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ABSTRACT Recommender systems (RS) are substantial for online shopping or digital content services.
However, due to some data characteristics or insufficient historical data, may encounter considerable
difficulties impacting the quality of their recommendations. This study introduces the clustering-based
frequent pattern mining framework for recommender systems (Clustering-based FPRS) - a novel
RS constituting several recommendation strategies leveraging agglomerative clustering and FP-growth
algorithms. The developed strategies combine the generated frequent itemsets with collaborative- and
content-filtering methods to address the cold-start problem, which occurs whenever a new user or item
enters the system. In such cases, the RS has limited information about the new user or object. Thus, the
recommendations may be inaccurate. The experimental evaluation on several benchmark datasets showed
that Clustering-based FPRS is superior to state-of-the-art and could effectively alleviate the cold-start
problem.

INDEX TERMS Cold-start problem, recommender system, frequent pattern mining, clustering.

I. INTRODUCTION
Modern businesses reach outstanding amounts of customers,
who are often overwhelmed by the plethora of products and
services [1], [2]. Online stores and content services attempt
to provide a personalized shopping experience, tailoring
their offerings to the specific interests of each client [1],
[2], [3]. Viable solutions to this challenge are recommender
systems (RS), which leverage the data collected to provide
users with the most appealing products or services they are
looking for [4]. The fundamental idea of RS is to recommend
items that are of interest to a user based on their previous
interactions with comparable ones or categories, ratings’
history of users with similar preferences, and possibly some
other information, such as users’ demographics or items’
characteristics [5].

Recommender systems are typically classified into
three main categories: (i) collaborative filtering (CF),
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(ii) content-based filtering (CBF), and (iii) hybrid methods.
The basic idea behind collaborative filtering is that users
with much the same taste or preferences tend to behave in a
cognate way in the future. Those techniques rely on historical
interactions to compute similarities among users for whom
the recommendations are eventually generated. An analogous
approach can be applied to create recommendations based on
item similarities. On the other hand, content-based filtering
tries to utilize items’ characteristics, users’ demographics,
and contextual information to recommend additional items
comparable to those preferred by the target user in the past.
Finally, hybrid techniques cover the weaknesses and exploit
the strengths of CF and CBF models by combining them to
provide more relevant results [6].
However, due to some data characteristics, RS may

encounter significant difficulties, and the quality of their
recommendations is strictly limited to the density of inter-
actions in the collected data, which is often very sparse
[7]. Furthermore, they may be severely affected by the
dynamic changes in the commercial environment where
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producers contend to astonish clients with ever newer
and better offers. Dealing with still-emerging products and
services, as well as with new visitors, is one of the most
challenging tasks faced by state-of-the-art recommender
systems, often referred to as the cold start problem [5], [8].
This phenomenon is particularly inconvenient and occurs
whenever recommendations are generated for a new item
without a proper history of user interactions or ratings.
Similarly, user cold start refers to the situation when a
recommendation engine faces a new visitor, and there is no
historical data about their personal preferences. In fact, many
state-of-the-art recommendation algorithms may generate
unreliable recommendations for such cases since they cannot
learn the preference embedding of these new users/items
[9], [10].
In this study, we introduce Clustering-based FPRS, that

significantly extends the FPRS recommender system [11],
[12] by providing several strategies for devising more
effective and efficient recommendations that successfully
support new (cold) items and users. The developed strategies
are organized into user cold-start and item cold-start modules
framing a comprehensive recommendation platform for data
scientists and analysts to select the optimal solution for the
investigated problem and data characteristics. Clustering-
based FPRS employs available contextual information to
alleviate the cold-start problemmore effectively and relies on
the FP-growth algorithm to generate frequent patterns based
on users’ and items’ characteristics.

Clustering-based FPRS resolves the problem of data
sparsity by operating on the more granular representation
of similar users and items instead of operating on the very
sparse user-item matrix. We derive this intermediate data
representation by grouping similar users and items together.
For that purpose, we rely on distance-based clustering
to reflect and leverage content-based similarities between
items and users, which is material for partially incomplete
data. By incorporating agglomerative techniques, Clustering-
based FPRS can tune the number (and size) of clusters
and search for the optimal thresholds. It also gives the
possibility to utilize multiple-value characteristics to measure
the similarity. The dense matrix has a positive impact on the
FP-growth algorithm and the generated frequent itemsets.

The main contributions of this paper are as follows:
1) We introduce Clustering-based Frequent Pattern min-

ing framework for Recommender Systems constituting
of several recommendation strategies to mitigate the
cold-start problem

2) We utilize the FP-growth algorithm to produce frequent
itemsets based on the ratings in the user-item matrix.

3) We mitigate the sparsity issue by converting the
user-item rating matrix into a lower-dimensional one
with clustering techniques.

4) We incorporate contextual information and extend the
recommendation list using similarity measures of users
and items to address the cold-start problem in the FPRS
framework.

5) We conducted comprehensive experiments of the
proposed approach on several benchmark datasets,
including MovieLens 100K, MovieLens 1M, HetRec-
MovieLens, and LDOS-CoMoDa, and evaluated
Clustering-based FPRS against several state-of-the-art
recommender systems.

The remainder of this paper is organized as follows.
Section II presents research efforts on the cold-start problem
in the domain of recommender systems. In Section III,
we provide background information related to recom-
mender systems (in Section III-A), frequent pattern mining
(Section III-B), and hierarchical clustering (Section III-C). In
Section IV, we present the clustering-based frequent pattern
mining framework for recommender systems (Clustering-
based FPRS), a novel hybrid RS that copes with the sparsity
issue as well as the cold-start problem. In Section IV-A,
we discuss multiple strategies to address the cold-start for
new users and new items. Section V evaluates the proposed
model against several baseline models, which are designed
to mitigate the cold-start problem in recommender systems.
Finally, in Section VI, we summarise the study and discuss
possible future research directions.

II. RELATED WORKS
Recommender systems (RS) are a rapidly growing field of
computer science and intelligent systems that allow users to
find items of interest that best meet their preferences, and
the cold-start problem is one of the biggest challenges we
face while designing RS. Specifically, it concerns the issue
that the recommender system cannot draw any inferences for
new users, who signed up recently to the system, or new
items, which added recently to the system, since it has
not yet gathered sufficient information to generate reliable
recommendations. Therefore, the RS (and especially the
collaborative methods) suffers from both user cold-start and
item cold-start problems due to deficient information about
new entities [13], [14].

Most of the attempts to address such a problem
suggest combining collaborative filtering methods with
content-based approaches that utilize the intrinsic charac-
teristics of the analyzed entities. For example, in [9], the
authors propose a hybrid RS that combines the content-based
filtering and latent Dirichlet allocation (LDA)-based models
to address the cold-start problem. In [15], we may find a
hybrid RS that combines a recommender module composed
of a collaborative filtering system (using the singular value
decomposition algorithm), a content-based system, and a
fuzzy expert system. On the other hand, the content-based
filtering (CBF)methods are capable to recommend new items
even if there are no ratings provided by users. However, these
methods suffer from the user cold-start problem due to the
insufficient number of rated items [6], [16].

In literature, many efforts have been made to cope with
the cold-start problem [17], [18]. In [19], the authors utilized
the concept of weak supervision to address the item-side
cold-start problem by combining content-based filtering and
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the preferences of representative users. In [20], the authors
extended the matrix-factorization-based methods, namely
SVD, SVD++, and the NMF models, to address the cold-
start problem. The basic idea is to use three simple regulariza-
tion differentiating functions (RDF) so that the regularization
weights on different items and users are set based on their
popularity. However, we used this model as a baseline
with which to compare the performance of our proposed
method (cf. Section V-B). Another interesting approach
explores the ability of collective matrix factorization models
in recommender systems (CMFREC) to make predictions
about users and items for which there is side information
available but no feedback or historical ratings/interactions
data [21]. The cold-start recommendations generated by
this approach were found to be of better quality than non-
personalized recommendations, and predictions about new
users were found to be more reliable than those about new
items. This model is also used as a benchmark to evaluate the
performance of our proposed model (cf. Section V-B)
There are many more attempts to alleviate the cold-start

problem by combining collaborative filtering with content-
based methods, including using simultaneous co-clustering
[22], meta-learning [23], or Siamese neural networks [10].
Moreover, many efforts have been made to employ various
dimensionality reduction techniques in the field of recom-
mender systems [24]. Considering the discussed problem of
missing or insufficient information, it seems interesting to
refer to the dimensionality reduction methods based on the
granularization of the attribute space [25], and particularly
on resilient ML techniques [26], [27] - i.e., resistant to
data deficiencies. The hybridization of soft computing
techniques with collaborative and content-based methods is
a wide-ranging field of research, and an interesting area for
the further development of recommendation systems [28],
particularly interesting for context-aware RSs [29], [30], [31].
Another approach to mitigating cold-start is to recommend

the recent trend in users’ preferences, or in other words,
to return the most recent popular items [32], [33]. However,
the recommendations made by this approach are not always
reliable and result in so-called popularity bias since users
often differ in their preferences, whichmay also vary between
types of products and their characteristics [34]. Hence,
an additional effort to deal with biases in data is required [35].
Another interesting approach to dealing with insufficient
or missing historical transactions was to exploit additional
sources of information. In particular, in [36], the authors
enhance the data representation about new entities by training
RSs with the Linked Open Data model based on DBpedia.
Another way is to directly inquire the users about their
preferences. Such information may be collected, e.g., via
survey or by asking users to select the most relevant picture
related to the desired item [37].
On the other hand, addressing the cold-start problem by

combining community-based knowledge with association
rule mining is also showing very promising results [14].

Referring to association rule mining (cf. [38]) and frequent
patternmining (cf. [39]) techniques to copewith the cold-start
problem is useful also when it comes to minimizing the
latency of recommender systems [40]. For this reason,
frequent pattern mining is particularly interesting in our
research, and we provide a detailed overview of the literature
on this field in Section III-B.

While reviewing the literature, we spotted that most
reported cases focus on alleviating cold users [17], [18]
rather than investigating the scenarios related to new items.
Hence, we believe that such approaches deserve further
research attention having in mind the still-emerging new
products and services alongside the high demand for finding
more efficient techniques to generate recommendations.
Additionally, we did not find in the literature any attempt
to address the cold-start problem using frequent pattern
mining methods. Furthermore, the proposed method in this
study can address the sparsity nature of the user-item rating
matrix by employing the agglomerative clustering technique
which produces granular representations of this matrix. The
new dense user-item matrix gives an additional improve-
ment for frequent itemsets generated by the FP-growth
algorithm. Moreover, our method can employ contextual
information in the clustering step to generate more relevant
recommendations. The contextual information can be either
combined with users’ and items’ characteristics or even used
individually in case of missing other features. All previous
aspects make our study novel and potentially significant,
considering the efficiency of our method in terms of accuracy
and computational time. The cold-start problem is still one of
the most prevailing topics deserving further attention and is
particularly interesting in the context of our study [10], [36].

III. BACKGROUND KNOWLEDGE
In this section, we briefly summarize the academic knowl-
edge of recommender systems, frequent pattern mining, and
clustering techniques.

A. OVERVIEW OF RECOMMENDER SYSTEMS
Recommender Systems (RSs) are a collection of algorithms
and techniques that aim to provide personalized recom-
mendations for items to a particular user. In this section,
we provide an overview of recommender systems and discuss
the most popular approaches used in this area, shedding
some light on how these techniques suffer from the cold-start
problem.

To mathematically formulate the problem of a recom-
mender system, let us assume there is a list of users U =
{u1, u2, . . . , un} and a list of items I = {i1, i2, . . . , im}. Let R
be the user-item rating matrix, where Rui denotes the rating
given by user u to item i. The task is to predict the missing rat-
ings in R and provide personalized recommendations to users
based on their preferences. Formally, this can be expressed
as finding a function that estimates the unknown ratings (see
Equation 1). The goal is to create a recommendation model

13680 VOLUME 12, 2024



E. Kannout et al.: Clustering-Based Frequent Pattern Mining Framework for Solving Cold-Start Problem

that minimizes the difference between the predicted ratings
f (u, i) and the actual ratings Rui for observed user-item pairs,
and generalizes well to unseen user-item pairs and provides
accurate predictions or rankings for items a user may like.

f : U × I → R (1)

Collaborative filtering (CF) is one of the most widely
used and successful techniques in RS, with a wide range of
application prospects in many fields, such as e-commerce
and social networks [41], [42]. CF techniques do not need
any knowledge about intrinsic users’ or items’ characteristics.
Instead, they utilize historical interactions between them
[43]. The simple motivation behind this assumes that certain
groups of users share tastes and tend to behave similarly in the
future, and the best implicit way to establish this information
is to compare their former choices [11].

CF-based methods operate on the collected interactions
between users (e.g., customers in the webshop, book readers,
or viewers of short videos in Internet services) and items
(e.g., webpages, videos, or books) to generate recommenda-
tions. The interactions may have the form of transactions or
ratings. The more ratings the users provide, the more precise
the outcomes, generated with higher confidence.

Recommender systems rely on various types of input
since the ratings or preferences can be acquired explicitly
or implicitly [43]. In the first case, users rate items, hence
expressing their preferences. The latter refers to the situation
when the ratings are inferred from observable user activity,
such as page views or mouse clicks, etc. [30]. Furthermore,
collaborative filtering methods can be divided into two
main categories - namely, memory-based and model-based
techniques.

The memory-based RS relies on the stored user-items
interactions, typically represented as a matrix. This class
of algorithm employs various notions of similarity between
vectorized representations of users (or items), which may
be computed, for instance, by referring to distance met-
rics (e.g., Euclidean, Manhattan, or Chebyshev distance).
Hence, the memory-based methods are further divided into
user-based and item-based.

The user-based methods search for other users in the
dataset whose interests are close to the investigated one in
terms of their former ratings’ similarity [44]. Using their
top-rated products to predict what the target user would like
is a common and efficient heuristic. On the other hand, the
item-based collaborative filtering is an analogous procedure
to the above-described one. Here, for every product that the
target user has not rated before, we estimate the rating using
the closest neighbors which are rated previously by the target
user. It is important to note that the degree of similarity is
considered in the process of rating estimation. However, the
selection of a proper similarity measure is considered a key
decision. A plethora of possible functions can be used, such
as cosine similarity or Pearson correlation coefficient.

The model-based CF algorithms opt to fit a predictive
model to further use this model for predicting new ratings

[45]. The model-building process may be implemented based
on machine learning algorithms, such as matrix factorization
(MF) [46], [47], Bayesian classifiers [48], or neural networks
and fuzzy systems [49], [50]. In recent years, it was also
suggested to use a multilayer perceptron, which is often
referred to as neural collaborative filtering. Still, methods
based on matrix factorization are most broadly used due
to their ability to address the efficient way they handle
scalability and sparsity issues [51], [52]. One of the most
popular techniques applied to solve the matrix factorization
problem in this regard is singular value decomposition
(SVD) [53].
Although CF-based methods are very efficient and give

good results, they still suffer from the cold-start problem
which occurs whenever a recommender system tries to
generate recommendations for either a new user who signed
up recently to the system without having any rating records
available yet or when a new item is added to the system
without any rating given to that item so far. In fact, most state-
of-the-art recommendation algorithms generate unreliable
recommendations for such cases since they cannot learn the
preference embedding of these new users/items [13], [54].

Content-based Filtering (CBF) has become a relevant
approach in the development of recommender systems. In
contrast to collaborative filtering, content-based filtering does
not depend on rating co-occurrences across the users. Instead,
it utilizes the characteristics of an item to recommend items
similar to those a given user has liked in the past [55]. It
is based on the fact that items with similar attributes will
be rated similarly. While CBF is very useful, it requires
a profound knowledge of each item, in addition to a user
profile describing the user’s taste. So, the task is to learn
the user preferences and then use the most similar items to
the ones already evaluated positively by a user to generate a
list of recommendations. [56]. The recommendation process
in content-based filtering is performed in three steps [33]:
(i) item profiling, (ii) user profiling, and (iii) recommendation
generation [33]. Item profiling, or item representation, is the
process of extracting a set of features from a dedicated
item. In practice, the item representation can be divided into
two main categories: (i) structured and (ii) unstructured. In
the structured representation, each item is represented by a
set of attributes that have limited and specific values, such
as director, actors, and genres in the case of movies. On
the other hand, in the unstructured representation, such as
articles content, the attribute value is unlimited and requires
conversion into structured data, such as vectors, on which we
can compute metrics, such as Euclidean distance, Pearson’s
coefficient, or cosine similarity [57].
However, content-based filtering methods are capable to

recommend new items which have been added recently to the
system and most likely do not have, or have very few, ratings
in the past. Conversely, the recommendations generated by
collaborative filtering techniques are negatively impacted in
this scenario since they solely rely on the historical ratings
[6], [54], [58]. However, in content-based recommender
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systems, it is necessary to learn user preferences in order
to provide reliable recommendations. Therefore, CBF suffers
from the user cold-start problem when new users who signed
up recently do not have, or have very few, ratings, and
hence, the quality of recommendation will be impacted by
an insufficient number of rated items [6], [16].
The hybrid filtering model is a combination of more

than one filtering approach. It is introduced to over-
come some common problems that are associated with
filtering approaches, such as the cold-start problem, over-
specialization problem, and sparsity problem [59]. For
example, the sparsity problem is addressed in the hybrid
recommendation model by integrating the information of
the content-based filtering and collaborative filtering models.
Another motivation behind the implementation of hybrid
filtering is to improve the accuracy and efficiency of the
recommendation process. However, the outcomes of any
hybrid model strongly depend on the used algorithms and the
method of hybridization, for example, how the outcomes of
an algorithm relate to the other ones [6]. Basically, hybrid
methods can be implemented in various ways as follows [58]:
• Implement collaborative and content-based methods
individually, then aggregate their predictions to yield
better recommendations.

• Integrate some content-based characteristics into a
collaborative method. This greatly helps to address the
cold-start problem in collaborative filtering and the
over-specialization problem of content-based filtering.

• Integrate some collaborative characteristics into a
content-based method.

• Construct a single unified recommendation model
that integrates both content-based and collaborative
characteristics to improve the effectiveness of the
recommendation process.

B. FREQUENT PATTERN MINING
The main objective of frequent pattern mining, also known
as association rule mining, is to discover useful patterns
and relationships between elements in large databases using
every distinct transaction. In contrast to collaborative filtering
which aims to find the individual preferences for each user,
frequent pattern mining seeks to discover global or shared
preferences across all users. [60].

Each association rule consists of an antecedent and a
consequent, both of which are a list of items. However, three
metrics, support, confidence, and lift, are in place to analyze
the dataset, identify the most important frequent patterns
(itemsets), and finally extract the association rules. Support
[61] is the measure that gives an idea of how frequently an
itemset appears in all transactions. In other words, the support
is measured by the proportion of transactions in which an
itemset appears. While confidence [61] indicates how likely
the rule is true. It defines the percentage of transactions
containing the consequent given that the antecedent exists.
The last metric, called lift, is considered as a correlation
measure to find and exclude the weak rules that have high

confidence. The Equations 2, 3, and 4 show how we calculate
support, confidence, and lift, respectively.

support(A⇒ B) = P(A ∪ B) (2)

confidence(A⇒ B) = P(B|A) =
support(A ∪ B)
support(A)

(3)

lift(A⇒ B) =
P(A ∪ B)
P(A)P(B)

=
support(A ∪ B)

support(A)support(B)
(4)

Various algorithms exist for mining frequent itemsets, such
as Apriori [62], [63], AprioriTID [62], [63], Apriori Hybrid
[62], [63], Eclat (Equivalence CLAss Transformation) [64],
[65], and FP-growth (Frequent pattern) [62], [66]. In this
paper, we utilize FP-growth algorithm to generate frequent
itemsets since it has several advantages over other algorithms.
For instance, Apriori algorithm suffers from two major
shortcomings: (i) the large size of candidate itemsets and
(ii) the high costs of disk I/O and computing power due to
multiple scans of the database. All these problems are solved
in FP-growth algorithm by leveraging the FP-tree (frequent
pattern tree) data structure to store all data in a concise
and compact way. Therefore, the size of candidate itemsets
will not be a problem anymore. Moreover, once the FP-tree
is constructed, we can directly use a recursive divide-and-
conquer approach to efficiently mine the frequent itemsets
without any need to scan the database over and over again
like in other algorithms [66]. In this way, the cost of searching
frequent patterns is substantially reduced. Finally, it is worth
mentioning that extensive research efforts have been made
by practitioners in order to find the major issues/challenges
related to algorithms used for frequent pattern mining in
addition to considering the performance efficiency of these
algorithms by applying them to real-world datasets under
varying conditions [67], [68]. The comparative analysis
shows that FP-growth algorithm is the most efficient/scalable
among all other algorithms. Therefore, we decided to use
FP-growth algorithm in our proposed framework (Clustering-
based FPRS) to generate frequent itemsets.

C. RUDIMENTS OF CLUSTERING TECHNIQUES
In this section, we provide a brief introduction to clustering
techniques focusing on hierarchical methods which are used
in our experiments to cluster the users and items.

Data clustering is an unsupervised learning technique
designed for creating groups of objects (clusters) so that
objects within the same cluster are very similar and objects in
different clusters are quite distinct. Mathematically, assuming
there is a dataset with n objects, each of which is described
by m features, is denoted by D = {x1, x2, . . . , xn}, where
xi = (xi1, xi2, . . . , xim)T is a vector denoting the ith object
and xij is a scalar denoting the jth component or feature of xi.
The number of features m is also called the dimensionality
of the dataset [69]. The clustering algorithm is the process
of assigning a class label li ∈ {1, 2, . . . , k} to each object
xi to identify its cluster class, where k is the number of
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clusters. Mathematically, clustering for a given dataset can be
represented by an assignment function f : D→ [0, 1]k , x →
f (x), defined as follows:

f (x) = (f1(x), f2(x), . . . , fk (x)), (5)
k∑
i=1

fi(x) = 1, ∀x ∈ D, (6)

As a result, f is representing hard clustering if for every
x ∈ D, fi(x) ∈ {0, 1}, otherwise, it is representing
soft (fuzzy) clustering [69]. In other words, in hard clustering,
each object should belong to one and only one cluster,
while in fuzzy clustering, the object can belong to more
than one cluster with probabilities. Next, we investigate the
hierarchical clustering techniques since they are employed in
our proposed framework.

Clustering techniques are referred to as hierarchical if the
number of clusters changes when the algorithm proceeds.
Hence, there is no need to determine the number of clusters
at the beginning of the algorithm. Hierarchical algorithms are
classified into two types: divisive hierarchical algorithms and
agglomerative hierarchical algorithms [70].

In an agglomerative hierarchical algorithm, the algorithm
proceeds from the bottom to the top. The algorithm starts
from n clusters with every single object in a single cluster.
Then, it recursively merges two disjoint clusters according
to some distance measure to form a new cluster until all
of the data are in a single cluster. It is worth noting that
there are several agglomerative hierarchical methods, such as
single-link method and complete link method, which can be
distinguished according to different distance measures they
use [70], [71].

On the other hand, the divisive hierarchical algorithm can
be viewed as a top-bottom clustering method. Initially, the
algorithm starts with putting all objects in one large cluster,
and then recursively splits it into smaller clusters according to
some similarity criteria. DIANA algorithm [70] is one of the
most popular divisive hierarchical algorithms. At each step
in DIANA algorithm, the cluster with the largest diameter is
split until each object is in a single cluster at step n− 1. The
diameter of cluster C is defined to be the largest dissimilarity
between two objects.

IV. CLUSTERING-BASED FREQUENT PATTERN MINING
FRAMEWORK
The main problem we address in this paper is to mitigate
the impact of new users and items on collaborative filtering
techniques. This section introduces the clustering-based
frequent pattern mining framework for recommender systems
(Clustering-based FPRS), a hybrid RS that significantly
mitigates the cold-start problem.

Figure 1 depicts the process of generating the recommen-
dations consisting of five stages: (i) Data Input, (ii) Data
Preparation, (iii) Data Preprocessing, (iv) Frequent Pattern
Mining, and (v) Recommendation Generation. In the first
stage, the user-item rating matrix is enriched by selected

content-based users’ and items’ characteristics. In the data
preparation stage, we provide data quality analysis, filtering,
and verification of selected features’ importance. During
the data preprocessing stage, the user-item rating matrix
is converted into a lower-dimensional one using clustering
techniques. Following this transformation, the matrix is
partitioned based on selected features, resulting in the
creation of smaller matrices. In the fourth stage, we generate
frequent itemsets using the FP-growth algorithm. Finally,
we produce the recommendations with the FPRS framework
that consists of two main modules: user cold-start and item
cold-start module. Instead of providing one method that fits
all purposes, we follow multiple strategies in our frame-
work. Therefore, each module offers several approaches
to selecting the features and producing recommendations
(cf. Section IV-A).
The main idea behind the Clustering-based FPRS is to

convert the user-item rating matrix into a lower-dimensional
one using clustering techniques. Mathematically, let us
assume there is a dataset with n users and η features. The
result of clustering algorithms can be represented by a k × n
matrix as follows:

U =


u11 u12 . . . u1k
u21 u22 . . . u2k
...

...
. . .

...

un1 un2 . . . unk

 , (7)

where uij denotes the membership of user i in cluster j, and
k denotes the number of clusters. This approach allows us
to generalize collaborative filtering techniques to operate on
clusters of similar users. The most typical case considers that
each user belongs to only one cluster meeting the condition:

uij ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ k (8)

However, by application of fuzzy clustering, we can model
more complex scenarios in which users may (to some extent,
e.g., expressed by probabilities) belong to one or more
clusters:

uij ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ j ≤ k (9)
k∑
j=1

uij = 1, 1 ≤ i ≤ n (10)

n∑
i=1

uij > 0, 1 ≤ j ≤ k. (11)

An analogous approach is applied to items’ representation.
The consequence of applying the clustering techniques on
users and items is a clustered user-item rating matrix with
a significantly higher rating density (cf. the upper right part
of Figure 1). Depending on some selected criteria related
to data characteristics or quality revealed in the ’’Attribute
analysis‘‘ phase of the process on Figure 1, such as feature
distribution or missing values’ ratio, we select the most
appropriate features to build users’ and items’ representation.

VOLUME 12, 2024 13683



E. Kannout et al.: Clustering-Based Frequent Pattern Mining Framework for Solving Cold-Start Problem

FIGURE 1. Clustering-based frequent pattern mining framework for recommender systems.

Moreover, the contextual information can be utilized as well
to cluster the users and items [30].

It is well known that using datasets with high rating density
gives the means to generate more frequent itemsets, leading
to a better quality of recommendations. The introduced
clustered user-item matrix is instrumental in mitigating the
cold-start problem. We include it in all recommendation
algorithms introduced in Section IV-A. As shown in the
experiments in Section V, by incorporating clustering, the
FPRS strategies of the user and item cold-start modules could
significantly alleviate the cold-start problem related to both
new users and items.

In the presented study, we implement hierarchical clus-
tering (cf. Figure 1). There are, however, many more ways
we can extend this approach in the future. One of the

approaches, which could respond to the over-specialization of
recommendations (i.e., the serendipity problem), is to apply
fuzzy logic. By referring to fuzzy clustering, we may define
the probability that a particular user belongs to each cluster.
These probabilities can be considered as weights to estimate
the prediction by computing the dot product of two vectors -
the user’s probabilities and the aggregated rating for that
item’s cluster per each user’s cluster. More formally:

s(i, j) = ai · bj =
k∑

r=1

airbjr (12)

where s(i, j) represents the predicted rating of user i for item
cluster j, ai is the vector expressing the probabilities/weights
of user i within each user’s cluster, and bj is the vector
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representing the aggregated ratings (e.g., average, median,
or a range of min-max values) of item cluster j for each
user’s cluster. The length of both vectors should be equal and
represents the number of user clusters k (cf. Figure 1). Finally,
we can select some items from the clusters with the highest
estimated rating and recommend them to the target user. We
can analogously apply this process to recommend a dedicated
item to a list of users.

The cold-start problem can be categorized into two types.
The complete cold-start problem, where no interactions are
present for new users, and the incomplete cold-start problem,
where there are only a few interactions for new users. It
is essential to emphasize that the Clustering-based FPRS
is designed to handle both incomplete and complete cold-
start scenarios. The resolution for the incomplete cold-start
challenge involves transforming the user-item matrix into a
lower dimension, resulting in a clustered matrix that is less
sparse than the original one (cf. stage Data Preprocessing
in Figure 1). By operating on the clustered matrix, classical
collaborative filtering techniques can generate more accurate
recommendations, particularly for users or items with limited
ratings (referred to as warm users or items). On the
other hand, all the strategies outlined in Section IV-A
contribute to resolving the complete cold-start problem. By
employing these strategies, it becomes possible to generate
recommendations for users or items lacking any historical
ratings (referred to as cold users or items).

A. USER AND ITEM COLD-START MODULES
In the user cold-start module of our framework, we focus on
generating recommendations for new users who signed up
recently to the system and have a very small rating history.
To generate recommendations in such a situation, we use
several Strategies 1, 2, 3, and 4, which mainly differ in three
factors: (i) features selected to split the data, (ii) the type of
generated frequent patterns (itemsets or usersets) and (iii) the
way how the frequent patterns are utilized to generate the
recommendations.

In Strategy 1, we do not split the dataset, but rather
we extract frequent 1-itemsets for the entire dataset and
recommend these popular items to the new users. In
Strategy 2, we split the data by users’ demographics, and
then for each user group, created by splitting the data,
we use the items in the generated frequent 1-itemsets to
compose the recommendation set that will eventually be
recommended to new users based on their demographics (the
user groups they belong to). On the other hand, in Strategies 3
and 4, we generate frequent usersets instead of itemsets.
Here, every frequent userset contains the users that highly
rated the same movies more than the min_support threshold.
In both Strategies 3 and 4, the items, rated by frequent
usersets and fulfilled the participation threshold, are utilized
to form the recommendation set for a dedicated user group.
Figure 2 shows how we can use the gender feature, which
can be replaced or extended by any other users’ features,
in Strategy 3 to generate recommendations for the cold users.

Strategy 1 User Cold-Start Module (Popularity)
Data:
dataTrain - entire training dataset (no records splitting)
Res - recommendation list for new user
ρ - list of frequent 1-itemsets
θ - acceptable support threshold
Procedure:
ρ ← fp-growth(dataTrain, θ )
Res← ρ (only frequent 1-itemsets)
Recommendation:
Recommend all items in Res to the new_user

However, in Strategy 4, we split the data using users’ and
items’ characteristics, so the recommendation set is created
for each user group using the frequent usersets that exist in
the group containing the largest number of these frequent sets
(called the dominant group).

The item cold-start module aims to generate recommen-
dations for new items with a minimal rating record. We
align with the position that providing one ultimate solution
to address the cold-start problem in all datasets may be
unobtainable. Therefore, we follow multiple strategies to
generate such recommendations. More details about the
developed approaches are provided in Strategies 5, 6, and 7.

In Strategy 5, we split the data only by items’ characteris-
tics, while in Strategy 6, we utilize both items’ and users’
characteristics to split the data. Moreover, for each item
group in Strategies 5 and 6, we compose the recommendation
set by selecting the users who are involved in generating
the frequent itemsets more than the participation threshold.
Then, we recommend the new item to a set of users based
on the item group it belongs to. However, the users in the
recommendation set are selected from all frequent itemsets
in Strategy 5.
In Strategy 6, the users are selected from the user group

that contains the largest number of frequent itemsets, called
the dominant group, since in this strategy we split the data
by users’ and items’ characteristics. On the other hand,
in Strategy 7, we form clusters based on the frequent
1-itemsets created by users’ and items’ features. Then, the
recommendation set for the new item is produced based on
the percentage of users’ engagement in creating the frequent
itemsets in the closest cluster.

Now, let us provide a detailed analysis of the time (com-
putational) complexity for all strategies used in item and
user modules. Initially, the time complexity of the FP-growth
algorithm that identifies all frequent itemsets of size k is
O(n2) [72], where k is the number of elements in the
itemset. However, the complexity decreases when we impose
constraints on the size of frequent itemsets we are seeking.
For instance, when k = 1, the complexity of FP-growth
becomes linear. In all formulas describing the complexity of
strategies, nu denotes the total number of users, whereas ni
denotes the total number of items.
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Strategy 2 User Cold-Start Module (Popularity in User
Groups)

Data:
dataTrain - entire training dataset
Res - recommendation list for new user
ϑ - selected users features and contextual information
ρ - frequent 1-itemsets per userGroup
θ - acceptable support threshold
ω - items in frequent_itemsets
Procedure:
dataTrainSets← split(dataTrain, ϑ)
ρ ← fp-growth(dataTrainSets, θ )
for each frequent 1-itemsets in ρ(userGroup) do
Res(userGroup)← ω

end for
Recommendation:
γ ← findUserGroup(new_user)
Recommend all items in Res(γ ) to the new_user

Strategy 3 User Cold-Start Module (User Groups)
Data:
dataTrain - entire training dataset
Res - recommendation list for new user
ϑ - selected users features and contextual information
ρ - frequent usersets per userGroup
θ - acceptable support threshold
δ - acceptable participation percentage threshold
Procedure:
dataTrainSets← split(dataTrain, ϑ)
ρ ← fp-growth(dataTrainSets, θ )
for each frequent_usersets in ρ(userGroup) do
for each item do
if item_participation > δ then
Res(userGroup)← item

end if
end for

end for
Recommendation:
γ ← findUserGroup(new_user)
Recommend all items in Res(γ ) to the new_user

Firstly, Strategy 1 has a linear time complexity of O(ni),
since it focuses on discovering itemsets of size 1. In
Strategy 2, we split the input data using selected users’
features, and for each split, we run the FP-growth algorithm
to find frequent 1-itemsets, so its time complexity is also
O(ni). In the first step of Strategy 3, FP-growth requires
quadratic time to find all frequent usersets of size ≤ k .
So, the time complexity should be O(n2u). In the next step,
we check the participation percentage for every item that is
highly rated by frequent usersets. Proposition 1 shows that the
maximum number of frequent usersets of any size ≤ k that
could be returned by the FP-growth algorithm is lower than∑n

k=1
nk
k! . By applying Proposition 2, we can determine the

Strategy 4 User Cold-Start Module (Dominant Groups)
Data:
dataTrain - entire training dataset
Res - recommendation list for new user
ϑ - selected users and items features and contextual
information
ρ - frequent usersets per userItemGroup
θ - acceptable support threshold
δ - acceptable participation percentage threshold
β - dominant frequent usersets per userGroup (largest
usersets)
Procedure:
dataTrainSets← split(dataTrain, ϑ)
ρ ← fp-growth(dataTrainSets, θ )
β ← findDominantGroups(ρ)
for each frequent_usersets in β(userGroup) do
for each item do

if item_participation > δ then
Res(userGroup)← item

end if
end for

end for
Recommendation:
γ ← findUserGroup(new_user)
Recommend all items in Res(γ ) to the new_user

Strategy 5 Item Cold-Start Module (Item Groups)
Data:
dataTrain - entire training dataset
Res - list of users to recommend the new item
ϑ - selected items features and contextual information
ρ - frequent itemsets per itemGroup
θ - acceptable support threshold
δ - acceptable participation percentage threshold
Procedure:
dataTrainSets← split(dataTrain, ϑ)
ρ ← fp-growth(dataTrainSets, θ )
for each frequent_itemsets in ρ(itemGroup) do
for each user do
if user_participation > δ then
Res(itemGroup)← user

end if
end for

end for
Recommendation:
γ ← findItemGroup(new_item)
Recommend new_item to all users in Res(γ )

asymptotic equivalence between
∑n

k=1
nk
k! and

nk
k! . Therefore,

the overall time complexity of Strategy 3 in the worst-case
scenario is O(n2u) + O(

nku
k! )O(ni) = O(nkuni) (cf. Corollary 1).

Strategy 4 is the same as Strategy 3 except that it iterates
only over the frequent usersets in the dominant group. Hence,
its complexity is O( 1cn

k
u)O(

1
cni) = O(nkuni), where c is a
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Strategy 6 Item Cold-Start Module (Dominant Groups)
Data:
dataTrain - entire training dataset
Res - list of users to recommend the new item
ϑ - selected items and users features and contextual
information
ρ - frequent itemsets per userItemGroup
θ - acceptable support threshold
δ - acceptable participation percentage threshold
β - dominant frequent itemsets per itemGroup (largest
itemsets)
Procedure:
dataTrainSets← split(dataTrain, ϑ)
ρ ← fp-growth(dataTrainSets, θ )
β ← findDominantGroups(ρ)
for each frequent_itemsets in β(itemGroup) do
for each user do
if user_participation > δ then
Res(itemGroup)← user

end if
end for

end for
Recommendation:
γ ← findItemGroup(new_item)
Recommend new_item to all users in Res(γ )

Strategy 7 Item Cold-Start Module (Clustering-Based)
Data:
dataTrain - entire training dataset
Res - list of users to recommend the new item
ϑ - selected items and users features and contextual
information
ρ - frequent 1-itemsets per userItemGroup (clusters)
θ - acceptable support threshold
δ - acceptable participation percentage threshold
Procedure:
dataTrainSets← split(dataTrain, ϑ)
ρ ← fp-growth(dataTrainSets, θ )
for each frequent_itemsets in ρ(cluster) do
for each user do
if user_participation > δ then
Res(cluster)← user

end if
end for

end for
Recommendation:
γ ← findClosestCluster(new_item)
Recommend new_item to all users in Res(γ )

constant representing the number of groups after splitting
the dataset. Although the time complexity remains consistent
between Strategy 3 and Strategy 4, in practical scenarios
where both strategies discover a similar number of frequent

FIGURE 2. Example of using gender feature in Strategy 3 to address the
user cold-start problem.

sets, Strategy 4 can significantly accelerate its execution by
iterating solely over the elements in the dominant group.

In the item cold-start module, Strategy 5 mirrors Strat-
egy 3 and Strategy 6 mirrors Strategy 4, indicating a time
complexity of O(nki nu), as previously outlined. In Strategy 7,
we find only frequent 1-itemsets for each split, a process that
operates in O(ni) and yields no more than the total number
of items. Then, for each item, we identify all users whose
participation percentage exceeds the specified threshold. In
the worst-case scenario, this strategy would have a runtime
of O(ni)+ O(ni)O(nu) = O(ninu).
In all the preceding formulas, we assume the worst-

case scenario; however, in practice, the strategies execute
considerably faster. It is worth noting that, in our experiments,
optimal results were consistently achieved with k = 4 in
all strategies where the generation of frequent sets with
size > 1 is required. In Section V-E, we practically
demonstrate that for relatively small values of k , the achieved
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complexity is polynomial rather than exponential, which
observation is in line with Corollary 1. Moreover, the
performance of the strategies may differ between datasets,
and selecting the best one, as well as searching for
optimal values for parameters and thresholds, should be
subjected to experimental evaluation per case. More details
on the implementation of parameter tuning are provided in
Section V.
Proposition 1: Let n be the total number of elements, and

let k be the size of frequent set. Then, the number of frequent
sets returned by FP-growth algorithm with size ≤ k is lower
than

∑n
k=1

nk
k! .

Proof: The formula for the number of possible combi-
nations when k objects are selected out of n different objects
is given by [73]:

nCk =
(
n
k

)
=

n!
(n− k)!k!

(13)

We can express nCk in sigma form (or summation form) as
follows:

nC1 = n

nC2 =
n(n− 1)

2!
nC3 =

n(n− 1)(n− 2)
3!

(14)

When k objects are selected out of n different objects, we can
infer the maximal number of frequent sets generated by
FP-growth algorithm as follows:

nCk =
n(n− 1)(n− 2) . . . (n− k + 1)

k!

nCk <
nk

k!
(15)

Finally, when the size of frequent itemsets is ≤ k , the
maximal number of frequent sets of n different objects can
be deduced as follows:

n∑
k=1

nCk <

n∑
k=1

nk

k!
(16)

Proposition 2: Let k be limited by a constant Ck , then:
Ck∑
k=1

nk

k!
∼
nCk

Ck !

Proof: Since the sum is finite, i.e, limited by Ck :

lim
n→∞

∑Ck
k=1

nk
k!

nCk
Ck !

= lim
n→∞

nCk
Ck !

nCk
Ck !

+

∑Ck−1
k=1

nk
k!

nCk
Ck !

= lim
n→∞

1+

∑Ck−1
k=1

nk
k!

nCk
Ck !

= 1+ 0 = 1 (17)

Corollary 1: Let k be limited by a constant Ck , then:

nk

k!
= 2(nk )

Proof: Having k limited by a constant value Ck ,
we can easily show as n approaches infinity limn→∞
nk
k!
nk approximates towards a constant.

V. EXPERIMENTAL EVALUATION
In this section, we conduct comprehensive experiments to
evaluate the performance of the Clustering-based FPRS
recommender system.

A. DATASETS AND EVALUATION MEASURES
In our experiments, we used four datasets, namely: Movie-
Lens 100K, MovieLens 1M,1 MovieLens + IMDb/Rotten
Tomatoes (abbreviated as HetRec-MovieLens),2 and LDOS-
CoMoDa.3 MovieLens datasets were collected by the
GroupLens research project at the University of Minnesota.
MovieLens 100K contains 100 000 ratings given by 943 users
on 1 682 movies on a scale from 1 to 5. While MovieLens
1M includes 1 000 000 ratings of approximately 3 900 films
made by 6 040 users on a scale from 1 to 5. Also,
we used HetRec-MovieLens dataset, which is an extension
of the MovieLens 10M dataset that was published by the
GroupLeans research group in 2011 at the 2nd International
Workshop on Information Heterogeneity and Fusion in
Recommender Systems [74]. It links the movies of the
MovieLens dataset with their corresponding web pages at
InternetMovie Database (IMDb) and Rotten Tomatoes movie
review systems. It contains 2 113 users and 855 598 ratings
(on a scale from 0 to 5) of about 10 197 movies. Finally,
we employed the LDOS-CoMoDa dataset, which is presented
by Kosir et al. [75]. LDOS-CoMoDa is a context-rich movie
recommender dataset comprising 200 users who gave 2 296
ratings (on a scale from 0 to 5) for 4 138 movies in twelve
pieces of contextual information describing the situation in
which the user consumed the item.

In all datasets, we combine users.data, items.data, and
ratings.data to join users’ characteristics (e.g., demograph-
ics), items’ attributes (e.g., genre), and ratings in one
dataset. The final/merged dataset contains userId, itemId,
rating, gender, age, occupation, and genre attributes (cf.
Table 1). However, the HetRec-MovieLens dataset does not
contain any user characteristics. Instead, it provides the
time at which the rating was given. Using this contextual
information, we represent each user by a vector where each
value corresponds to a pair of (season, time of day) and
represents the number of highly rated movies at that time.
After normalizing these values, we use the agglomerative
clustering technique with Euclidean distance to group the
users. Following this approach, we evaluate all strategies of

1https://grouplens.org/datasets/movielens/
2https://grouplens.org/datasets/hetrec-2011/
3https://www.lucami.org/en/research/ldos-comoda-dataset/
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the item cold-start module on the HetRec-MovieLens dataset.
However, it is not possible to utilize this dataset to evaluate the
strategies of the user cold-start module due to missing ratings
and contextual information for new users.

Table 1 presents an analysis of selected features used in
our experiments (i.e., gender and genre). This perspective lets
us better understand the interrelations between features that
could impact the results. Figures 3 show the most popular
movie genres among males and females for three datasets
where genre and gender are available. It is worth noting that
the data is slightly imbalanced, e.g., there aremoremales than
females in the datasets.

FIGURE 3. Histogram of the variables (rating, genre, and gender) in
MovieLens (100K and 1M) and LDOS-CoMoDa datasets.

The data were split into training and testing sets in a way
allowing to ensure a sufficient number of ratings in the test
set per each gender and genre. In particular:
• For the experiment related to the user cold-start module,
we draw some users with a possibly high number of
ratings on the 50 popularmovies. All the ratings given by
all those users (i.e., 9 052 records in MovieLens 100K,
25 533 records in MovieLens 1M, and 519 records in
LDOS-CoMoDa) are considered a testing set, keeping
the rest of the records in the training set. The number
of users is selected in a way such that 20-30% of the
records is kept for testing, and the rest is used for
training. This way, all the records related to the selected
users were removed from the test set, which properly

simulates the cold-start problem associated with new
users (i.e., no available rating history).

• To properly evaluate the item cold-start module, the
testing data is chosen in a very similar way. First,
we have drawn 50 active users (i.e., with a considerable
number of ratings). Subsequently, we have drawn out
some of the most-rated movies by those 50 users.
Similarly, the number of items differs between the
datasets in order to fairly split the dataset between
training and testing. The ratings of all the selected
movies by all users (i.e., 7 320 records in MovieLens
100K, 41 105 records in MovieLens 1M, 25 583 records
in HetRec-MovieLens, and 209 records in LDOS-
CoMoDa) are considered a testing set, keeping the rest
of the records in the training set. Note that all the ratings
related to the test movies were removed from the training
dataset, which models the item cold-start problem well.

In our study, we consider a binary decision task, i.e., whether
a given item (e.g., a movie) is appropriate for the user (or
not). To correctly model this situation for the MovieLens
data, we assume users prefer all the films rated 3 or
more (belonging to the positive class). In contrast, those
ranked lower are poorly matched to the users. In the
described scenario, the Clustering-based FPRS returns binary
information for each new user (or item) - to recommend or
not. Following that, to assess the quality of the prediction,
the F1-score is used [76]:

F1 = 2 ·
precision · recall
precision+ recall

(18)

where precision and recall, which is also known as True
Positive Rate (TPR), are well-known binary evaluation
metrics, cf. Equations 19 and 20.

Precision =
TP

TP+ FP
(19)

Recall (True Positive Rate) =
TP

TP+ FN
(20)

We also use accuracy (Equation 21) to measure all the
correctly identified cases. This measure is most effective
for the data with balanced decision classes that are equally
important. However, the accuracy measure is helpful to gain
some insights about the error rate since they are inversely
related (Error Rate = 1 − Accuracy).

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(21)

Finally, we use false positive rate (FPR) to report the
proportion of negative cases incorrectly identified as positive
cases, cf. Equation 22.

False Positive Rate (FPR) =
FP

FP+ TN
(22)

B. BASELINE RECOMMENDER SYSTEMS
To show the strengths of Clustering-based FPRS, we evaluate
it against state-of-the-art models which are designed to
mitigate the cold-start problem in recommender systems.
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TABLE 1. Selected data characteristics.

The first baseline [20], called regularization differentiating
functions (RDF), was proposed recently to alleviate the
cold-start problem by using three simple regularization
differentiating functions on top of the matrix factorization-
based models. The main objective behind using these
functions is to set lower regularization weights to the latent
factors associated with popular items and active users,
and assign higher regularization weights on unpopular, less
rated/viewed/purchased, items and less active users to prevent
their latent factors from being influenced by the few extreme
observations. In particular, this method aims to improve the
MF-based models by utilizing more information revealed
by popular items and active users, and making conservative
predictions on unpopular items and less active users. In the
evaluation, we used the publicly available implementation,1

provided by the authors, which integrates the proposed
regularization technique with the SVD, SVD++, and the
NMF models.

The second baseline [21], called collective matrix factor-
ization models in recommender systems (CMFREC), pro-
posed an enhancement to the collective matrix factorization
model to deal with binary data. In addition, it provided an
alternative formulation, called offsets model, that is able to
make fast recommendations for new users and items and
does not require any transformation for attributes data that
is limited in range. On the other hand, we also evaluate
our strategies against two classical and well-known latent
factor models, namely Matrix Factorization (MF) [43] and
Singular Value Decomposition (SVD) [5], which both rely
on transforming items and users to the same latent factor or
embedding space. The embedding space, also known as item-
and user-embeddings, aims to explain ratings by finding the
dependencies between rows (users) and columns (items) in
the user-item rating matrix. Eventually, these embeddings are
used to predict the missing ratings in the original matrix.
It is worth noting that the implementations of MF and

1https://github.com/ncu-dart/rdf

SVD provided by the Cornac library have been used in the
evaluation process [77].
Furthermore, to measure the impact of frequent pattern

mining in RS, we developed two versions of a baseline
model similar to the strategies described previously, in which,
however, the FP-growth algorithm was omitted, as follows:

• Baseline model for new users: for each movie in the
training set, the most common value of the selected
user’s feature (such as gender and age group) was
found. For a given new user, all movies assigned to
their age group and gender (or any other selected user
characteristic) are recommended.

• Baseline model for new items: it works similarly. Here,
we pick the most popular value of the selected item’s
feature for each user. For instance, if we consider genre,
each new movie is recommended to all users whose
favorite genre (i.e., with the highest ratings in the past)
was the same as the new movie’s genre.

C. PERFORMANCE COMPARISON AND ANALYSIS
To provide a reliable evaluation of the developed framework,
we rely on several metrics, particularly precision, recall, F1,
accuracy, and false positive rate (FPR) measures. The two
experiments evaluating user cold-start and item cold-start
modules were conducted separately, and the outcomes are
provided in the subsequent sections.

In Tables 2, 3, and 4, we find precision, recall, F1, accuracy,
and FPR measures for the results generated by Baseline
models and strategies constituting Clustering-based FPRS
dedicated to addressing user cold-start, which are illustrated
in detail in Section IV-A. The highest precision, recall, F1,
and accuracy values and the lowest false positive rate are bold.

The results confirm that all developed strategies out-
perform the benchmark models, namely Baseline, RDF,
CMFREC, MF, and SVD, in terms of precision, F1, accuracy,
and false positive rate on all evaluated data sets. The
benchmark solutions reported higher recall which is quite
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natural since these methods are more selective, providing
more apt results with a tradeoff that some potentially relevant
movies may be omitted. However, the higher false positive
rates reported by the benchmark models indicate that these
models made many irrelevant recommendations. For the
user cold-start problem, all strategies applied to MovieLens
100k and MovieLens 1M were evaluated at min_support
value of 0.08 and performed similarly. However, the third
one was just slightly better. All strategies evaluated on
the LDOS-CoMoDa dataset performed best at min_support
value of 0.06.

TABLE 2. Evaluation for user cold-start (MovieLens 100k).

TABLE 3. Evaluation for user cold-start (MovieLens 1M).

In the second experiment, we evaluated the item cold-start
module of Clustering-based FPRS. We calculated precision,
recall, F1, accuracy, and false positive rate measures for
the results generated by Baseline, RDF, CMFREC, MF,
SVD, and all the strategies described in Section IV-A.
The comparative summary of this evaluation is shown in
Tables 5, 6, 7 and 8.

The results confirm that the developed approach tomitigate
the item cold-start problem is superior to the baseline
solution. However, the observations differ slightly between
datasets. For MovieLens 100K, all strategies reported similar
recall. Regarding precision and F1 measures, the most
successful in dealing with new items in this data appeared
to be Strategy 6, which is based on items’ and users’

TABLE 4. Evaluation for user cold-start (LDOS-CoMoDa).

characteristics. However, for the applications that do require
high accuracy and low false positive rate (FPR), it may
be better to apply Strategy 7, which was also superior in
terms of recall, F1, accuracy, and FPR on the MovieLens
1M data. Still, for the LDOS-CoMoDa and HetRec datasets,
the best F1-score, accuracy, and FPR were reported by
Strategy 6. When it comes to benchmark models, we observe
that Baseline showed higher accuracy than other models.
However, all these models reported relatively similar F1
scores.

It is noteworthy that to select the proper strategy, we should
rely on the appropriate evaluation measure that best matches
the target of our application. For instance, we should count
on precision scores when our application focuses on the
number of correct recommendations considering themistakes
made. While it is preferable to rely on recall scores when
the targeted application is not concerned with the mistakes
made since the recall measure only considers the number of
correct recommendations made out of all positive predictions
that could have been made (cf. Equations 19 and 20).

On MovieLens datasets (100k and 1M), all strategies
were evaluated at the participation threshold value of 30%
and min_support value of 0.22. On the HetRec-MovieLens
dataset, all strategies were evaluated at a threshold value of
15% and min_support value of 0.20. Lastly, on the LDOS-
CoMoDa, the best threshold and min_support values were
20% and 0.06, respectively. In all experiments, we trained the
models using the optimal values of thresholds. More details
about tuning the thresholds are presented in Section V-D.

Let us now take a closer look at the performance
of the proposed strategies with the Receiver Operating
Characteristic (ROC) curves. ROC curves plot the True
Positive Rate (TPR) against False Positive Rate (FPR) at
various threshold values (cf. Equations 20 and 22) and are
often applied to evaluate how well logistic regression models
classify positive vs. negative classes at all possible cutoffs.
The Area Under the ROC Curve (AUC) is typically used as a
numeric summary of the ROC curve by measuring the ability
of a binary classifier to distinguish or separate between the
positive and negative classes [76].
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TABLE 5. Evaluation for item cold-start (MovieLens 100k).

TABLE 6. Evaluation for item cold-start (MovieLens 1M).

TABLE 7. Evaluation for item cold-start (LDOS-CoMoDa).

In the experiment, we utilize AUC/ROC score to find
the most efficient model in the user cold-start module. The
Clustering-based FPRS is a binary decision recommender
system, i.e., provides a binary decision ‘‘to recommend’’ (1)
or ‘‘not’’ (0), instead of ranking (e.g., with logistic regres-
sion). Therefore, to generate ROC curves, we slightly
modified the implemented algorithms. In particular, we rank
the generated recommendations using the support value in
Strategies 1 and 2, and the participation percentage value
in Strategies 3 and 4. The recommendations generated
by benchmark models are ranked/ordered based on their
estimated ratings. There is one exception, we could not
calculate AUC/ROC score for the Baseline model since it is

TABLE 8. Evaluation for item cold-start (HetRec-MovieLens).

a binary classifier that predicts True/False for every instance
in the test set without prior estimating of probability.

Figures 4a and 4b plot ROC curves achieved at different
threshold values for every model using the most representa-
tive datasets, i.e., MovieLens 100k and 1M. Table 9 displays
AUC scores for all ROC curves. The results confirm that
all developed strategies outperform the benchmark models.
However, they reported relatively similar AUC scores for
the examined datasets. For the MovieLens 100k data, the
Strategies 1 and 2 achieved the highest AUC of 0.85 for
new/cold users. Whereas, for the MovieLens 1M data, the
Strategy 3 was superior, with an AUC of 0.87.

TABLE 9. AUC values for each ROC curve shown in Figure 4.

D. THRESHOLDS SENSITIVITY ANALYSIS
The performance of the Clustering-based FPRS model
depends on min_support and participation thresholds, which
mainly impact the extraction of frequent itemsets and relevant
recommendations for new users and new items. In this
section, we elaborate on the impact of parameter tuning
on our model performance. Besides, additional experiments
were conducted to find the optimal number of user and item
clusters to model their similarity. The outputs of this study
establish the optimal values of these thresholds.

In the first experiment, we aim to find the optimal
value of min_support threshold by evaluating the item
cold-start module of the Clustering-based FPRS framework
using different min_support values. Figure 6a shows how
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FIGURE 4. Roc curves for Clustering-based FPRS strategies (user module) and benchmark models using MovieLens (100k and 1M) datasets.

the F1-score is impacted by applying different values for
MovieLens 100K data. Observably, the best min_support
values for all strategies in the item cold-start module lay
between 0.1 and 0.2. A similar analysis, yet regarding
MovieLens 1M, HetRec-MovieLens, and LDOS-CoMoDa
data sets, we may find in Figures 6b, 6c, and 6d, respectively.
In the second experiment, we plot the impact of the

participation threshold on the F1-score for the strategies
in the item cold-start module. Figures 6e, 6f, 6g, and 6h
plot the F1-score achieved for different threshold values for
the examined datasets. Observably, the best participation
threshold values for all strategies used in FPRS (item cold-
start module) are around 20% forMovieLens (100K and 1M),
5% for HetRec-MovieLens and 10% for LDOS-CoMoDa.
Finally, it is worth noting that when we run this experiment,
we apply the optimal value ofmin_support from the previous
investigation.

FIGURE 5. Comparing the practical time complexity of Strategy 4 with the
worst-case scenario outlined in Section IV-A.

Finally, we test the optimal number of clusters to model
users’ and items’ similarity. For that purpose, each item is
represented by a vector of genres. In our study, we employ
agglomerative clustering. In this technique, each observation
starts as a singleton cluster. In the following steps, clusters
are recursively merged, minimizing the maximum distance
between pairs of items. Two clusters are merged at level

TABLE 10. Time taken for model training in user cold-start module
(in seconds).

TABLE 11. Time taken for model training in item cold-start module
(in seconds).

c if every possible pair of their elements has a distance
smaller than this level. Searching for the optimal number
of clusters (that correspond to searching for the optimal c),
we aimed at achieving a possibly small number of clusters,
i.e., a possibly high value c, which was ultimately established
experimentally at the level of 0.9. In the experiment, we used
Jaccard distance, which is very convenient for comparing
observations with categorical variables.
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FIGURE 6. Sensitivity analysis for min_supp and participation percentage thresholds in MovieLens (100k and 1M), HetRec-MovieLens and
LDOS-CoMoDa.
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E. RUN-TIME COMPARISONS
The primary objective of this section is to assess the
efficiency of our strategies in terms of computational
complexity. To illustrate, we opt for Strategy 4 and practically
evaluate its complexity against the worst-case scenario (cf.
Section IV-A). Figure 5 displays the observed number of
iterations while running Strategy 4 on the MovieLens 100K
dataset (blue line) alongside the theoretically worst-case
number of iterations (orange line). The results demonstrate
that the practical complexity is significantly lower than the
worst-case scenario. This discrepancy arises because the
number of frequent sets returned by the FP-growth algorithm
is considerably smaller than the maximum number indicated
in Proposition 1. This confirms that selecting a reasonably
small value for k (or max_size of frequent sets) results in
polynomial complexity rather than exponential. In Figure 5,
we use a logarithmic scale in order to display data with
expansive value disparity on the same chart.

On the other hand, we observed that fine-tuning the
min_support parameter is crucial to achieve the best results.
Our experiments with various datasets of different sizes
demonstrate that the optimal value of min_support consis-
tently restricts the FP-growth algorithm from discovering
frequent sets with large sizes. For instance, after optimizing
the min_support , we consistently observed the best results
when setting k = 4 in all strategies where the generation of
frequent sets with size > 1 is required.
To show the practical impact of previous discussions,

we compare the developed strategies with all baselines in
terms of the computational time of training the model on
all datasets. The results in Tables 10 and 11 show that the
time required to train the models in Clustering-based FPRS
framework is significantly shorter compared to baseline
models in user and item cold-start modules. When it comes
to generating cold-start recommendations, Clustering-based
FPRS models require less than 0.3 seconds to generate
recommendations for a new user or to recommend a new item
to some users which makes the proposed framework suitable
for real-time systems.

F. CHALLENGES AND LIMITATIONS
This section is dedicated to discussing the limitations of
our proposed method and the challenges we faced while
evaluating it. The most important among which is the
availability of users’ and items’ characteristics which are used
to split the dataset and extract specified patterns for each
subset of the dataset. However, we can utilize the contextual
information instead of users’ and items’ features when they
are missing.

Another issue appears when we deal with small datasets.
It is crucial to have enough transactions in every split in
order to extract frequent itemsets. It would be ideal to have
a similar number of transitions in every subset, however,
if this is not the case, then we have to carefully select
appropriate values for input parameters, such asmin_support

and participation percentage thresholds, by analyzing the
results of the experiments presented in Section V-D. This is a
bit challenging especially when we deal with small datasets.

VI. CONCLUSION AND FUTURE WORKS
This article presents Clustering-based FPRS - a recom-
mender system that utilizes ratings to discover frequent
itemsets associated with selected users/items features and
then incorporates these frequent itemsets in generating
recommendations for new users and items. The developed
clustering-based feature extraction phase aims at modeling
similarity between investigated entities. This way, we not
only extend the data representation but also increase their
density, allowing us to alleviate the omnipresent problem of
too few interactions in historical data, especially severe for
new products or services. Our study proposes and evaluates
multiple strategies for creating frequent itemsets to produce
meaningful and relevant recommendations for new users and
items. The discovered frequent itemsets are dedicated to
specific groups of users and items which are generated based
on selected users’ and items’ characteristics, or based on the
ratings given by users, or assigned to items in a dedicated
context.

To evaluate Clustering-based FPRS, we conducted exper-
iments on MovieLens (100K and 1M), HetRec-MovieLens,
and LDOS-CoMoDa datasets with the FP-growth algorithm
to generate the frequent itemsets. The experimental results
show that Clustering-based FPRS has outperformed state-of-
the-art models, designed to address the cold-start problem,
in terms of precision, recall, F1, accuracy, and FPRmeasures.

In the future, we plan to investigate more algorithms for
association rule and frequent pattern mining, e.g., AprioriTID
or Apriori Hybrid. An important extension of the proposed
method will be the introduction of additional permissions
allowing for incremental processing of large data sets [40],
[78] as well as enabling interaction with the user in this
process of deriving a granular representation of data [25],
[79]. We also plan to respond better to changes in users’
behavior and preferences, addressing the possible drifts
and shifts in data. One viable option is to periodically
update frequent itemsets based on recent changes in rating
history. It would also be of value to extend the users’ and
items’ data representation by applying a more advanced
feature extraction to model the similarities among them more
effectively [80], [81], [82].

We also find it very promising for future research to
investigate the application of granular methods for modeling
users’ and items’ similarity [25], [83] and to explore soft
computing methods, incl. rough sets, to model more complex
dependencies in data [26], [84], [85]. We plan to improve the
evaluation process by using specific andmore accurate values
of the thresholds (min_support and participation percentage)
for each strategy instead of using the average of the best
threshold values. After augmenting the developed framework
with the discussed extensions, it would be also advisable to
subject it to in-depth experimental analysis on a number of
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real data sets from various domains, including the FMCG
industry and supply chain management [3], [86]. We believe
the developed framework will be equally effective in all those
applications.
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