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ABSTRACT Recent efforts have promoted Smart Radio Environment (SRE) to enhance the reception quality
in high-frequency bands via reconfigurable intelligent surfaces (RISs) for supporting hyperconnectivity of
Beyond 5G/6G Era. The functionality of SRE is based on the more degrees of freedom that come from
electronically controlling the environment itself rather than transmitter and receiver. Accordingly, the spectral
efficiency and the sum rate throughput can be enhanced by applying customized transformations to the
electromagnetic radio waves. However, futuristic applications that are envisioned to be time-critical demand
much more than what SRE can handle because that too much time is spent on sensing the environment and
applying customized transformations. In this work, we propose a novel concept of adaptive SRE (ASRE),
which intends to start from the semantic perception of a wireless environment to explore the learning and
evolutionary mechanisms of SRE through the loop of recognition, adaptation, and proaction. In combination
with the techniques known in artificial intelligence (AI), such as deep reinforcement learning, knowledge
graph, etc., this technology can provide enhanced ultra-reliable low-latency communication (URLLC)
services. Furthermore, the wireless environment is expected to become not just adaptive, but partially
intelligent by predicting and utilizing the changes in the communication environment. To corroborate the
rationality and superiority of ASRE, we also present simulation results related to the typical dynamic NLOS
scenario. Finally, we highlight numerous open challenges and research directions.

INDEX TERMS Smart radio environment (SRE), reconfigurable intelligent surface (RIS), deep reinforce-
ment learning (DRL), sensing, knowledge graph.

I. INTRODUCTION
The future wireless propagation environment will be a recon-
figurable platform [1], which will not only control the signal
propagation intentionally and deterministically but will also
bring new possibilities for capacity and coverage enhance-
ment [2]. Motivated by these considerations, the concept of
‘‘smart radio environment’’ was introduced in [3] and detailed
in [1], which is aligned with recent advances in the design
of reconfigurable intelligent surfaces (RISs). RISs consist of
many anomalous controllable reflecting surfaces capable of
changing the phase of the incoming electromagnetic waves.
Therefore, smart radio environments provide more degrees
of freedom by electronically controlling the environment

The associate editor coordinating the review of this manuscript and

approving it for publication was Bilal Khawaja .

itself rather than the transmitter and receiver and by turning
the wireless medium into a software-reconfigurable entity,
as shown in FIGURE 1.

Several studies have investigated the benefits of SRE.
In [2], multiple repositionable dynamic RISs and coor-
dinated ambient backscatter communication (ABCs) were
used to extend geographical coverage and maximize the
sum rate throughput for a given geographical region and
spectrum. The heterogeneous deployment of SRE entities,
namely Integrated Access and Backhaul (IAB) nodes, smart
repeaters, RISs, and passive surfaces, is judiciously planned
to minimize the total installation costs while simultane-
ously optimizing the network spectrum [4]. In [5], the
system performance of RIS-assisted SREs was studied by
adopting a simulation-driven approach and conducting a
holistic evaluation of capacity and reliability aspects. In [6],
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FIGURE 1. Smart radio environment.

a resource allocation framework was developed that explic-
itly accounted for the overhead associated with channel
estimation and the configuration of the optimal RIS phase
shifts. Existing research demonstrate that pertinent efforts
mainly focus on networking environments that consist of
stationary user equipment (UE), which completely over-
looks the impact of user mobility on the channel gains.
Accordingly, in a dynamic environment with user and scat-
ters mobility, reassignment of the RIS parameters will take
place frequently. One of the major challenges with the
envisioned dense deployment of RISs in SRE is the effi-
cient configuration of multiple RISs, which depends on the
perception of the communication environments. The most
well-known radio environment sensing method is radar [7],
which operates by sending transmissions, typically a linear
frequency-modulated continuous chirp, and correlating the
reflected signals with the transmitted signal to obtain the
delay and Doppler frequency. On the other hand, LiDAR
[8], Vision [9], etc. are also used to sense the communica-
tion environment. However, perception and controlling the
environment require a lot of time to process, which does
not provide a latency of a millisecond order for URLLC
services often represented by factory automation, telesurgery,
and autonomous driving.

To address the aforementioned challenges and develop an
efficient configurable strategy for SRE, we have enriched the
smart radio environment concept with the harmony of sens-
ing the environment and applying customized reassignments
called ASRE. This concept intends to achieve optimized
network deployment through environmental awareness and
early inference prediction, which is essentially a ubiquitous

wireless environment that supports personalized adaptation
based on perceptual information (static environment infor-
mation, dynamic wireless environment information, etc.) and
wireless environment adaptation characteristics, as well as
extends the perceptual intelligence of traditional SRE to
cognitive intelligence. The key features of this study are
summarized as follows:

• An adaptive SRE system is proposed utilizing a wire-
less intelligent control component (WICC), which not
only controls sensors to obtain static and dynamic infor-
mation of the wireless environment but also controls
spatial electromagnetic radiation by using perceived
information.

• This is the first time that triple parameterizations of
wireless environments have been proposed, including
controllable RISs parameterization, static parameteri-
zation, and dynamic uncontrollable parameterization.
After the obtained data are fused, detailed information
on the current wireless environment can be fed back in
real-time, which can provide effective data support for
the comprehensive decision-making of wireless connec-
tions.

• Based on the semantic understanding and adaptation
mechanism of thewireless communication environment,
ASRE constructs an open interface by introducing mul-
tiple mobile adaptive RISs, IAB nodes, and intelligent
relays and dynamically constructs a heterogeneous wire-
less communication environment in combination with
WICC to provide a mechanism to quickly handle user
mobility and handover in response to changes in the
wireless environment and business requirements.
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• In combination with artificial intelligence (AI) tech-
niques such as deep reinforcement learning and knowl-
edge graphs, this technology can provide enhanced ultra-
reliable low-latency communication (URLLC) services.
Furthermore, wireless environments are expected to
become adaptive and partially intelligent by predicting
and utilizing changes in communication environments.

• Using this novel concept, we validated the beam pre-
diction algorithm in a mobile cellular network including
one base station (BS), one moving user equipment (UE),
and a fully reflective RIS. The results proved the effec-
tiveness of our proposed ASRE in terms of reducing
the average switching delay by 41-50%. The proposed
ASRE concept is compatible with the scenarios of (a)
varying user densities, (b) different BS densities, and (c)
different transmission bands.

The remainder of this paper is organized as follows. Section II
explains the concept of the ASRE. In Section III, the
important aspects of ASRE recognition in communication
environments are discussed. In Section IV, we present an
adaptation of the ASRE with multiple adaptive RISs, IAB
nodes, and intelligent relays. In Section V, the proactive
ASRE is detailed. Section VI discusses future challenges and
research opportunities.

II. ADAPTIVE SMART RADIO ENVIRONMENT (ASRE) FOR
WIRELESS COMMUNICATION NETWORKS
Unlike SRE, ASRE aims to achieve optimized network
deployment through environmental awareness and early
inference prediction. Therefore, we first built a spatiotem-
poral dynamic awareness system that can fuse sensed
multidimensional wireless environmental information with
an understandable and operational knowledge description.
We then clarify the wireless environment adaptation mech-
anism of specific key performance indicators (KPIs) as well
as the intelligent adaptation architecture, adaptation methods,
and hybrid migration learning method. In addition, changes
in the wireless communication environment can be predicted
in advance according to a certain Knowledge Graph, using
new information to realize the learning and evolution of
the wireless communication environment. In this case, novel
wireless connectivity is provided with high flexibility, capac-
ity, robustness, and coverage by constructing an adaptive
wireless communication environment characterized by the
accurate identification of environmental changes, scientific
adaptation, and proactive adaptation. Therefore, ASRE can
sense and understand environmental disturbances, adapt to
different changes in the environment, and evolve based on
Knowledge Graphs and new knowledge. Its main character-
istics are summarized as follows:

• The dynamic perception of the wireless communica-
tion environment follows the procedure described in
Section III.

• The wireless environment adaptation architecture is
based on multiple mobile adaptive RISs, IAB nodes, and

intelligent relays, which follow the procedure summa-
rized in Section IV.

• The co-evolution based on mixed transfer learning is
summarized in Section V.

III. PARAMETERIZATION AND FUSION PERCEPTION OF
VARIOUS ELEMENTS OF WIRELESS PROPAGATION
ENVIRONMENT
In this section, parameterization and fusion perception of
various elements of the wireless communication environment
are introduced.

A. PARAMETERIZATION OF WIRELESS COMMUNICATION
ENVIRONMENT
1) THE RICH INDOOR SCATTERING SCENES
First, all three types of entities that affect thewireless commu-
nication environment (i.e., the transceiver antenna, scattering
environment, and programmable RIS unit) are described as
dipoles or a set of dipoles with specific characteristics [10].
The scattering environment, introduced in the form of a cou-
pling dipole, changes rapidly with the addition of dynamic
effects, leading to rapid fading.

The wireless communication environment is then triply
parameterized, including the controllable RIS parameteri-
zation, static uncontrollable channel parameterization, and
dynamic uncontrollable channel parameterization. The triple
parameterization of fading rich-scattering wireless channels
is described as follows:

• Dynamic controllable wireless environment parameteri-
zation, such as RISs and IAB nodes.

• Dynamic uncontrollable wireless environment param-
eters such as the location of the receiver, location of
moving objects, and orientation of rotating objects.

• Static wireless environment parameters, such as the
location of the BS and wall.

A fully connected artificial neural network (ANN) is trained
as an alternative inverse model [11]. Auxiliary field mea-
surements were used as inputs for the ANN. The static and
dynamic uncontrollable channel parameters are the outputs.

Finally, the RISs modeled by the dipole provide a con-
trollable set of RISs parameters. Combined with static and
dynamic uncontrollable channel parameters, the RISs param-
eterized wireless environment is converted into a physically
compatible end-to-end channel matrix with a controllable
fading level through an ANN. The parameterized modeling
and prediction processes are illustrated in FIGURE 2(a).
It involves learning a surrogate forward model to predict the
channel as a function of the above triple-parameterization,
estimating the static wireless environment parameters and
uncontrollable perturbing parameters, and optimizing the RIS
parameters (given the perturbing parameters) to achieve the
desired shape of the wireless channel.

2) THE OUTDOOR OPEN SCENES
Consider a UAV/RIS-assisted multi-user wireless commu-
nication system, as shown in FIGURE 2(b). The system
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FIGURE 2. Parameterization of wireless communication environment for (a) the rich indoor scattering scenes and (b) the outdoor open scenes.

consisted of N single-antenna users, a UAV carrying an
RIS, and a base station. The Rician channel model is com-
monly used to model the NLoS channel without considering
scene geometry, which contradicts the deterministic param-
eterization introduced by the RIS in intelligent wireless
environments. At the same time, the ray tracing method
requires a large number of digital maps to simulate a wire-
less environment, which is difficult to conveniently apply in
practical applications. To achieve a good balance between
ray tracing and the Rician model, we use a geometry-based
stochastic model (BGSM) to build a wireless propagation
environment model. According to the influencing factors, the
model parameters are divided into three parts: static wireless
environment parameters, dynamic uncontrollable wireless
environment parameters, and dynamic controllable wireless
environment parameters.

Based on the wireless channel simulation platform
QuaDRiGa [12], the channel matrices of the transmitter
to the RIS, the RIS to the receiver, and transmitter-to-
receiver links were obtained by representing the RIS as
virtual receivers and virtual transmitters with the same
coordinates and unit arrays. The intelligent wireless propa-
gation environment was simulated and analyzed, as shown in
FIGURE 2(b) from [13], and there was a significant perfor-
mance difference between Rician and QuaDRiGa. Therefore,
we chose QuaDRiGa instead of using Rician directly for
modeling.

B. FUSION PERCEPTION OF WIRELESS COMMUNICATION
ENVIRONMENT
After the data obtained from various channels are fused,
detailed information on the current wireless environment can
be fed back in real-time, which can provide effective data
support for the comprehensive decision-making of wireless
connections. We intend to enhance the semantic understand-
ing of wireless communication environments by utilizing a
multimode comparison and fusion. Fusion sensing methods
include comparison-based multimodal sensing (CMMS) [14]
and transformer-based multimodal sensing (TMMS) [15].
The input data contained three modes for the CMMS:

RGB, Radar and LiDAR. First, three modes were connected
in series to generate anchor samples. The anchor samples
were then enhanced to generate the positive samples. Simul-
taneously, challenging negative samples were generated by
disturbing anchor samples. These challenging negative sam-
ples require the learning model to check the correspondence
between each element in the input samples to ensure that the
weak modes and synergy between the modes are not ignored
to produce a better fusion representation.

Therefore, to understand the wireless communication envi-
ronment, the wireless channel H (f ) ∈ CNr×Nt between the
transmitter and receiver can be modeled as.

F : wicc(f ) → H (f ,wicc(f ), uc(f ), s(f )) (1)

where F is the mapping from the dynamic controllable wire-
less environment parameterization wicc(f ) to the wireless
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channel matrix H (f , wicc(f ), uc(f ), s(f )) configured by
WICC. uc(f ) and s(f ) are dynamic uncontrollable wire-
less environment parameters and static wireless environ-
ment parameters, respectively. The transmitting antenna
array is composed of Nt antenna elements. The receiving
antenna array equipped with Nr antenna elements. Map-
ping F is generally nonlinear. In some cases, one may
consider to ‘‘blindly’’ learn a neural surrogate forward
model, i.e., to approximate the mapping from wicc(f ) to
H (f , wicc(f ), uc(f ), s(f )) with an artificial neural network
(ANN).

For the TMMS, a deep residential network (ResNet) is
employed to encode image It , point-cloudPt , and radar signal
Rt in the abstraction space. The transformer then learns the
correction between the modalities. The fused feature maps of
different modalities are propagated to the next convolutional
blocks and repeated several times with transformer blocks,
which produces predictions using the softmax function. The
mapping between (It ,Pt ,Rt) and the channel parameters can
be defined as follows.

Q : (It ,Pt ,Rt) → (wicc(f ), uc(f ), s(f )) (2)

IV. INTELLIGENT ADAPTATION TECHNOLOGY FOR
WIRELESS COMMUNICATION ENVIRONMENT
Based on the semantic understanding and adaptation mech-
anism of the current wireless environment, we built an open
interface for the wireless transmission environment by intro-
ducing a mobile adaptive RIS, IAB nodes, and intelligent
relays. Furthermore, a heterogeneous wireless communica-
tion environment is dynamically constructed by combining
WICC. A mechanism for quickly handling user mobility and
handovers was provided to respond to changes in the wire-
less environment and business requirements. Specifically,
according to the sensed wireless environment information,
WICC can customize the transmission of signals from the
base station to single or multiple designated users to complete
the wireless communication link from the base station to
the adaptive wireless environment to the user by controlling
IAB nodes, UAV-RIS, intelligent relays, etc. Compared to
classical communication systems, this architecture can be
applied to a variety of complex industrial scenarios with the
significant advantages of high performance, high reliability,
and low latency.

For future wireless networks, there are many variables that
WICC needs to control and optimize, resulting in a large
amount of training data being required to adopt the existing
deep learning methods. In a highly dynamic wireless envi-
ronment, it is important to achieve system optimization at a
low training cost in a short time. To combat environmental
changes and avoid a large number of training labels, RISs
are used as reinforcement learning agents to interact with the
environment based on the DRL (Deep Reinforcement Learn-
ing) algorithm. Model-based optimization is integrated into
the DRL framework, which optimizes network parameters
and configuration resources through empirical learning. The

decision variables are divided into two parts. One part of
the decision variable is obtained using the outer-loop ML
method. The second part is rapidly optimized by solving
the approximation problem using their physical connections
when the outer-loop control variables are provided. Com-
pared with the traditional modeless learning method, this
idea has both the efficiency of model-based optimization
and robustness of the modeless ML method. In addition,
we plan to further reduce the workload of model training by
using transfer learning and domain adaptation technologies
in the future. Given the sensed dataset Dt = {(It ,Pt ,Rt)},
we fit the optimal dynamic controllable wireless environment
parametrization wicc∗(f ) by maximizing the system capac-
ity max

wicc∗(f )
C (H (f ,wicc(f ), uc(f ), s(f )),N ), where N is the

additive white Gaussian noise (AWGN).

V. LEARNING AND GROWTH MECHANISM OF WIRELESS
COMMUNICATION ENVIRONMENT BASED ON
KNOWLEDGE GRAPH
A. ADAPTIVE LEARNING AND GROWTH MECHANISM IN
WIRELESS PROPAGATION ENVIRONMENT
From a machine-learning perspective, it is impractical to
collect a large training dataset that covers all possible envi-
ronmental dynamics (e.g., collecting wireless signals at
many physical locations). Therefore, the ASRE is essentially
a ubiquitous wireless environment that supports person-
alized adaptation based on the adaptive characteristics of
the wireless environment and perceptual information (static
environmental information, dynamic uncontrollable wireless
environmental information, etc.), as shown in FIGURE 3.
To achieve this personalized adaptation, three core

components–the propagation environment model, adaptive
knowledge model, and adaptive engine–are established.
Among them, the propagation environment model is a high
abstraction of the sensed ‘‘dynamic’’ and static features (tex-
ture, depth, and other data of the scene) of the wireless
environment information, which is the basis for proactive
adaptation of the wireless propagation environment. The
adaptive knowledge model is a collection of adaptive knowl-
edge and its relationship and is an important foundation
for realizing proactive adaptation in wireless communication
environments. The adaptive engine is the intelligent core
to realize proactive adaptation of the wireless communica-
tion environment, which is the bridge and link between the
communication environment model and adaptive knowledge
model.

The adaptive engine was then used to connect the com-
munication environment model built with environmental
awareness as the center, and the adaptive knowledge model
was built with the Knowledge Graph as the core. The mech-
anism can select the most suitable resources, transmission
path, and communication strategy in the correct manner, time,
place, and scene, to provide the corresponding adaptation
methods and configuration parameters according to the actual
needs of dynamic changes.
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FIGURE 3. Adaptive learning method for wireless propagation environment.

B. DESIGN OF KNOWLEDGE BASE FOR TRANSFER
LEARNING ACROSS DIFFERENT PHYSICAL
ENVIRONMENTS
The ASRE can continuously recognize the propagation
environment, obtain comprehensive wireless propagation
environment information, and establish a knowledge base
for transfer across different physical scenes, including the
following aspects: modeling and representation of wireless
environment perception information, wireless environment
information storage, inference and utilization of wireless
environment perception information, interaction between
wireless environment perception information, and adaptive
engines.

First, the entities, relationships, and attributes of the
Knowledge Graph of the adaptive configuration of the
environment were defined. Knowledge from the existing per-
formance results of the environment-adaptive configuration
under a variety of wireless propagation environments and
business characteristics was extracted to build a Knowledge
Graph of the environment-adaptive configuration. The wire-
less propagation environment is defined as the head entity in a
Wireless Radio Environment Knowledge Graph (WREKG).
The various parameter types of the wireless propagation envi-
ronment are defined as the relationship set, and the specific
value of the parameter is defined as the tail entity. Subse-
quently, a User Knowledge Graph (UKG) was built regarding
specific transceiver parameters and requirements as ‘‘user’’
entities. Overall, the wireless communication environment,

specific transceiver parameters, and requirements are defined
as the header entities. Parameter type was defined as the
relationship set. The specific value of parameter is defined
as the tail entity.

Second, by summarizing the knowledge related to wire-
less communication environment adaptation, we estab-
lish a performance representation model of the environ-
ment adaptation configuration knowledge. The structured
environment-adaptation configuration triplet information
is mapped to low-dimensional vectors using the Trans
D model. The semantic information of the environment
adaptation configuration was extracted into vectors using
the Word2Vec model. Numerical feature vectors were
also built by defining dictionaries and parameter values.
These three features are spliced to obtain the learning
results of the environment-adaptive configuration knowledge
representation.

Finally, for the current sensed wireless propagation envi-
ronment, we recommend appropriate environmental adapta-
tion mechanisms and parameters, including adaptive node
type, number, spatial location, adaptation time, and configu-
ration parameters, based on the determined requirements for
data rate, bit error rate, and signal-to-noise ratio.

C. WIRELESS COMMUNICATION INDIVIDUAL REASONING
BASED ON KNOWLEDGE GRAPH
In a complex scenario, the learning of the wireless communi-
cation environment includes the acquisition and training of
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original data. Training that relies solely on source-domain
data renders the system cumbersome and inefficient. The
method of passively adapting to changes in the wireless com-
munication environment will no longer satisfy new require-
ments of wireless communication in the future. We propose a
wireless environment individual-reasoning method based on
a multiagent Markov decision. Its main feature and innova-
tion lies in using the prediction function of neural networks to
provide prior information for reinforcement learning, which
accelerates network convergence and divides the process of
business demand change into sequential and simultaneous
game processes. We consider maximizing the use of wireless
environmental resources to provide appropriate services for
complex scenarios with the dynamic transformation of multi-
agent services. By defining H⃗ (f , wicc(f ), uc(f ), s(f )) as the
inferred wireless channel environment, the mapping between
H⃗ (f , wicc(f ), uc(f ), s(f )) and proactive wireless environ-
ment adaptation can be defined as follows.

R : H⃗ (f ,wicc(f ), uc(f ), s(f )) → wicc∗(f ) (3)

To provide URLLC services, we use Knowledge Graph
to represent, store and manage complex wireless environ-
ment adaptation knowledge, and conduct ‘Proactive change’
of wireless environment adaptation based on the Knowl-
edge Graph. First, relying on historical data correlation
and attribute correlation, and based on modeling the enti-
ties and their relationships, reinforcement learning based
on the Markov decision process (MDP) makes the Knowl-
edge Graph a preliminary individual reasoning ability. The
importance of the environmental adaptation architecture in
historical data was mined using a Bayesian neural network,
and the Knowledge Graph was updated through the con-
tinuous growth of historical environmental adaptation data.
Thus, entities and relationship models can be predicted and
updated promptly according to the transformation of scenar-
ios, business characteristics, and wireless environments, and
the Knowledge Graph can be supplemented to enhance the
generalization. Subsequently, the NashQ learning algorithm
and Monte Carlo Tree Search (MCTS) method were used
to solve simultaneous and sequential game problems in the
wireless channel selection process (RSP) and resource allo-
cation process (RAP), as shown in FIGURE 4. The first
stage is RSP, which aims to avoid collisions and disorders
as much as possible to compress the decision space. After the
algorithm converges, it enters the RAP stage, which provides
users with appropriate services based on limited network
resources and multi-service requirements to maximize the
average system throughput. In the Monte Carlo tree search,
each node contains the real-time reward value used to mea-
sure the quality of resource allocation decisions, the number
of visits to the node, and the Q-value of the node. An upper-
bound confidence tree search (UCT) algorithm is used in the
decision search to achieve wicc∗(f ). Each node must satisfy
the QoS constraints of a single-user flow, whereas the root
node must satisfy the maximum throughput constraints of the
entire system.

FIGURE 4. Framework of individual reasoning in industrial environment.

FIGURE 5. CASE of ASRE, (a) Mobile cellular network; (b) Environmental
adaptive configuration knowledge graph; (c) Beam switching delay.

VI. CASE OF ASRE
In this section, we will use a beam prediction algorithm to
validate the novel concept of ASRE. According to the 3GPP
specification, the total system delay caused by traditional
base station switching is 222.8ms, and through beam pre-
diction, the ideal total switching delay of the system can be
reduced to 11.4ms [16].

A. SETUP
We consider a mobile cellular network including one base
station (BS), one moving user equipment (UE) and a fully
reflective RIS, which has N elements equally spaced on a
planar surface, as shown in FIGURE 5(a). The intelligent RIS
controller is in charge of loading different configurations to
the RIS according to the sensing information, as discussed in
Section III.

B. ALGORITHMIC
First, the fusion of the above environmental information
by various sensors, can boost the total sensing task with a
reinforced sensing capability. Second, adaptability intelligent
processing in WICC is performed using a model-enhanced
data-driven approach as its fundamental tool for ASRE,
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as shown in FIGURE 5. Third, the entities, relationships, and
attributes of the Knowledge Graph for adaptive configuration
of the environment are defined. Knowledge from the existing
performance results of the environment-adaptive configura-
tion under a variety of wireless propagation environments and
business characteristics was extracted to build a Knowledge
Graph of the environment-adaptive configuration, as shown
in FIGURE 5(b). If the beam is obtained using multimode
sensing with advanced prediction and its beam prediction
accuracy at a certain prediction time period is p, then the
average switching delay is p × 11.4 + (1 − p) × 222.8. The
reduction in the average switching delay of the link can be
obtained by 41-50% as shown in FIGURE 5(c). The experi-
mental and simulation results confirmed that the ASRE, with
its proactive adaptation, enhances QoE for users who require
low latency in extremely dynamic environments. Overall, the
results indicate that our study can improve the operation of
B5G/6G wireless networks by offering a reduced network
size, thereby enabling future latency-sensitive applications.
Additionally, it would be valuable to discuss other KPIs and
service quality parameters when compared to the current 5G
technology, which will be studied in further research.

VII. RESEARCH CHALLENGES AND OPPORTUNITIES
In this section, the future research directions and challenges
related to this study are discussed.

A. ASRE COMMUNICATION THEORY AND EVALUATION
How Analysis of the relationship between the wireless
propagation environment and its changes, controllable ele-
ments, optimized configuration parameters, and specific key
performance indicators (KPIs), such as coverage probabil-
ity, spectrum efficiency, energy efficiency, and delay, is a
key problem. Therefore, an important research direction is
to investigate the superposition impact of controllable and
uncontrollable parameters on the wireless communication
environment and its theoretical performance limit, which can
establish a theoretical basis for intelligent adaptation of the
ASRE.

B. ROBUSTNESS OF ASRE
An intrinsic challenge in ASRE is to address the robustness
of performance changes caused by environmental and user
changes. The pre-trained patterns may change if the ASRE is
deployed in a new environment or used by a different user.
Although ASRE can achieve optimized network deployment
through environmental awareness and early inference predic-
tion, system performance degrades with frequent retraining
and updates. Therefore, how to ensure the robustness of
ASRE in complex and high dynamic environments is one of
the topics that needs to be studied in the future.

C. INTEGRATED SENSING AND COMMUNICATION
The fusion of communication and sensing is the consensus
for future wireless networks. However, the application of
ASRE to both communication and sensing has not been

widely studied, and some key issues remain open, including
resource allocation, mutual interference, signal processing
technologies, network architectures, transmission protocols,
and optimization of ASRE coefficients.

D. THE INTEGRATION OF ASRE AND B5G/6G PROTOCOL
Recent efforts have promoted ASRE to enhance reception
quality in high-frequency bands via multiple mobile adap-
tive RISs, IAB nodes, and intelligent relays. However, the
coordination of the relationship between ASRE and other
potential technologies of B5G/6G, as well as its integration
with B5G/6G network protocols, is a key issue.

VIII. CONCLUSION
Reconfigurable, intelligent, and adaptive environments
enabled by ASRE provide a novel wireless connectivity
paradigm for future B5G/6G networks, while disclosing
unprecedented scientific and technological challenges. In this
paper, a novel concept of adaptive SRE is proposed, which is
designed to make the wireless communication environment
intelligent and controllable. This is accomplished by having
the design integrating three key components into the ASRE
system: wireless environment recognition and prediction,
wireless environment adaptation, and AI interaction. Close
cooperation between these components would provide a
guaranteed performance adaptively to the time-varying nature
of the wireless communication environment.

Furthermore, by predicting and utilizing the potential
changes in communication environments, wireless environ-
ments are expected to become both adaptive and partially
intelligent. Finally, the potential challenges and promising
research directions related to the proposed ASER networks
are introduced.
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