
also error-prone, time-consuming, and almost always involved commercially available microscopes that
are too expensive for many biodiverse, tropical countries with limited science funding. An alternative to
sorting bulk samples by experts using morphology is the use of DNA barcoding. However, this requires
a well-equipped molecular laboratory and a different skill set. We present an alternative solution - the
Entomoscope, a low-cost, open-source photomicroscope for taking high-resolution, focus-stacked images
that can be used for insect classification.We describe two different versions of the Entomoscope, a standalone
version that can be operated without additional hardware and an even simpler version, that is operated
via a computer. We show that the optics are of sufficiently high quality to classify specimens with >95%
accuracy into 15 different types of insects (mostly ’families’ according to the Linnaean classification). The
classifier can be successively extended or individually trained for specific classification tasks.We provide the
building instructions, 3D files, and a list of commercially available parts so that everyone can build their own
Entomoscope. We predict that open-source DIY hardware like the Entomoscope will facilitate cutting-edge
biodiversity research by entomologists around the planet.

INDEX TERMS Biodiversity, classification, DIY hardware, entomology, invertebrates, low-cost,
open-source, smart microscopy, taxonomy, automation.

I. INTRODUCTION
Insects and other invertebrates provide many key ecosystem
services like pollination, decomposition, and predation, while
also being an important food resource for other species [1],
[2]. Unfortunately, the global biodiversity decline also affects
invertebrates and the population sizes of many insect species
are decreasing while others are in the process of going
extinct [3], [4], [5]. Despite the importance of insects, the
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study of insect diversity is often restricted to charismatic
taxa such as butterflies [6] and bees [7]. However, these
groups comprise only a small proportion of the overall
species diversity. New methods are needed to monitor
whole insect communities, including (and especially) the
abundant and species-rich groups that are often ignored.
These methods must yield species diversity and abundance
information because extinction is often preceded by a decline
in abundance [7]. Especially important are new techniques
for the discovery and monitoring of undescribed species in
so-called ‘dark taxa’ [8] given the World Economic Forum
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considers biodiversity loss to be one of themost severe threats
to the world [9]. At this point, insects and other arthropods
are already routinely collected for biodiversity monitoring
using standardized traps like Malaise Traps that use ethanol
as preservative [10], [11]. However, samples typically contain
several thousand specimens, so that manual evaluation of
species composition and abundance is too slow and labor-
intensive. In addition, it requires highly skilled personnel
and expensive microscopes. In particular, classification into
species requires one or more experienced taxonomists per
family-level taxon. An alternative is characterizing an entire
sample based on DNA (‘metabarcoding’) [12], [13], but
this technique provides at best approximate abundance
information. In addition, the sample is often destroyed
during DNA extraction and cannot be used for follow-up
research. DNA barcoding of individual specimens overcomes
these disadvantages as it provides accurate abundance
information if whole samples are examined while keeping the
specimens intact, albeit with the drawback of being also labor
intensive [14], [15]. In addition, all three techniques (manual
examination by experienced taxonomists, ‘metabarcoding’,
and DNA barcoding of individual specimens) struggle with
determining biomass. Usually, only the total mass of an
insect sample is measured and the distribution among species
remains unknown.

Due to the varying sizes of insects and other variables,
we currently lack an affordable standard photomicrography
solution for tackling the imaging, classification, and biomass
of insect samples. Commercially available imaging solutions
are often so expensive, that they are unsuitable for widespread
biodiversity research. For example, a popular microscope
for imaging invertebrates is the VHX-7000 digital micro-
scope by Keyence. Priced in the upper five-digit dollar
range, this solution is primarily viable for well-established
research institutions with substantial financial resources.
An alternative are digital cameras with mounted macro lenses
and flashes in custom setups [16], [17], [18], or cheaper
microscopes that are equipped with cameras. There are also
some low-cost, open-source, Do It Yourself (DIY) micro-
scopes [19], [20], [21], [22], [23], but they are often designed
for specific purposes. Examples are a DIY microscope for
the detection of C. elegans nematodes - a widely used
model organism in developmental biology [20], a fluores-
cence microscope for 3D imaging of cell cultures [21],
or open-source microscopes for the automated observation
of bacterial cultures [22], [23]. These DIY microscopes are
mostly compound microscopes while dissecting microscopes
are needed for insects. Unfortunately, they have received
very little attention to date [24], [25], [26]. Therefore, high-
quality imaging of insects preserved in ethanol remains a
major challenge, and expensive laboratory microscopes or
high-quality camera systems are typically used [27], [28],
[29], [30]. This is unfortunate because several algorithms for
identifying insects via images have been published. Accurate
classification results based on neural networks have been
achieved for insect taxa ranked as families [31], [32], [33]

and even at the species level [34], [35]. Additionally, the
images also proved useful for estimating biomass [31], [35]
and provide information about abundance when complete
collections are imaged and evaluated. Furthermore, the
digitized data allows subsequent studies on other aspects
that might be of interest to other researchers. Thus, it is
desirable to develop a DIY microscope for standardized
and high-quality imaging of insects, so the images could
be assigned to a species using automatic classification.
This would allow for a biodiversity sample to be evaluated
both rapidly, and without the help of taxonomic experts.
In addition, if expensive microscopes, special cameras, and
the necessary software could be replaced by a DIY approach
with low-cost components, this solution would facilitate
biodiversity research in countries and institutions where
resources are limited [19].

II. CONCEPT AND METHODS
We developed two low-cost open-source photomicroscopy
systems that take images and automatically classify spec-
imens belonging to insect families with a high abundance
in Malaise trap samples. The systems differ in their setup.
The first is a compact, standalone device that includes all
hardware components. The second works as a plug-in device
and is operated via a computer with Microsoft’s Windows
operating system. In designing, we emphasized the need for
the systems to be easily produced at low cost. Expensive
manufacturing processes such as milling and turning are
therefore avoided and all housing parts and connecting
elements are 3D printable. To achieve high-quality imaging,
we selected low-cost but high-performance components. Pre-
vious publications have shown that single-board computers
combined with matching cameras are a low-cost solution
for biological microscopy [22], [36], [37]. For this reason,
both versions, the standalone and the plug-in versions use
Raspberry Pi 4k cameras. However, since different lenses
are needed for insects of various sizes, the systems should
also be adaptive and feature a c-/cs-mount lens adapter.
To develop an autonomous system with an input unit,
an inexpensive touchscreen with HD resolution is added to
the standalone version, while the display of the connected
computer serves as an input unit for the plug-in version.
In comparison to other DIY microscopes, special emphasis
is paid to high resolution and image stacking, so that even
small morphological features can be used for classification.
We use Python for the control software, given that this
language has a large selection of libraries. Due to the com-
paratively low costs, even researchers with limited funds can
afford the system and participate in automated biodiversity
research [19].
To classify the insects, we use a Convolutional Neural

Network (CNN) for which we have already obtained
accurate results [31]. The data set is available at
https://doi.org/10.7479/4tbx-qm72. It contains 5083 images
that can be assigned to 15 groups and will be referred to
as ‘classes’ hereafter: 14 classes (mainly at the family level
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in the Linnaean hierarchy) and one ‘other’ class, including
images of other invertebrates, as well as debris and broken off
insect parts (e.g. legs). The ‘other’ class is used to distinguish
the known classes from anything else that can be found in
a Malaise trap sample. An exact representation of the data
set can be found in the publication by Wührl et al. [31].
To perform the classification of known object classes and the
detection of unknown specimens or other objects, a cascaded
CNN architecture with two Resnet-50 encoders is used (see
Figure 1). One encoder predicts the respective class index
c ∈ {1, . . . n} for n known classes. The second encoder
outputs an outlier probability score 0.0 ≤ p ≤ 1.0, p ∈ R. If p
is bigger than the threshold θ , the outlier class O = n+ 1 is
output. Otherwise the predicted known class c. In this work, θ
is always 0.5. The samples of the data set are normalized to be

FIGURE 1. The CNN architecture. Two ResNet-50 encoders are employed
to detect the class c and the outlier probability p. If p is greater than the
threshold θ , the outlier class O is predicted. Otherwise the determined
class c .

in the range [0, 1] and are divided into an 80% / 20% split of
training and validation. Various augmentation techniques are
applied to enhance themodel’s robustness and generalization.
Specifically, the images undergo horizontal flipping with a
probability of 50%, random adjustments to brightness and
contrast (up to 10% of the initial values), rotation by a
maximum of 25%, and the application of Gaussian blur
with sigma values ranging from 0.0 to 1.0. To train the
classification task with our architecture (Figure 1), the c
classes are set to be the 14 known classes, and the outlier
detection is conducted with the ‘other’ class. To evaluate the
performance of the classification, we provide the accuracy
for each class as well as the overall accuracy, together with
the recall and F1 score.

To evaluate the image quality and thus the imaging
hardware, we have decided to use visual inspection of the
images by experts as the decisive criterion.

III. RESULTS
We here describe both setups, the standalone Entomoscope
(Figure 2) and the plug-in version (Figure 3). They are
designed for different work environments. The standalone
version is ideal for cramped spaces with a limited number
of power supplies. The plug-in version, on the other
hand, is easier, faster, and cheaper to build due to the
significantly reduced number of components. It is suitable
for environments where a computer is available and space or
power supply is not a major concern.

FIGURE 2. The standalone Entomoscope, with (1) base, (2) USB and
network hub, (3) lighting, (4) 12 MP camera with (5) telecentric lens,
(6) 10’’ HD touchscreen, (7) Graphical User Interface, and (8) manual
focus wheel.

A. MECHANICAL SETUP
1) STANDALONE
The standalone Entomoscope has three main parts: The base,
the upper main frame, and the focus stacking unit. The base
houses the electronics and lighting and serves as a platform
for a 60 mm Petri dish for preserved insects. Its dimensions
are 200 mm x 200 mm x 80 mm. The custom-made lighting
illuminates from the circumference of the Petri dish with
white Light Emitting Diodes (LEDs). The upper main frame
is mounted to the base with two 20 mm x 20 mm aluminum
strut profiles (Bosch Rexroth, Germany) that are coveredwith
3D-printed parts to allow the cables to be guided to the upper
main frame. The standalone Entomoscope can be adapted to
almost any lens with a c-/cs-mount connector by selecting a
suitable length of the aluminum strut profiles to match the
object distance of the lens. We have developed three variants
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FIGURE 3. The plug-in Entomoscope, with (1) base, (2) lighting, (3) 12 MP
Camera with (4) telecentric lens, (5) linear stage.

with different lenses as examples. The upper main frame
carries a 10’’ touchscreen (10BS7 Beetronics, Duesseldorf,
Germany) and the focus stacking unit with the camera and
lens setup. A 3D view of the focus stacking unit of the
standalone Entomoscope is given in Figure 4 (a). The camera
can be moved in the z-axis for 45 mm by a motorized linear
stage, consisting of a standard stepper motor (NEMA 17-
02 by Joy-It, SIMAC Electronics GmbH, Neukirchen-Vluyn,
Germany) and a precision linear stage (VT 45N by Owis
GmbH, Staufen im Breisgau, Germany) that are connected by
a flexible aluminum coupling adapter. This allows the object

distance of the 12.3-megapixel camera with Sony IMX477
sensor (Raspberry Pi HQ camera, Raspberry Pi Foundation)
with the lens (e.g. Lensagon TC10M0565i by Lensation,
Karlsruhe, Germany) to be changed for focusing and focus
stacking. A focusing wheel is fitted to the upper end of the
drive shaft to enable manual focusing.

FIGURE 4. 3D view of the focus stacking unit for the (a) standalone and
(b) plug-in version of the Entomoscope, with (1) stepper motor,
(2) manual focus wheel, (3) coupling adapter, (4) linear table, (5) camera
unit with Raspberry Pi HQ camera and HDMI-adapter shield, (6) lens and
(I) stepper motor, (II) coupling adapter, (III) linear rail and threaded rod,
(IV) camera assembly with Raspberry Pi HQ-camera and USB-adapter
shield, (V) lens, (VI) upper bearing for threaded rod.

2) PLUG-IN
The basic mechanical setup of the plug-in version of the
Entomoscope is the same as for the standalone version.
However, the upper main frame can be omitted and the
stepper motor (NEMA 17-01 by Joy-It, SIMAC Electronics
GmbH, Neukirchen-Vluyn, Germany) is moved to the base.
Therefore, the base is minimally larger and measures 200mm
x 205 mm x 95 mm. The lighting in both versions is the same.
Due to the higher base, the lighting unit does not protrude
in the plug-in version. Due to the motor being in the base,
a longer linear stage is installed. A 3D view of the focus
stacking unit of the plug-in version of the Entomoscope can
be seen in Figure 4 (b). The design differences have the
advantage that the plug-in Entomoscope is suitable for many
different lenses, as the distance of the camera to the base of
the lighting can be automatically adjusted in a range from
25 mm to 365 mm. The linear stage is mounted to the base
with three 20 mm x 20 mm x 410 mm aluminum strut profiles
(Bosch Rexroth, Germany).
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All CAD files for both systems are available for download
in the .stl file format so that they can be 3D-printed
directly. For printing the parts, any FDM 3D printer with a
minimum printing area of 205 mm x 205 mm x 150 mm is
suitable. Currently, the files for 3D printing are available for
different standalone Entomoscopes as well as for the plug-in
Entomoscope.

B. ELECTRICAL SETUP
1) STANDALONE
The standalone Entomoscope is equipped with a Rasp-
berry Pi 4 Model B 8 GB single-board computer as the
central control unit (see Figure 5). The power supply is
a 12 V DC power adapter (EA10731J1201 by EDAC
Power Electronics, New Taipei City, Taiwan). This voltage
is required for the stepper motor and the touch screen.
Additionally, the 12 V DC is converted to 5 V DC for
the Raspberry Pi with a DC-DC converter (SD-30G-5 by
MeanWell, New Taipei City, Taiwan). A stepper driver board

FIGURE 5. Schematic view of the electronics used in the standalone
Entomoscope. The main components for controlling are housed in the
Electronics base. The touch screen as well as the camera with the focus
stacking unit including a stepper motor with limit switch are mounted to
the Upper main frame. The Lighting assembly is mounted to the
Electronics base and can be interchanged for different Petri dish sizes.
Data transmission lines are shown as solid lines, power lines are dotted.

(SilentStepStick TMC2209 V2 Watterott electronic GmbH,
Leinefelde-Worbis, Germany) is used for controlling the
stepper motor and a mainboard is designed to connect the
motor driver with the Raspberry Pi. Additionally, two Metal
Oxide Semiconductor Field-Effect Transistors (MOSFETs;
FQP20N06L) are used to switch both the lighting and the
cooling fan. For data transfer from the Entomoscope and
network connection, a USB hub with an Ethernet adapter
is installed and made accessible from the outside. Data can
either be stored on an internal solid state drive (SSD) or on
external storage via a USB interface.

2) PLUG-IN
For the plug-in Entomoscope, the electrical setup can be
simplified as the connected computer serves as the main
control unit, also replacing the need for a touchscreen. This
computer is linked to the Entomoscope through a USB
connector. To control the stepper motor for the stacking
mechanism, an Arduino Uno is employed. It is equipped
with a CNC stepper motor shield (Joy-It, SIMAC Electronics
GmbH, Neukirchen-Vluyn, Germany) and a stepper motor
driver board (SilentStepStick TMC2209 V2 from Watterott
electronicGmbH, Leinefelde-Worbis, Germany). The camera
(Raspberry Pi HQ camera, Raspberry Pi Foundation) is con-
nected to a USB adapter shield (Arducam USB 3.0 Camera
Shield Plus, Arducam, Nanjing, China) and plugged into the
USB hub. The brightness of the LEDs used for object lighting
can be adjusted using an analog LED dimmer. For a visual
representation of the electrical setup, refer to Figure 6.

C. CONTROL SOFTWARE
A graphical user interface (GUI) is provided for both versions
of the Entomoscope. The Entomoscope Imaging Software
(ENIMAS) is written in Python 3. The GUI is created,
using the Python package Qt. As the requirements for the
standalone and plug-in Entomoscope differ in some points the
software for both systems has minor differences. However,
the operation is very similar.

1) STANDALONE
The Raspberry Pi boots directly to the GUI. It has two main
tabs, the Imaging tab, which can be seen in Figure 7, and the
Viewer tab, which can be used to examine the images and
to transfer them to a USB data drive. The Viewer tab allows
the user to examine both individual and stacked images.
In addition, the images can be opened in full-screen mode
and zoomed in and out.

The standalone Entomoscope can either be used in a
manual focus mode or with automated focusing by enabling
the stepper motor in the GUI ((i) in Figure 7). The linear
actuator is then referenced by moving until a limit switch
is reached. Having enabled the lighting (ii), the autofocus
can be started (iii), and a single image (iv) or multiple
images at different focal planes (to capture all parts of the
specimen in focus), can be taken. Both the stack step size (v)
and the number of images per stack (vi) can be selected in
ENIMAS. To test whether the parameters are correct, the
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FIGURE 6. Schematic view of the electronics used in the plug-in version
of the Entomoscope. A USB hub connects the camera and an Arduino Uno
to the computer. The Arduino Uno controls the stepper motor, and the
object lighting brightness can be manually regulated using an LED
dimmer. Data transmission lines are represented as solid lines, while
power lines are depicted as dotted.

FIGURE 7. Screenshot of the GUI (Imaging tab selected) of the
standalone Entomoscope with two main Tabs: (1) Imaging and (2) Viewer
and the main functions: (i) enable stepper, (ii) enable light, (iii) autofocus,
(iv) take a single image, (v) set stack size, (vi) set number of images per
stack, (vii) focus in/out, (viii) take stack, (iix) fuse stack (ix) classify.

focus in/out (vii) buttons can be used, as the distance that the
stacking unit moves by clicking once is set to the value that is
chosen for the stack step size. Finally, the selected number of
images with predefined distances between the images can be
automatically taken by starting the stack-taking process (viii).
The stack can then be automatically fused to a single image
by activating Fuse Stack (iix). For specimen classification,
the GUI includes a designated button (ix). When this button is
clicked, the Entomoscope captures an image of the specimen

and subsequently presents the classification result in the text
box located above the button.

2) PLUG-IN
The GUI of the plug-in Entomoscope is very similar. Since
the plug-in version does not have the manual focus mode, the
stepper motor does not need to be explicitly enabled. Upon
launching the program, it is still necessary to reference the
axis, which can be achieved by clicking on the Reference
Axis button. Given that there are many image viewers for
Windows, that cater to diverse user needs, the Viewer tab has
not been implemented in the Windows version of ENIMAS.
Instead, images can be opened directly in the user’s default
image viewer. The stacking of the images can be done either
by a stacking algorithm implemented in Python (the same as
in the standalone version) or by Helicon Focus (HeliconSoft,
Charkiw, Ukraine). The user can choose which method to
use after capturing the first stack. As the plug-in version
can handle different types of lenses, without any hardware
adaptions, the GUI provides options to handle different
lenses. One crucial parameter to specify is their length, which
must be provided and saved in the software. This ensures that
the lens does not collide with the Petri dish for holding the
insect during autofocus.

D. IMAGING
We recommend a lens magnification of 0.3x for insects from
12-25 mm, 0.5x magnification for 6-12 mm, and 1x for
insects ranging between 3-6 mm. In particular, telecentric
lenses with a working distance between 40 mm and 110 mm
are well-suited for the Entomoscopes. The following lenses
were tested with the standalone Entomoscope (all by
Lensation GmbH, Karlsruhe, Germany):

1) Lensagon TC5M-10-65: 1x magnification
2) Lensagon TC10M-05-65: 0.5x magnification
3) Lensagon TC5M-03-110: 0.3x magnification

But other cheaper telecentric lenses (by GetCameras,
Eindhoven, Netherlands) with comparable imaging parame-
ters also show very good results:

1) LCM-TELECENTRIC-1X-WD65-1.5-NI
2) LCM-TELECENTRIC-0.5X-WD65-1.5-NI
3) LCM-TELECENTRIC-0.3X-WD65-1.5-NI2

Figure 8 shows the stacking procedure for four focal planes
(z-stacks) taken with the standalone Entomoscope with a lens
for large-sized specimens (12-25 mm). As can be seen in
Figure 8 (i)-(iv), the focus moves from the lowest point to the
highest point of the specimen. Figure 8 (v) shows the final
result of the fusing procedure. All areas are in focus. The
fusing of the focal planes was performed using the integrated
Python stacking function of ENIMAS.

E. SPECIMEN CLASSIFICATION
Figure 9 displays the confusion matrix with the classification
accuracy for each class individually. The confusion matrix
presents the actual classes in the rows, with the predicted
classes listed in the columns. Accuracy for each class
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FIGURE 8. Single focal planes (i-iv) taken with the standalone
Entomoscope for large-sized specimens (12 mm - 25 mm) and the fused
image (v).

can be derived from the diagonal elements, where correct
classifications align. Values off the diagonal indicate mis-
classifications. The overall accuracy for all classes calculates
to 95.1%. For calculating the precision, recall, and F1
score, macro averaging is performed. The total values for
the classifier are determined by calculating the values for
each class and then averaging them. That way, precision
calculates to 92.43%, the recall is 91.94% and the F1
score results in 91.91%. The CNN network is saved as two
lightweight ONNX files, which are used for execution on
the Entomoscope. These files are executed on the machines
using the CPU, but can also be employed on GPUs for faster
execution. Classifying a specimen on a PC with a GPU takes
less than one second per image. On a modern GPU (NVIDIA
RTX 3090) for example, the classification takes 0.06 s.
Classifying the images on the standalone Entomoscope with
the CPU of the Raspberry Pi takes a bit longer. Results can be
obtained in about five seconds. Therefore, the classification
results can be displayed after imaging and a short processing
time. On a powerful PC with a modern GPU, the results
are almost real-time. The memory consumption is minimal,
as even the Raspberry Pi with 8 GB memory can handle
the classification. For the Entomoscope plug-in, ENIMAS
can be run on any modern PC or notebook. No internet
connection is required to run the classification or ENIMAS.
However, an Internet connection is required to install or
update ENIMAS.

IV. SUMMARY AND DISCUSSION
The Entomoscope is a DIY photomicroscope designed for
imaging and classifying samples of invertebrates obtained
with Malaise traps (or other mass collection methods) and
preserved in ethanol. Thousands of such samples are acquired
every month, as Malaise traps are the most widely used

biomonitoring tool for flying insects [10], [38], [39]. The
control software (ENIMAS), the construction plans, and the
necessary files for 3D printing are available for download at
the Center for Open Science:

• Standalone Entomoscope: https://osf.io/h5qmv
• Plug-in Entomoscope: https://osf.io/3vmrg/

This enables others to build their own Entomoscope or
modify it for their specific requirements. Two different
designs are provided: the standalone Entomoscope and the
plug-in Entomoscope. The first is developed as a standalone
device, which is recommended to users, who have limited
space and use the Entomoscope at different locations because
the use of a Raspberry Pi and an HD touchscreen makes
it a standalone and portable device. The total material cost
of building a standalone Entomoscope depends mainly on
the lens that is used. Without the lens, the system can
be built for approximately $1.100. However, the limited
computing power of the Raspberry Pi can be a bottleneck
during image processing. Merging large numbers of images
takes comparatively long, therefore we recommend that
the stacking of many images should be carried out on a
separate computer using available focus stacking software
such as Helicon Focus (HeliconSoft, Kharkiv, Ukraine) to
batch process the images after they were taken. Another
consideration is that the number of high-quality images
stackable with the Raspberry Pi is limited to five, due to
its limited RAM of 8 GB. In practice, however, five focal
planes are sufficient when the spacing of the images is
adjusted to the size of the insect. More focal planes can
be imaged, but merging must be done on a more powerful
computer. The plug-in version of the Entomoscope requires
an additional Windows computer, but the reduced number of
parts, compared to the standalone version makes it cheaper
to build (approximately $750). ENIMAS is developed for
Windows 10/11. The computer used should have at least a
USB 3.0 port, otherwise, the image transfer will be too slow.
Since, to the best of our knowledge, there are no inexpensive
telecentric zoom lenses available for the desired working
distance, we used telecentric lenses with fixed focal lengths.
For the standalone Entomosocope, therefore, one must first
decide on a size class of insects that will be the focus,
or assemble multiple standalone Entomoscopes for insects
of the different size classes. Here, the plug-in version of the
Entomoscope offers the advantage that it can accommodate
different lenses without the need for hardware adjustments.

The design and evaluation of the device were carried out in
close collaboration with several experienced entomologists.
The feedback provided was and will be in the future imple-
mented in the design of the Entomoscopes. We would like
to emphasize the dynamic nature of the Entomoscope, which
is an open-source initiative. User feedback from various
institutions in Germany and Italy has been instrumental in
the ongoing enhancements of our hardware components.
Furthermore, the functionality of ENIMAS continues to
evolve based on user input.
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FIGURE 9. The confusion matrix for the 14 classes. Since the ‘‘Other’’ class is categorized by the outlier detection, it is not listed here. In the
matrix, every row corresponds to a predicted value for a specific instance, and each column signifies the actual value associated with those
predictions. The values are percentages in the range [0,1], normalized with the actual labels (rows).

Both Versions of the Entomoscope can be used to image
species and families not covered by the trained CNN, so it
is important that new CNNs can be trained by researchers
to create an expert system for biodiversity research for any
desired insect taxon. If the insects are also to be sorted, for
example in preparation for DNA barcoding, we recommend
using a sorting robot such as the DiversityScanner [31].
Fortunately, the images acquired with the Entomoscope are
compatible with those from the Diversity Scanner, allowing
neural networks to be trained that work on both systems.
The available CNN described above provides high (95%)
accuracy, with nearly all classes above 90% accuracy. It is
notable that the class ‘‘Dolichopodidae, a family of Diptera’’
does not perform as well as the other classes. This is due
to the morphological similarity of the phenotype of insects
belonging to different classes in the dataset. An example
is provided in Figure 10 (a)-(c) that combines images for
Dolichopodidae, Acalyptratae, and Calyptratae. Currently,
the trained CNN only covers 14 classes. This already
allows automated pre-sorting of bulk samples. However,
we are currently expanding the number of taxa to enable
classification from family to subfamily to genus level. The

FIGURE 10. Example images of the classes (a) Diptera (Dolichopdidae),
(b) Diptera (Acalyptratae), and (c) Diptera (Calyptratae) illustrating the
highly similar phenotypes of these classes.

Entomoscope is a tool that can be used to image and
classify large numbers of insects quickly. Due to the different
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versions, the simple design, and low cost, Entomoscopes can
significantly accelerate the study of insect biodiversity.
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