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ABSTRACT As a soft computing method, applying fuzzy cognitive map (FCM) to time series prediction has
become a timely issue pursued by numerous researchers. Although many FCM construction methods have
emerged, most of them exhibit obvious limitations in weight learning especially for long-term or complex
time series. Either the weight calculation is computationally expensive, or it cannot achieve gratifying
accuracy. In this paper, a new method for constructing FCM is proposed which extracts concepts from data
by exploiting triangular membership function, and the weights of high-order FCM are subtly obtained by
transforming the learning problem of FCM into a convex optimization problem with constraints. Since then,
FCM with optimized weights is used to represent fuzzy logical relationships of time series and implement
prediction further. Fifteen benchmark time series,such as Soybean Price time series, Yahoo stock time series,
Condition monitoring of hydraulic systems time series etc. are applied to verify prediction performance of
the proposed method. Accordingly, experiment results show that the proposed numerical prediction method
of time series is effective and can acquire better prediction accuracy with lower computation time than other
recent advanced methods. In addition, the influence of parameters of the method is analyzed individually.

INDEX TERMS Fuzzy cognitive map, convex optimization, time series.

I. INTRODUCTION
Fuzzy cognitive map(FCM) as an effective one of many soft
computing approaches, such as genetics algorithm, neural
network, fuzzy logic, fuzzy neural network and evolutionary
algorithm, etc. [1], is a combination of fuzzy logic and
network for knowledge representation and reasoning of
causality. Firstly put forward by Kosko [2] as an extension
of Axelord cognitive maps [3], FCM is a fuzzy weighted
directed graph with nodes representing concepts and edge
reflecting causal relationships between nodes, which has
become a hot topic in the field of time series based
modeling [4], [5], prediction [6], [7], decision-making [8],
[9], and bioinformatics [55] for researchers. In predictive
applications, some methods based on fuzzy time series
have been presented and appreciated in many areas [36],
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[37], [38], [44], [45], such as stock price, university
enrollments, economic growth, etc. Due to the excellent
ability of FCM to capture the dynamic characteristics of a
given system and achieve knowledge reasoning [39], recently
most researchers associated with time series prediction are
committed to the study of FCM weight learning methods.
Papageorgiou reviewed some existing learning algorithms
for FCMs [10] and Orang presents an up-to-date and
comprehensive presentation of the theory and applications
of FCMs [40], [41]. Among them, some algorithms laid on
population perform well on reappearing target sequences,
such as Stach et al. [11], RCGA-based divide-and-conquer
method [12], Liu et al. [13], Zou and Liu [14], etc. Further,
some hybrid algorithms are presented combined the idea
of iteration and population, Such as Papageorgiou and
Groumpos [15], Zhu and Zhang [16], Liu and Zhang [17],
[32]. However, these algorithms all have a latent danger,
which is that they may fall into local optimal solution. The
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reason for this is that the population algorithms utilize both
group and individual optimal information during the iteration
process, and its particle diversity rapidly disappears near
local extremum, which cannot guarantee convergence to the
global optimum, leading to potential limitations in model
accuracy. In recent years, some new algorithms are proposed,
such as quantum fuzzy cognitive maps(QFCM) [46], interval
type-2 fuzzy cognitive maps(IT2FCM) [54] and neuro-fuzzy
cognitive maps(NFCM) [47]. QFCM is presented to provide
the facility for simultaneous static and dynamic analyses.
IT2FCM applied in cognitive controller provides a bridge
between the well-developed cognitive sciences and control
theory. NFCM is mostly suited to model complex nonlinear
technical systems with dynamic internal characteristics.
Although the effectiveness of modeling and forecasting is
constantly improving with the continuous emergence of these
new algorithms, QFCM, IT2FCM and NFCM still have
common problems, which are high computational and time-
consuming, especially in the case that the number of FCM
nodes increases and the corresponding number of weights
increases dramatically.

In order to reduce computational complexity, least
square based LSFCM [36] and partitioning strategies based
FCM [42] are proposed. Similar tomostmethods, FCMnodes
are obtained by clustering time series [36]. In the LSFCM
modeling process, first, fuzzy c-means clustering is employed
to obtain concepts, and then the least squares method is
applied to calculate weights, which is a direct and one-time
solution of matrix equation without repetitious stochastic
searching. However, to obtain the optimal concepts, particle
swarm optimization is required to improve the prediction
accuracy. Similarly, in the strategies based FCM modeling
process, fuzzy c-means clustering is employed. Different
from LSFCM, fuzzy c-means clustering here is used to
divide the time series into multiple subsequences, and FCMs
are constructed in terms of these subsequences respectively.
Finally, the FCM models are merged by fuzzy rules.

Moreover, learning FCM weights require historical time
series data, which refers to fuzzy time series transformed
from classical ones. Comparedwith classical ones, fuzzy time
series possess the characteristic of linguistic values rather
than numeric values, and are capable of handling ambiguities.
Fuzzy time series also inherit the merit of classical ones,
which can also be understood as being collected at fixed
time intervals and independent of time. Therefore, fuzzy
time series have some inherent, implicated and meaningful
essence for prediction. Originally, fuzzy time series are
proposed by Song and Chissom [18], [19], [20] engaging
the formalisms of fuzzy set theory [21], which has been
widely applied and appreciated in fields of enrollments [22],
[23], [24], stock index [23], [24], electricity load [23], [24]
etc. For time series prediction, Song and chissom divide it
into four steps: (1) define the domain U and divide it into
several intervals; (2) fuzzify the classical time series; (3)
establish the fuzzy relation; (4)predict and defuzzify. Except
for (3), (2) and (4) have a significant impact on the prediction

accuracy as well. At present, the most widely used fuzzy
and defuzzy method is c-means clustering algorithm [18],
[25], [26], [27], [28], [29]. By optimizing the objective
function, the memberships of each sample to all cluster
centers are obtained. As an unsupervised method of deriving
membership, c-means clustering has good flexibility [32].
However it also has an obvious disadvantage, that is, when it
is used to fuzzify historical data, deviation is introduced. The
deviation is also reflected in the process of defuzzification.
As a result, deviation from historical data to fuzzy time series
leads to inaccurate historical data restored. To some extent,
the accuracy of prediction is degraded.

The aforementioned methods have achieved good results
in time series prediction, yet they have three conspicuous
problems. The first one is that during reasoning, the value
of each FCM node at moment t is only related to the value
at moment t − 1, which is unreasonable. In reality, the value
at moment t is related not only to moment t − 1 but also to
earlier moments. The second one is that during the weight
learning processes, most of the methods involve population
algorithms, potential local optimization problems may have
adverse effects on FCM prediction performance. The third
one is that algorithms based on neural networks, are generally
time-consuming and labor-intensive. Therefore, In order to
solve the problems found in the aforementioned methods, i.e.
insufficient consideration of historical information, limited
reasoning ability and performance accuracy, as well as
large computational load and long computation time, we
extend the 1-order FCM to high-order FCM by modifying
the iteration formula to further enhance the representation
ability of FCM. Further, we introduce convex optimization
to solve the weights of the high-order FCM, which not only
enhances the reasoning capacity and modeling precision by
obtaining global optimal weight solution, but also reduces
computational complexity.

In comparison with aforementioned methods of learning
FCMs, the proposed method exhibits several appealing
advantages.

1) A high order FCM was proposed, which not only
considers the influence of the current moment on the concept
values, but also takes into account the influence of previous
moments on the concept values. It significantly improves
the representation and inference ability of the FCM, and
promotes the accuracy of FCM based time series prediction
methods.

2) The proposed high order FCM weight learning
algorithm is fast and effective because it transforms the
weight learning problem of FCM into a constrained convex
optimization problem, which can be solved by applying
gradient methods and has polynomial time complexity.

3) The proposed method has a certain degree of inter-
pretability. It converts time series into semantic time series
by using a series of triangular fuzzy sets with semantic
descriptions, and uses FCM to achieve semantic level
inference and prediction. Therefore, the proposed method has
a certain degree of interpretability.
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FIGURE 1. Fuzzy cognitive map model and its relationship matrix for
public city health issues.

The remainder of this paper is organized as follows: In
Section II, the preliminaries of FCMs from 1-order to high
order are introduced. Subsequently, the detailed proposed
method is provided in Section III. In section IV, fifteen
benchmark time series data sets are used to validate feasibility
and effectiveness of the proposed method. Finally, Section V
concludes this paper.

II. FCMs FROM 1-ORDER TO HIGH ORDER
FCM is an effective and efficient tool for human knowledge
representing and reasoning. Furthermore, FCM is very suit-
able for representing the fuzzy causal relationship between
concepts, and the relationship between concepts has the
internal characteristics of universality. Meanwhile, the more
fuzzy the representation of knowledge, the easier it is to get
knowledge from it. FCM model can simulate and analyze
the behavior of real system, including periodic oscillation
and other complex phenomena. Moreover, it can realize
the matrix reasoning and make the reasoning process more
concise.

FCM spreads out its appearance by graphical diagram with
fuzzy causal concepts and mutual causal relationships among
them. The interactions between concepts are directional,
and the degrees of interactions are expressed by weights.
FIGURE.1(a) shows an example of 1-order FCM model
for public city health issues [30]. Nodes of FCM stand for
concepts of the mimic dynamic system, such as variables,
events, goals, etc. to be investigated. Simultaneously, edges
of FCM show the strength of interaction between nodes in
three type weights, namely positive, negative, and neutral.
Quantitatively activation values of nodes are positioned in
[0, 1], and the numeric values of weights are quantified into
the interval of [−1, +1]. Symbolically, values of nodes are
denoted by Ai(i = 0, 1, . . . , n), where n is the number of
nodes. In FIGURE.1, n is 7. Similarly, values of weights are
denoted by wij, which means the direction and strength of

connection from node Aj to Ai. When wij > 0 like from A4 to
A7, an increase of A4 leads to an increase of A7 by extent
0.9, oppositely a decrease of A4 leads to a decrease of A7.
Similarly, when wij < 0 like from A6 to A1, an increase
of A6 leads to a decrease of A1 by extent 0.3, oppositely a
decrease of A6 leads to an increase of A1. Particularly when
wij = 0, it corresponds to the removed edges between the
nodes, which means no relationship from the start node to the
target one. In some special cases, the start node is the same
as the target node. In addition, the fuzzy causality between
concepts in FCMcan be expressed not only by directed graph,
but also byweighted adjacencymatrix referred to relationship
matrix often, as shown in FIGURE.1(b).

Alternatively, the dynamics of FCM can be described in
mathematical form as follows:

µi(t + 1) = f (
n∑
j=1

(wijµj(t))) (1)

where µi(t + 1) is the activation level of ith node at
moment t + 1, and µj(t) is the activation level of jth node
at moment t , wij ∈ [−1, 1] is the weight from jth node
to ith node, i.e., causality from Aj to Ai, n is the number
of nodes and f is a nonlinear continuous non-decreasing
transformation function, which has several options, such as
bivalent function, trivalent function and sigmoid function, etc.
Since both the sigmoid function itself and its inverse function
are monotonically increasing, it is commonly chosen to be
the activation function in FCMmodeling and predicting. The
expression of sigmoid function is shown in Eq.2.

f (x) =
1

1+ e−λx
(2)

where λ is steepness parameter to provide some additional
augmentation of the concept value. The larger the value of this
parameter, the steeper the shape of the activation function,
and the more sensitive it is to the value of x.
In order to improve the approximation ability of FCM to

describe dynamic system, for t + 1 moment, the value of
each concept not only depends on the values of concepts
at the immediate previous moment t , but also has a certain
relationship with the values before t moment. The closer to
the current moment is, the greater the impact is. In view of this
consideration, it is necessary to increase the order of FCM.
Assuming the order of FCM is q, there are q corresponding
weights, namely the weight matrix w1ij at the current time
t , the weight matrix w2ij at the previous time t − 1, and so
on, until the weight matrix wqij at time t − q + 1. Here,
for all w1ij,w2ij,. . . ,wqij are within the interval [−1,1], where
i = 1, 2, . . . , n and j = 1, 2, . . . , n.

µi(t + 1) = f (
n∑
j=1

(w1ijµj(t))+
n∑
j=1

(w2ijµj(t − 1))

+ · · · +

n∑
j=1

(wqijµj(t − q+ 1))) (3)
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Where w1ij ∈ [−1,+1], w2ij ∈ [−1,+1], . . . , wqij ∈
[−1,+1] are the weights from jth node to ith node at t , t− 1,
. . . , t − q + 1 moment respectively. µj(t), µj(t − 1), . . . ,
µj(t−q+1) are the activation level for jth node at t , t−1, . . . ,
t − q + 1 moment respectively. Once FCM is implemented,
it starts with an initial state to perform successive iteration
according to Eq.3.

III. PROPOSED METHOD
The proposed novel method of fuzzy time series predicting is
detailed in this section. The highlight of this method lies not
only in the selection of second-order FCM predicting tools
and error free triangular membership functions, but also in
the fast, simple and effective way of obtaining FCM weights.
Suppose the original time series X = [x(1), x(2), . . . , x(m)]T

which includes data of m time points, the block diagram of
the proposed predicting method is illustrated in FIGURE.2,
colorblackwhich includes three function modules: FCM
representation of time series module, Solving the weights of
high-order FCM module and Prediction and Defuzzification
module. In what follows, function of each module in the
proposed method is detailed respectively.

A. FCM REPRESENTATION OF TIME SERIES
In this module, it is mainly divided into two parts of
functions, namely Normalization and Triangular function
fuzzification. Normalization is to normalize the original time
series, which is a typical way to standardize the data. It can
unify the statistical distribution of samples and limit the
preprocessed data to a certain range, such as 0 to 1. It can
not only effectively eliminate the adverse effects caused
by singular data, but also solve the comparability between
data indicated. Consequently, normalization makes the data
more suitable for comprehensive comparative evaluation. All
observations X = [x(1), x(2), . . . , x(m)] are converted to
Z = [z(1), z(2), . . . , z(m)] to obtain normalized time series
according to Eq.(4), where z(i) is the normalized value,
Min is the smallest value and Max is the biggest value of
the original time series X . x(i) is the individual data in
X = x(1), . . . , x(i− 1), x(i), x(i+ 1), . . . , x(m), and m is
the number of data. Normalization is an effective way to
simplify calculation, that is, the expression with dimension
is transformed into dimensionless expression and becomes
pure quantity. In particular, it can be used for comparison and
weighting of indicators of different units or scales.

z(i) = (x(i)−Min)/(Max −Min) i = 1, 2, . . . ,m. (4)

Fuzzification refers to the process of transforming a series
of input values to universe of discourse through a certain
proportion and describing the input values with semantic
variables. Through membership function, the membership
relative to each semantic value is calculated, which is
regarded as fuzzy time series. Here, the most common
but simple and effective triangular membership function is
considered to generate fuzzy time series data in this paper.

The triangle membership functions are defined as follows:

µj(z)

=


(z− δj−1)/(δj − δj−1), z ∈ [δj−1, δj],
(δj+1−z)/(δj+1−δj), z∈ [δj, δj+1], j=1, 2, . . . , n−1.
0, otherconditions.

(5)

Where δ is the equidistant interval in the universe of
discourse assuming [0,1] which is normalized from original
data, δi is the ith interval. n is the number of intervals and z is
the numerical value before fuzzification.

Fuzzification makes it possible to classify the normalized
real data into membership vector. Assuming 6 fuzzy sets are
defined, each interval of triangular membership function is a
fuzzy set assigned a semantic, such as lower, low, medium,
high, higher, highest etc. FIGURE.3 shows typical trian-
gular membership functions with 6 intervals for generating
membership vectors, which forms every step of the fuzzy
time series. Each data after normalized belongs to every
functions with different degrees. As an illustration, value
z0 has an membership vector (0, 0, 0.4, 0.6, 0, 0), which
means it is lower, low, medium, high, higher and highest with
the possibility of 0, 0, 0.4, 0.6, 0, 0 respectively. Meanwhile,
the sum of the possibilities equals to 1 definitely. The closer
the degree of membership µj(z0) is to 1, the higher the degree
of z0 belonging to high, and conversely, the closer µj(z0)
is to 0, the lower the degree of z0 belonging to lower, low,
higher or highest. It is more reasonable than classical data
set theory to describe the fuzziness problem by using the
membership functionµj(z) ∈ [0, 1] to represent the degree of
z belonging to lower, low, medium, high, higher or highest.
For simplicity, when dividing the domain of a triangular
membership function, the interval is set to be equal. Then the
interval, namely δ, between δj and δj−1, (j = 1, 2, . . . , n− 1),
is 1/(n − 1). Further, each z(i)(i = 1, 2, . . . ,m) can be
transformed into their membership expressed as µ(i)(i =
1, 2, . . . ,m) and each µ(i) = [µ1(i), µ2(i), . . . , µn(i)] is
calculated according to Eq.(5) to express the degree that the
normalized data belong to the semantics. In other words, each
µj(i) can also be regarded as the activation level of the jth
concept of FCM for z(i). So far the fuzzy time series are
generated, which consists m fuzzy subsequences µ(i)(i =
1, 2, . . . ,m) represented in form of following:

A =


µ(1)
µ(2)

...

µ(m)

 =


µ1(1) µ2(1) · · · µn(1)
µ1(2) µ2(2) · · · µn(2)

...
...

...
...

µ1(m) µ2(m) · · · µn(m)

 =

V1
V2
...

Vn


T

(6)

where each column of A, say V1,V2, . . . ,Vn, indicates that
the degree to which time series Z belongs to each semantics
as time passing by. Assuming n is 6, FCM structure shown in
Figure.4 is formed. Vi(i = 1, 2, . . . , 6) represent the semantic
value of each concept as time passing by.
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FIGURE 2. Diagram of the proposed predicting method.

FIGURE 3. Typical triangular membership function.

FIGURE 4. A FCM structure consisting of 6 concepts.

B. SOLVING THE WEIGHTS OF HIGH-ORDER FCM
In this module, convex optimization with constraints is
introduced to find an appropriate weight matrixs which can
accurately complete the iterative process when the initial
value is given. For each additional order, the number of
weight values to be calculated will be doubled. By compre-
hensive consideration, the 2-order FCM is employed tomimic
the system characteristics here, which can facilitate a clearer
display of the weight solving process. Further, it is assumed
that the concept values at t and t−1 moment have almost the
same effect on time t + 1.
Because the FCM used in this algorithm is 2-ordered, the

weight includes two parts: one is the weight matrix w1 for
the current time t , the other is the weight matrix w2 for the
previous time t−1. Here, weight matrixw1 is [w1ij] i = 1, 2, . . . , n

j = 1, 2, . . . , n
,

and w2 is [w2ij] i = 1, 2, . . . , n
j = 1, 2, . . . , n

. Certainly both w1ij and w2ij are in

[−1, 1] for all i and j, and n is the concept number.
For the fuzzy time series A, there are n variables, c different

initial state vectors µs(0) = [µs
1(0), µ

s
2(0), . . . , µ

s
n(0)] for

time 0 and µs(1) = [µs
1(1), µ

s
2(1), . . . , µ

s
n(1)] for time 1,

where s is 1, 2, . . . , c, can be considered to stimulate the FCM
used in our paper within limited step k . Accordingly FCM
produces c response sequenceswith regard to each initial state
vector. Moreover, the generation of corresponding sequence
is carried out step by step and lasts for k steps. In the following
matrix Eq.7, µ1(0), µ2(0), . . . , µc(0) are c initial vectors for
time 0, and µ1(1), µ2(1), . . . , µc(1) are c initial vectors for
time 1, µî(2), . . . , µî(k), i = 2, . . . , c, are corresponding
response vectors for initial vector µi(0), i = 1, . . . , c and
µi(1), i = 1, . . . , c, that is d̂i inD displayed region by region.

Here, as the popular activation function of neural network,
the monotonically increasing sigmoid shown in Eq.2 fits in
with FCM. Sigmoid maps the input value between 0 and
1. The number of FCM nodes is the same as the number
of semantic variables, that is, the interval number of the
triangular membership function. Furthermore, the response
vector of ith node (i = 1, 2, . . . , n) at time t + 1 can be
produced by Eq.8.

D =



µ1(0)
µ1(1)

µ1̂(2)
...

µ1̂(k)
µ2(0)
µ2(1)

µ2̂(2)
...

µ2̂(k)
...

µc(0)
µc(1)
µĉ(2)

...
µĉ(k)



=



µ1
1(0) µ1

2(0) ··· µ1
n(0)

µ1
1(1) µ1

2(1) ··· µ1
n(1)

µ1̂
1(2) µ1̂

2(2) ··· µ1̂
n(2)

...
...

...
...

µ1̂
1(k) µ1̂

2(k) ··· µ1̂
n(k)

µ2
1(0) µ2

2(0) ··· µ2
n(0)

µ2
1(1) µ2

2(1) ··· µ2
n(1)

µ2̂
1(2) µ2̂

2(2) ··· µ2̂
n(2)

...
...

...
...

µ2̂
1(k) µ2̂

2(k) ··· µ2̂
n(k)

...
...

...
...

µc1(0) µc2(0) ··· µcn(0)
µc1(1) µc2(1) ··· µcn(1)

µĉ1(2) µĉ2(2) ··· µĉn(2)

...
...

...
...

µĉ1(k) µĉ2(k) ··· µĉn(k)



=


d̂1
d̂2
...
d̂m



(7)

µŝ
i (t + 1) =

1

1+ e
−λ(

n∑
j=1

w1ijµ
s
j (t)+

n∑
j=1

w2ijµ
s
j (t−1))

(8)
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For all i,j and s, there is a consistent one-to-one match
between µŝ

i (t + 1) and µs
i (t + 1) which is the actual value

of the fuzzy time series at time t + 1 fed by initial vector
µs
i (0). In order to measure the accuracy of FCM, the degree

of difference between µŝ
i (t + 1) and µs

i (t + 1) is usually
considered. In order to further clarify the objective of system
optimization, the commonly used minimum error function is
introduced into the system as shown in Eq.9.

argmin
w
J1 =

1

cn(k − 1)
c∑

s=1

k∑
t=1

n∑
i=1

(µs
i (t)− µŝ

i (t))
2

(9)

where c is the overall number of initial state vectors, n
is the number of nodes in FCM, k is the length of the
response sequences, and t represents the tth step. Assuming
the prediction error is 0 in the best case, that is, µŝ

i (t) = µs
i (t)

for all i(i = 1, 2, . . . , n), then the value of J1 will reach the
minimum value of 0. To facilitate follow-up, the appearance
of formula Eq.8 is transformed to Eq.10.

λ(
c∑
j=1

w1ijµ
s
j (t − 1)+

c∑
j=1

w2ijµ
s
j (t−2))= −ln(

1

µŝ
i (t)
− 1)

(10)

Since FCM starts to iterate k steps from an initial vector,
the following k equations can be obtained as shown in Eq.11,
according to Eq.10.

λ(
c∑
j=1

w1ijµ
s
j (1)+

c∑
j=1

w2ijµ
s
j (0))=− ln(

1

µŝ
i (2)
− 1)

λ(
c∑
j=1

w1ijµ
s
j (2)+

c∑
j=1

w2ijµ
s
j (1))=− ln(

1

µŝ
i (3)
− 1)

...

λ(
c∑
j=1

w1ijµ
s
j (k − 1)+

c∑
j=1

w2ijµ
s
j (k − 2))=− ln(

1

µŝ
i (k)
− 1)

(11)

Let −ln
(

1
µŝi (t)
− 1

)
in Eq.11 be each element in matrix

Yi for t = 1, 2, · · · , k; s = 1, 2, · · · , c, let µs
j (t − 1) be each

element in matrixH1,µs
j (t−2) be each element in matrixH2.

Similarly, let w1ij be each element in matrix w1i, and w2ij be
each element in matrix w2i. Thus, we rewrite the above linear
equations in a matrix format as shown in Eq.12.

λ(H1w1i + H2w2i) = Yi (12)

where both H1 and H2 are c(k − 1)-by-n matrix, w1i and
w2i are n-by-1 matrix, and Yi is an c(k − 1)-by-1 matrix.
The vector wT1i = [w1i1,w1i2, · · · ,w1in] and wT2i =
[w2i1,w2i2, · · · ,w2in] are the ith row of the weight matrix
w1 and w2 of the FCM to be learned individually. As a
consequence, w1i and w2i can be determined by solving the
constrained system of linear equations in (12).

Moreover, in consideration of the existence of errors, the
above constrained linear equations usually do not have exact
solutions. Therefore, going for an approximate solution that
satisfies the constraints and minimizes errors ∥ λ(H1w1i +

H2w2i) − Yi ∥2 is a viable way to solve this problem. As a
result, solving Eq.12 is converted to constrained least squares
problem in Eq.13.

min : ∥λ(H1w1i +H2w2i)− Yi∥2

s.t. ∥w1i∥∞ ≤ 1, ∥w2i∥∞ ≤ 1, (13)

where ∥ · ∥2 is the 2-norm, ∥ · ∥∞ is the infinite norm, and
λ > 0 is the steepness parameter of the sigmoid function.
The constraint ∥w1i∥∞ ≤ 1 and ∥w2i∥∞ ≤ 1 ensure that
the solved weight vector w1i and w2i fall in the interval
[−1, 1]. Thus, the problem of solving linear equations with
constraints is transformed into an optimization problem.
If there is a combination of w1i and w2i that satisfies the
inequality constraints ∥w1i∥∞ ≤ 1 and ∥w2i∥∞ ≤ 1,
then w1i and w2i are feasible solutions for the optimization
problem. There may be multiple feasible solutions, so the
feasible solution that minimizes ∥λ(H1w1i+H2w2i)−Yi∥2 is
the optimal solution of the original linear equation system
in Eq.12, where w1i and w2i can minimize the modeling
error. Furthermore, considering improving the generalization
ability of the model, i.e. regularization, and considering
that sparse matrices of w1i and w2i of large-scale FCMs
also have significant advantages in their computational
efficiency, the L1 norm corresponding to the penalty term
∥w1i∥1 and ∥w2i∥1 shown in Eq.14 are introduced to Eq.13.
Incidentally, the sparsity of w1i and w2i increases as β

increases.

min :∥ λ(H1w1i + H2w2i)− Yi ∥2 +β ∥ w1i ∥1 +β ∥ w2i ∥1

s.t. ∥ w1i ∥∞≤ 1, ∥ w2i ∥∞≤ 1. (14)

In (14), a classical convex optimization problem emerges
apparently. So interior-point methods [33] such as the
barrier function method, the primal-dual method, or their
many enhanced versions [34], [35] can be invoked rea-
sonably. The basic idea of the interior-point method is
to continuously approach the optimal solution of weights
along the search direction from an initial point. In each
iteration, it solves Eq.14 to determine the search direction
for the next iteration and updates the current iteration
point.Benefiting from a fundamental property of convex
optimization problems, any local optimal solution is also a
global optimal solution. Therefore, through the interior-point
method, it can help FCM find the globally optimal weights
and make the system more robust, suitable for handling
large-scale problems. When λ and β are hyper-parameters.
Accordingly, the globally optimal solution of w1i and w2i are
obtained.

So far, the FCM dynamic model has been established, and
then, in part fuzzy time series predicting, the prediction of
fuzzy time series can be completed.
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Algorithm 1 Learning the Weight Matrix of Second-Ordered
FCM by Way of Least Square Method.
Require:
1: TFtype: the type of activation function for FCM to be

learned;
2: λ: the value of parameter of activation function corre-

sponding to TFtypes, its value is larger than 0;
3: β: a regularization parameter, its value is larger than 0;
4: x1, x2, · · · , xm: m actual time series data used to learn

FCM;
Ensure:
5: w1opt ,w2opt : both w1opt and w2opt are well-learned n-

by-n weight matrix for FCM with n concepts,w1opt for
current time t , w2opt for previous time t − 1

6: H2 ←
[
d1[0 : k − 2, :]; d2[0 : k − 2, :]; · · · ; dm[0 :

k − 2, :]
]
; ▷ H2 includes the activation vectors of FCM

concepts for previous time t − 1;
7: H1 ←

[
d1[1 : k − 1, :]; d2[1 : k − 1, :]; · · · ; dm[1 :

k − 1, :]
]
; ▷ H1 includes the activation vectors of FCM

concepts for current time t;
8: Y ←

[
d1[2 : k, :]; d2[2 : k, :]; · · · ; dm[2 : k, :]

]
; ▷ Y

includes the activation vectors of FCM concepts for the
next time t + 1; All H2,H1andY are c(k − 1) − by − n
matrices, c is the number of different initial vectors and
k is simulate steps.

9: i← 0;
10: while i ≤ n do
11: Yi←−ln

(
1

Y [:,i] − 1
)
;

12: create variables w1i and w2i; ▷ w1i and w2i both
n-by-1 matrix

13: variable← w1i, variable← w2i;

14: objection← min{∥ λ∗ (H1 ∗w1i+H2 ∗w2i)−Yi ∥2
+ ∥ β ∗ wi ∥1};

15: constraint ← {∥ w1i ∥∞≤ 1, ∥ w2i ∥∞≤ 1} ;
16: problem← (variable, objection, constraint);
17: w1i,w2i,← Solver(problem); ▷

Solver(·) indicates an interior-point method based the
convex optimization solver.

18: w1opt [i, :]← wT1i,w2opt [i, :]← wT2i;
19: i← i+ 1;
20: end while
21: end while

C. PREDICTION AND DEFUZZIFICATION
Utilizing the methods in A and B, FCM model is derived.
After that, we utilize the constructed FCM model to perform
prediction according to Eq.15 in the context of given
initial values. in Eq.15, µj(t) and µj(t − 1) are the jth
membership corresponding to the jth concept for time t
and t − 1 respectively. The predicted membership vectors
are represented byµ̂(i) = [µ̂1(i), µ̂2(i), . . . , µ̂n(i)],(i =
2, . . . , k), where k is the prediction horizon. Contrary to
the process of fuzzification, the predicted fuzzy membership
µ̂(i) = [µ̂1(i), µ̂2(i), . . . , µ̂n(i)], (i = 2, . . . , k) is trans-

formed to traditional time series data Ẑ = [ẑ(2), . . . , ẑ(k)]
before denormalization according to Eq.16. Further, to restore
the original time series data, it is necessary to denormalize
[ẑ(2), . . . , ẑ(k)] by Eq.17. Thus, the results of predicted time
series X̂ = [x̂(2), . . . , x̂(k)] are obtained to prepare for
subsequent accuracy analysis. Then, the ultimate function
of accuracy calculation referring to RMSE can be achieved
smoothly. Here, it is worth mentioning that the triangular
membership function used in this paper has the feature
of the overlap level equal to 1/2, thus fuzzification and
defuzzification is error-free [43].

µ̂i(t + 1) =
1

1+ e
−λ(

n∑
j=1

w1ijµj(t)+
n∑
j=1

w2ijµj(t−1))
(15)

ẑ(i) = δ(j+ µj+1(i)) µj(i) > 0, µj+1(i) > 0,

i = 1, 2, . . . ,m j = 1, 2, . . . , n− 1 (16)

x̂(i) = ẑ(i)(Max −Min)+Min i = 1, 2, . . . ,m.

(17)

The proposed method for learning weights of second-
ordered FCM is summarized in Algorithm 1.

IV. EXPERIMENTAL STUDY
In this section, we implement 10 time series data sets
shown in Table 1 to evaluate the effectiveness of the
proposed method in this paper in two ways. One is to
reveal its performance, the other is to compare with other
classical approaches. In all experiments, as a feasible way
to solve convex optimization problems, we draw support
from ‘‘ECOS’’ which is presented in [34] and integrated
in python package. Also the number of iteration steps
is set to 100 maximally, so convergence is guaranteed.
To achieve comparison with other methods, LSTM, TLSP-
DE, QFCM, NFCM, Informer and IT2FCM [48], [49], [50],
[54] algorithm are invoked, which are representative methods
recently used in FCMweight learning. In addition, TLSP-DE
adopts the same structure as the 2-order FCM in our proposed
method, yet the difference is that the weight learning is
implemented by differential evolution.All experiments are
carried on the same computer of HP ProBook 440 G7 with
CPU of Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz
2.30GHz and RAM of 8.00GB. All methods use the same
data set for experiments. For each data set, 80 percent of the
data is applied for training, and the remaining is applied to
predict.

Accordingly, the entire experiment process includes four
phases for all actual time series detailed as follows.

Step 1. Prepare the training subset of FCM. Transform
original time series xi(i = 1, 2, . . . ,m) into fuzzy
time series µij(i = 1, 2, . . . ,m; j = 1, 2, . . . , n)
through normalization and fuzzification according to
Eq.5 and Eq.4 respectively.

Step 2. Training FCM. Carry out convex optimization
method for learning weights w1ij and w2ij of FCM
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based on the training subset. So far the FCM model
is established.

Step 3. Implementing prediction on the well-learned FCM
according to Eq.10. Carrying out activation level
calculating by iteration, and then defuzzify and
denormalizing the result sequentially according to
Eq.6-7. to reconstruct numeric value.

Step 4. Validate performance. Calculating accuracy between
the data generated by FCM and the actual observa-
tions to validate the performance of the well-learned
FCM. Therefore, the effectiveness of the algorithm
can be evaluated further.

A. 15 PUBLICLY AVAILABLE DATA SETS
15 data sets applied in this experiment include the soy-
bean price time series, the yahoo stock time series, the
sunspot time series, the Jena Climate(Tpot) time series,
the Jena Climate(rho) time series, the Power consumption
of Tetouan city(humidity) time series, Appliances energy
prediction(Press) time series, Appliances energy predic-
tion(power) time series, Image Recognition Task Execution
Times in Mobile Edge Computing(MacPro1) time series
and Condition monitoring of hydraulic systems(Cooling
efficiency) time series, Appliances energy prediction(Press)
long time series, Appliances energy prediction(power) long
time series, the Power consumption of Tetouan city(humidity)
long time series, the Jena Climate(rho) long time series
and the Jena Climate(Tpot) long time series. The specific
information for each data set is shown in Table 1. Considering
the regularity and irregularity of data changes in time series,
various types of time series are selected in the experiment,
including trending time series, seasonal time series, stochas-
tic time series, and comprehensive time series. Among them,
trending time series present a relatively slow and long-term
continuous upward, downward, or stable movement trend,
but the magnitude of the change may not be equal like
the Jena Climate(Tpot) time series, the Jena Climate(rho)
time series and Appliances energy prediction(Press) time
series. The regular pattern of seasonal time series with
peaks and troughs that alternate with natural seasons or
certain cycles like the sunspot time series, Appliances energy
prediction(power) time series, the Jena Climate(rho) long
time series and the Jena Climate(Tpot) long time series. The
stochastic time series vary individually and exhibit statistical
regularity as a whole like the yahoo stock time series, the
Power consumption of Tetouan city(humidity) time series,
the Image Recognition Task Execution Times inMobile Edge
Computing(MacPro1) time series, the Appliances energy
prediction(Press) long time series, the Appliances energy pre-
diction(power) long time series and the Power consumption
of Tetouan city(humidity) long time series. A comprehensive
time series is the superposition or combination of various
changes like the soybean price time series and Condition
monitoring of hydraulic systems(Cooling efficiency) time
series.The trend for each dataset is shown in Figure.5.
Data set soybean price records the prices of soybean in

guangdong from January 4, 2010 to June 6, 2014. Data set
yahoo stock records the finance yahoo stock data(high point)
from September 28, 2010 to September 25, 2015. Data set
sunspots records 13-month smoothed monthly total sunspot
number. Data set jena climate from Max Planck Institute for
Biogeochemistry includes 14 characteristic indicators such as
temperature and gas density we used in experiments. Tetouan
city from UCI is power consumption of Tetouan city data set
which is related to power consumption, humidity of Tetouan
city. Here, humidity data is selected as training and predicting
time series. Appliances energy fromUCI is appliances energy
prediction data set which includes several characteristic
indicators such as pressure and power consumption in a low
energy building. Image recognition times from UCI is image
recognition task execution times in mobile edge computing
data set, which records task execution times for four edge
servers submitted by edge node. Here, task execution times
of MacBookPro1 is selected as training and predicting time
series. Hydraulic systems cooling efficiency from UCI is
condition monitoring of hydraulic systems data set, in which
four fault types are superimposed with several severity grades
impeding selective quantification. Here, cooling efficiency is
selected as training and predicting time series.

B. PERFORMANCE METRICS
To evaluate the performance of well-learned FCMs, several
performance metrics such as In-sample error(J1),Out-of-
sample error(J2),Model error(J3),Mean of sensitivity and
specificity(J4) etc. are usually used. In fact, J3 and J4 cannot
be calculated, because in real world problems the weight
matrix is unknown. Compared with J1, J2 is more suitable
for evaluating the generalization ability of FCM model.
it measures the difference between the predicted data and
the actual ones. The smaller the value of J2, the stronger
the generalization ability of the well-learned FCM model by
cross validation is, which is exactly what we expect. Com-
mon performance metrics J2 mainly include: MAE (Mean
Absolute Error), MAPE (Mean Absolute Percentage Error),
MSE (Mean Square Error) and RMSE (Root Mean Square
Error). All MAE, MAPE, MSE and RMSE can be used
to measure the error between predicted and true data [47],
[48], [49], [50]. MAE is the absolute difference with a
linear relationship between loss and error, and is the simplest
regressionmeasure. ButMAE uses a modulus function which
is not differentiable at all points, so it has certain limitations as
a loss function. MAPE refers to the mean absolute percentage
error, which is a relative measure sensitive to errors and
suitable for problems with large dimensional differences. But
when an actual data is 0, MAPE cannot be calculated. MSE
is mean square error, so the relationship between MSE and
error is square. Due to the square operation on the difference
value, larger error values have a greater impact on the fit,
which helps to more sensitively capture the prediction error
of the model. Moreover, the square function is differentiable
at all points, so it can be used as a loss function. But the unit
of MSE is the square of the actual data. RMSE is the square
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TABLE 1. Brief introduction to 15 data sets.

root of MSE, which not only has the advantages of MSE, but
also solves the unit problem of MSE, i.e. its unit will be the
same as the actual data. In view of this, RMSE shown in Eq.18
is chosen to evaluate the accuracy of FCMs in predicting out-
of-sample values as used in recent literature on evaluating the
performance of fuzzy cognitive maps [51], [52], [53]. FCM
with lower RMSE for the out-of-sample data will have lower
prediction error. Further, it will have the expectation of better
predictive power in the future. Therefore, in this paper we
chooses RMSE as the most appropriate performance metric
of J2.

RMSE =

√√√√1
k

k∑
t=1

(xt − x̂t ) (18)

where k is the predicting steps, namely prediction horizon,
xt and x̂t stand for the actual observation value and predicted
ones at time t , respectively.

C. DEMONSTRATION OF THE PROPOSED METHOD
The soybean price date set is first used to validate the
performance of the well-learned FCM as the demonstration.
In accordance with the performance, the feasibility and
effectiveness of the proposed method in this paper present
evidently.

Specially taking n = 20, λ = 3.0, β = 0.0004 as an
example, the process of implementing the method proposed
is described in detail as follows.

1) FUZZIFICATION
In this demonstration example, 20 fuzzy sets are divided.
Based on 20 fuzzy sets, the original time series is fuzzified.
The first 80% of the soybean price time series are used as
training set, and the remaining 20% are used as test set to
validate the prediction accuracy of FCM constructed by the
proposed method.
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FIGURE 5. Trends of values in 15 publicly available data sets.

First of all, the concepts of soybean price data set
are extracted in the form of numerical value. Where the
triangular function is applied to transform the original
numeric time series into the fuzzy time series with semantic
prototypes without loss of accuracy. Each fuzzy set also
known as concept can be exhibited in the form of a
certain fuzzy semantics. Here, because the number of
FCM concepts is 20, the corresponding fuzzy semantics
is to divide the price into 20 levels from low to high as
below. Simultaneously the fuzzy time series are expressed
by membership matrix which voices the fuzzy relation-
ships between each data sample and concepts of FCM
individually.

• the price of soybean is lowest, where locate around 6908;
• the price of soybean is second lowest, where locate
around 7115;

•

...

• the price of soybean is medium, where locate around
8775;

•

...

• the price of soybean is second highest, where locate
around 10642;

• the price of soybean is highest, where locate around
10850;

After normalization and fuzzification according to Eq.4
and Eq.5 respectively, original time series shown in Fig-
ure.5(a) are transformed to fuzzy time series consisting of
20 fuzzy sets. In order to further demonstrate the appearance
of fuzzy time series, Figure.6 shows fuzzy values of 4 fuzzy
sets randomly.

2) SOLVING FCM WEIGHTS
After obtaining the fuzzy time series, it is urgent
to adopt appropriate methods to obtain FCM weights.
Here, the interior-point method is borrowed from con-
vex optimization to learn parameters w1 and w2 of
second-ordered FCM according to the fuzzy time series
data µi(i = 1, 2, . . . , 20). The parameter w1 and w2 are
shown in Figure.7. Incidentally, the reason for selecting
a 20 node FCM here is to fully display the weight
matrix.

3) PREDICTION PERFORMANCE
So far, 2-order FCM modeling has been implemented and
then prediction can be accomplished for the latter 20%
test data according to Eq.15. Subsequently, defuzzifying the
predicted µ̂)(i), (i = 1, . . . , 271) to ẑ(i), (i = 1, . . . , 271)
by Eq.16, and denormalizing ẑ(i) to numeric value x̂(i), (i =
1, . . . , 271) by Eq.17. Finally, RMSE 24.131 is calculated to
validate the prediction performance of the method proposed
in this paper. FIGURE.8 shows the original soybean price
time series and the predicted results at n = 20, λ = 3.0 and
β = 0.0004.
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FIGURE 6. Fuzzy values of 4 fuzzy sets.

FIGURE 7. w1 and w2 for 2-order FCM with 20 concepts.

D. IMPACT OF VARIOUS PARAMETERS ON PREDICTION
PERFORMANCE
Based on the experiment process described above, the pre-
diction performance is verified through many experiments,
and the influence of different parameters on the FCM
prediction results is shown as well. In detail, the whole
dataset with 1351 samples is divided into two parts. The first
1080 samples are used as the training set, and the remaining
271 samples are performed as test set. Table 2 reports the
experimental results measured by RMSE in condition of
different parameters of FCM concept number n,steepness
parameterλ and regularization parameterβ.Where the values
of n are in the range [20,200], the values of λ are in the range
[2.0,5.0) with a step of 0.5, and the values of β are in the
range [0.0001,0.0005) with a step of 0.0001. FIGURE 9 and
FIGURE 10 exhibits the plots of the variety of performance
RMSE at different values of parameters n,λ and β.
According to Table 2, the maximum RMSE is 24.131 with

n is 20,λ is 3.0 and β is 0.0004. Meanwhile the minimum one
is 20.232 with n is 200,λ is 3.5 and β is 0.0001. Therefore we
can achieve better prediction accuracy by adjusting the values
of parameter n, λ, and β. In FIGURE 9 and FIGURE 10,the
influence trend of individual parameter on RMSE is shown
as illustrations, which can be used as an effective reference
while optimizing parameters. FIGURE 9 shows that in the
case of fixing number of FCM concepts n,such as n =
40, 100, 150, 200, the RMSE values exhibit a downtrend
when λ moves from low to high. The more the steepness
parameter λ is, the smaller the value of RMSE is, and the
other way around. FIGURE 11 demonstrates the impact of
various parameters on RMSE further. FIGURE 11(a) shows

FIGURE 8. The original data and predicted data of soybean price time
series(n = 20, λ = 3.0, β = 0.0004 ).

the variation pattern of RMSE with a fixed n value and an
increase in λ. As λ increases, RMSE shows a significant
change from high to low. And when λ increases to a certain
value, such as after 2.0, it will maintain a relatively stable low
value. The explanation for this is that the steeper the sigmoid
as an activation function is, the more sensitive the FCM is
to changes in data, which means that the sensing ability of
the FCM is more flexible. However, when λ reaches a certain
value, the perception ability of FCM will remain stable and
no longer show significant changes. Similarly, FIGURE 10
shows that in the case of fixing value of steepness parameter
λ, such as λ = 3.0, 3.5, 4.0, 4.5, the RMSE values exhibit an
downtrend when n moves from low to high, although RMSE
may fluctuate slightly as n increases. FIGURE 11(b) shows
this change pattern more clearly. Generally, the more the
FCM concepts are, the smaller the value of RMSE is, and
the other way around. It implies that for small-scale FCMs,
it is barely enough to reflect the dynamic characteristics of
large-scale fuzzy time series. As the scale of FCM increases,
the dynamic characteristics of the system are effectively
embodied, so RMSE decreases. Yet as FCM concepts number
n and the steepness parameter λ are fixed, RMSEs are
less sensitive to β as further shown in FIGURE 11(c) and
FIGURE 11(d). FIGURE 11(c) shows the variation of RMSE
with increasing β when λ is fixed and n is at different
values. FIGURE 11(d) shows the variation of RMSE with
increasing β when n is fixed and λ is at different values.
Both FIGURE 11(c) and FIGURE 11(d) exhibit a common
characteristic, which is that β has a very weak impact on
RMSE. That’s because the biggest role of β is not to affect
prediction accuracy, but to adjust the number of zeros in the
weight matrix.

Here, it is worth mentioning that FCM concept number
n, steepness parameter λ and regularization parameter β

are all given in the form of hyper-parameters so far. The
consequence is that the predictive performance obtained
in the experiment may not be optimal sufficiently. A grid
optimization strategy can be used to create a grid of possible
values for n,λ andβ. Each iteration attempts a combination of
these hyper-parameters in a specific order. It fits the model on
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TABLE 2. The experimental result of RMSE under FCM concept number n,
steepness parameter λ and regularization parameter β for soybean price
of Guangdong from January 4, 2010 to June 6, 2014.

FIGURE 9. Plots of the values of performance of RMSE under parameter λ
and β with fixed concept number n for soybean price of guangdong from
January 4, 2010 to June 6, 2014.

every possible combination of hyper-parameters, and records
the performance of the model. Finally, it returns the best
model with the most suitable n, λ and β.

E. COMPARISON OF PERFORMANCE WITH OTHER
METHODS
In order to compare the FCM modeling and prediction
method(namely TLSP) proposed in this paper with other
classical methods, and to evaluate the robustness and wide
applicability of TLSP, multiple data sets from different
fields have been introduced. Table 3 reports the comparison
results of the proposed prediction method TLSP with other
methods [25], [26], [27], [28]. The performances of TLSP
on datasets soybean price has been shown in detail in
section IV-C. Sequentially, experiments on another 9 both

FIGURE 10. Plots of the values of performance of RMSE under parameter
n and β with fixed steepness parameter λ for soybean price of
guangdong from January 4, 2010 to June 6, 2014.

FIGURE 11. The impact of parameters λ, n and β on the prediction
accuracy for soybean price dataset.

public and real datasets show that TLSP works better at
prediction supported by target RMSE. For all data sets, the
first 80% is used as the training set, and the rest is used as the
test set.

The rows in Table 3 list 15 experimental data sets,
and the columes show the performance RMSE generated
by method TLSP, LSTM, TLSP-DE, QFCM, NFCM,
Informer and IT2FCM respectively. The experiment results
in Table 3 reveal that TLSP can obtain the minimum RMSE
value, demonstrate satisfactory prediction performance for
all 15 data sets. In addition, Table 3 also shows the
computation time required for each method to establish the
corresponding model, represented by Ts. The Ts of method
TLSP is superior to other methods listed. Overall, under the
premise of automatically acquiring the relationships among
FCM concepts by convex optimization, and accomplishing
prediction without human intervention, the proposed method
TLSP can not only get higher prediction accuracy, but also has
superiority in computation time. The reasons for this result
aremainly attributable to the advantages and disadvantages of
various methods. LSTM, NFCM and Informer are essentially
neural network based algorithms that can effectively capture
nonlinear features in large-scale time series, leading to
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TABLE 3. Experimental results obtained by respectively using the proposed algorithm TLSP, LSTM, TLSP-DE, QFCM, NFCM, Informer and IT2FCM.

high prediction accuracy. However, these methods require
computing neural network weights, which is computationally
intensive and time-consuming, and leads to a preference
for higher Ts. For TLSP-DE, QFCM, NFCM and IT2FCM,
they applied FCM as the core structure. Fortunately, FCM
can effectively simulate the intrinsic connections of complex
systems, effectively explain and predict system behavior,
and has strong knowledge reasoning capabilities. However,
TLSP-DE, QFCM and IT2FCM are essentially population
based algorithms. Although they have the advantage of fast
convergence speed, they cannot guarantee convergence to the
global optimal solution. Although TLSP-DE, QFCM, NFCM
and IT2FCM possess the same 2-order FCM structure as
TLSP and also achieved fairly good predictive performance,
TLSP still outperforms them in terms of prediction accuracy.
The reason for the better prediction accuracy of TLSP is
due to the adoption of convex optimization that converges
to the optimal weight solution, and both fuzzification and
defuzzification with error-free. Moreover, the computational
complexity of TLSP is relatively small, so Ts is relatively
short. As a whole, for typical time series, i.e. trending

time series, seasonal time series, stochastic time series,
and comprehensive time series, TLSP exhibits excellent
performance both in terms of prediction accuracy and
computation time.

In order to further demonstrate the impact of the order of
FCM on prediction performance, Table 4 lists RMSE and
Ts of the TLSP method for predicting 10 time series using
2-order FCM, 5-order FCM, 10-order FCM, 20-order FCM
and 50-order FCM, respectively. In theory, as the order of
FCM increases, the consideration of historical information
becomes more sufficient, and the prediction accuracy will
become higher. However, as can be seen from Table 4, as the
order of FCM increases, the prediction accuracy does show
a certain trend of improvement at first. As FCM reaches
a certain order, the prediction accuracy does not improve,
but instead decreases. Analyzing the reason, it is assumed
in the experiment that various historical data has the same
impact on prediction. While in reality, the older the historical
data, the smaller the impact on prediction is more likely.
Choosing appropriate weights for various historical data is
particularly important and challenging. For Ts, as the order
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TABLE 4. Experimental results obtained by respectively using the proposed algorithm TLSP with 2-order FCM, 5-order FCM, 10-order FCM, 20-order FCM
and 50-order FCM.

of FCM increases, the computational load will also increase
and the computational time will be extended.

V. CONCLUSION
In this paper, an effective data-driven prediction method
for long-term or complex time series is proposed. The
proposed method is based on high-order FCM, and the key
to constructing FCM is the learning of weights among FCM
concepts. By analyzing dynamic characteristics, this paper
convert the acquisition of weights into a constrained convex
optimization problem, which can promptly learn weights,
especially for large-scale FCMs with high quality. The
experimental process of this method includes the following
four steps in order: (1) Preparing the training subset of
FCM through normalization and triangular fuzzification.
(2) Training FCM by solving least square problem. (3)
Implementing prediction on the well-learned FCM. (4)
Validating performance by RMSE. Fifteen public available
benchmark time series: the soybean price time series,
the yahoo stock time series, the sunspot time series, the
Jena Climate(Tpot) time series, the Jena Climate(rho) time
series, the Power consumption of Tetouan city(humidity)
time series, Appliances energy prediction(Press) time series,

Appliances energy prediction(power) time series, Image
Recognition Task Execution Times in Mobile Edge Comput-
ing(MacPro1) time series, Condition monitoring of hydraulic
systems(Cooling efficiency) time series, Appliances energy
prediction(Press) long time series, Appliances energy pre-
diction(power) long time series, the Power consumption
of Tetouan city(humidity) long time series, the Jena Cli-
mate(rho) long time series and the Jena Climate(Tpot) long
time series are used to validate effectiveness and feasibility
of the proposed method. The results of experiments show that
the proposed predictionmethod can get weights conveniently,
moreover better prediction accuracy and prediction time
are achieved. Compared to neural network-based algorithms
and population-based algorithms, the proposed method not
only significantly avoids a large amount of computation,
but also obtains the global optimal weights. Therefore, the
proposed method ensures high prediction accuracy while
shortening computation time. Further, by analyzing the
details of prediction results of the benchmark time series,
several interesting conclusions can be drawn about the
impacts of FCM concepts number n, steepness index λ
and regularization parameter β. However, this method still
has relatively weak points, mainly reflected in two aspects.
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On one hand, despite multiple combinations of parameters
being provided, all current parameters are given in the form
of hyper-parameters without sufficient optimization. On the
other hand, the impact of FCM order, i.e. various historical
data on prediction performance needs to be further optimized.
As such, in the future, it can be considered to utilize further
parameter optimization and optimized higher-order FCM
to enhance the prediction precision. Additionally, merging
with prior knowledge while extracting FCM concepts is a
promising direction of future investigation.
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