
Received 15 December 2023, accepted 10 January 2024, date of publication 17 January 2024, date of current version 25 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355269

Reinforcement Learning for Two-Stage
Permutation Flow Shop Scheduling—A
Real-World Application in Household
Appliance Production
ARTHUR MÜLLER 1, FELIX GRUMBACH 2, AND FIONA KATTENSTROTH3
1Fraunhofer IOSB-INA, 32657 Lemgo, Germany
2Center for Applied Data Science (CfADS), Bielefeld University of Applied Sciences, 33619 Gütersloh, Germany
3Miele & Cie.KG, 33332 Gütersloh, Germany

Corresponding author: Arthur Müller (arthur.mueller@iosb-ina.fraunhofer.de)

This work was supported by the Ministry of Economic Affairs, Industry, Climate Action and Energy of the State of North
Rhine-Westphalia, Germany, ‘‘SUPPORT’’ Project 005-2111-0026.

ABSTRACT Solving production scheduling problems is a difficult and indispensable task for manufacturers
with a push-oriented planning approach. In this study, we tackle a novel production scheduling problem
from a household appliance production at the company Miele & Cie. KG, namely a two-stage permutation
flow shop scheduling problem (PFSSP) with a finite buffer and sequence-dependent setup efforts. The
objective is to minimize idle times and setup efforts in lexicographic order. In extensive and realistic data, the
identification of exact solutions is not possible due to the combinatorial complexity. Therefore, we developed
a reinforcement learning (RL) approach based on the Proximal Policy Optimization (PPO) algorithm that
integrates domain knowledge through reward shaping, action masking, and curriculum learning to solve this
PFSSP. Benchmarking of our approach with a state-of-the-art genetic algorithm (GA) showed significant
superiority. Our work thus provides a successful example of the applicability of RL in real-world production
planning, demonstrating not only its practical utility but also showing the technical and methodological
integration of the agent with a discrete event simulation (DES).We also conducted experiments to investigate
the impact of individual algorithmic elements and a hyperparameter of the reward function on the overall
solution.

INDEX TERMS Reinforcement learning, production scheduling, permutation flow shop scheduling
problem.

I. INTRODUCTION
Production scheduling problems are widely studied in aca-
demic literature and solving these problems has a significant
impact on the success of manufacturing companies. A par-
ticular case are permutation flow shop scheduling problems,
which were first introduced by [1]. PFSSPs typically involve
a sequence of jobs that must be processed by multiple
machines in a specific order. Methods for solving PFSSPs
include heuristics, numerical methods, and metaheuristics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

In recent years, RL has attracted more and more attention as
an alternative approach for successfully solving scheduling
problems [2], [3]. However, many approaches do not move
beyond the academic context due to their abstraction from
real-world requirements, as [4] and [5] point out.

Our paper addresses a specific PFSSP, a so called two-
stage PFSSP, that occurs in a household appliance production
of Miele. A two-stage PFSSP encompasses two distinct
production stages with multiple machines in at least one of
the stages. Thus, it is not only necessary to plan the sequence
of jobs within the first stage, but also to consider how
this sequence affects the material flow in the second stage.

11388

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-6356-7384
https://orcid.org/0000-0001-6348-7897
https://orcid.org/0000-0003-1547-5503

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

TABLE 1. Comparison of recent RL approaches for solving the PFSSP.

Due to this interdependence, two-stage PFSSPs impose more
solving difficulties than traditional PFSSPs. The concrete
problem considers one machine in the first stage and
multiple machines in the second stage. Moreover, it has
a finite buffer connecting the stages, as well as sequence-
dependent setup efforts in the first stage, and machine shifts.
The interdependence also arises from a tradeoff between
objectives: The goal is to minimize idle times in the second
stage and the setup effort required for changing product types
in the first stage. To the best of our knowledge, this problem
has not yet been addressed in the literature.

Since the problem’s complexity precludes an exact solution
and RL generally outperforms heuristics for multi-objective
problems [4], we utilize RL for our solution. To this end,
we formulated the PFSSP as a Markov decision process
(MDP). Furthermore, we developed an RL approach com-
prising algorithmic elements such as action masking, reward
shaping, and curriculum learning to incorporate domain-
specific knowledge. For training the agent, we utilized the
professional DES software FlexSim to create a simulation
model of the environment. Furthermore, we conduct exper-
iments with realistic data sets from production to benchmark
our solution against a state-of-the-art GA. The results show
that our RL approach performs better, especially on complex
problem instances. In addition, we investigate how each
algorithmic element contribute to the success of the solution
and how weighting factors in the reward function can be used
to lexicographically optimize the two objectives.

The paper is motivated by the research gap identified in the
literature. Recent work on solving PFSSPs using RL is shown
in Table 1. Our work differs from the literature by having
a PFSSP variant that has never been considered before.
Moreover, the literature mainly considers the optimization
of only one objective. Mostly this is the makespan, e.g.,

in [12], [14], [16], [17], [18], [19], [20], and [21]. However,
based on the real-world requirements of the household
appliance production, we consider the optimization of two
objectives, also, in a lexicographic way. Furthermore, most
of the papers considered combine RL with heuristics,
metaheuristics or other methods to generate feasible and near
optimal schedules. We focus, however, on an approach where
RL is used exclusively. One advantage of this is a shorter
runtime, since a trained RL agent generates a schedule in one
iteration, whereas combined methods usually require several
iterations. This is especially relevant for runtime-intensive
simulation models. In order to evaluate the agent in real-
world usage, we draw the problem instances from real-world
production. This differs from the literature reviewed, which
mostly employs either the Taillard data set [6] or synthetic
data. As a methodology for benchmarking our approach,
we use a metaheuristic, as in the majority of the literature
reviewed.

II. PROBLEM FORMULATION
The real-world problem can be defined as a non-linear
Mixed Integer Program (MIP) that precisely formalizes all
relevant constraints and objectives. It is a two-stage PFSSP
with multiple second stage assembly stations, finite buffers,
sequence-dependent setup efforts and station-related shift
windows. Each production job comprises two sequential
operations, corresponding to the two consecutive stages,
for manufacturing one product. As displayed in Figure 5,
a single pre-assembly station (PAS) in the first stage fills
a central buffer with semi-finished products (SFP). The
SFP are limited to a small set of generic types, which are
afterward converted to specific products. At the following
order penetration point, each SFP must be assigned to a

VOLUME 12, 2024 11389

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

predefined non-identical final assembly station (FAS) in
the second stage. Under consideration of a static buffer
capacity limit, it is possible that the buffer initially contains
a number of SFP of different types. Thus, some jobs can
skip the first stage by directly assigning a SFP from the
buffer to them. As a further complication, the PAS must be
suitably set up for each SFP type, which leads to sequence-
dependent setup efforts. Moreover, the stations can have
different shift windows, which can have an effect on the
material flows. On the FAS, some jobs have predecessor
relationships to other jobs on the same FAS. This means that
they cannot be released until the predecessor jobs have been
completed. Johnson [1] demonstrated that a specialization of
the problem for makespan minimization without sequence-
dependent setup efforts, finite buffers, work shifts and release
conditions can be solved exactly and efficiently in polynomial
time. However, the approach in this form cannot be applied to
our extended problem, nor were we able to identify suitable
efficient algorithms in the existing literature. Considering
the given conflicting objectives and further constraints,
we assume that the problem is complex and that traditional
algorithms are unlikely to solve it within an acceptable
runtime.

The problem consists of the following parameters:

TABLE 2. MIP constants.

The following variables are required to solve the MIP:

TABLE 3. MIP variables.

The following auxiliary definitions allow a better modeling
of the constraints: ζ is a binary value, which determines if a
job i precedes job j on station k (→ if the completion time of

i is lower or equal the start time of j).

ζi,j,k

=

1, if both jobs are assigned to station k and the

completion time of i is lower or equal the start
time of j

0

Based on this, ζ ∗ is a binary value, which determines direct
preceding jobs on the PAS.

ζ ∗i,j =

{
1, if i directly precedes j on station k = 1
0

λ determines the actual processing time required for job i
on the PAS. When the SFP of a job is initially available in the
buffer, it is not assigned to the PAS and the processing time is
zero. It should be noted that a setup operation can take place
separately from the actual processing and therefore does not
affect the processing time on the PAS.

λi = (1− βi) pi,1

Finally, C determines the completion time of a job i on a
station k .

Ci,k =

{
αi,1 + λi, if k = 1
mi,k (αi,k + pi,k)

Based on the real use case, the primary objective is to
minimize the sum of idle times from all FAS (1). In the course
of lexicographical optimization, the second objective is to
minimize sequence-dependent setup efforts on the PAS (2).

min
∑

k∈K :k>1

(
max
i∈J

{
Ci,k

}
−

∑
i∈J

mi,k pi,k
)

(1)

min
∑
i∈J

(
(1− βi)

∑
j∈J\i

ζ ∗j,i qτj,τi

)
(2)

The first constraint (3) ensures that a station can process
only one job at a time:

ζi,j,k + ζj,i,k > 0

∀i ∈ J ,∀j ∈ J \ i,∀k ∈ K : k = 1 ∨ mi,kmj,k = 1 (3)

The assigned FAS can only start when the job is available
in the buffer:

αi,k ≥
(
αi,1 + λi

)(
1− βi

)
∀i ∈ J ,∀k ∈ K : k > 1 ∧ mi,k = 1 (4)

Only those jobs can directly start on the FAS, if their types
are initially available in the buffer:∑

i∈J :τi=τ

βi ≤ bτ,0 ∀τ ∈
◦
τ (5)

11390 VOLUME 12, 2024

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

Jobs assigned to stations must be realized in exactly one
shift:

1 =
(∑
ŝ∈Sk

γi,ŝ1

)
+

{
βi, if k = 1
0

∀i ∈ J ,∀k ∈ K : k = 1 ∨ mi,k = 1 (6)

The start time of a job must be after the shift’s begin
timestamp:

αi,k ≥
∑
ŝ∈Sk

γi,ŝ1 ŝ2

{
(1− βi), if k = 1
1

∀i ∈ J ,∀k ∈ K : k = 1 ∨ mi,k = 1 (7)

The completion time of a job must be before the shift’s end
timestamp:

Ci,k

{
(1− βi), if k = 1
1

≤

∑
ŝ∈Sk

γi,ŝ1 ŝ3

∀i ∈ J ,∀k ∈ K : k = 1 ∨ mi,k = 1 (8)

Jobs can then be released when the predecessor jobs have
been completed.

αj,k ≥ αi,k + pi,k
∀i ∈ J ,∀j ∈ J : ri,j = 1,∀k ∈ K : k > 1 ∧ mi,kmj,k = 1

(9)

The capacity of the central buffer cannot be exceeded
regarding its upper bound of SFP:

t∑
t ′=0

∑
i∈J

{
1, ifαi,1≤ t ′

0
−

∑
k∈K :k>1

{
mi,k , if αi,k≤t ′

0
≤ bmax

∀t ∈ {0, . . . , smax} (10)

III. METHOD
A. REINFORCEMENT LEARNING
Reinforcement Learning is a type of Machine Learning,
where an agent is trained to behave optimally in an
environment [22]. At each time step t , the agent selects an
action at based on a representation of the relevant information
about the environment called state st . When taking an
action, the agent receives a reward rt+1, which represents the
desirability of the action taken in terms of the optimization
goal. The behavior of the agent is determined by its policy
π (at |st), which maps states to actions. Policies are often
modelled as neural networks which are parameterized with θ .
RL problems are typically formulated as a Markov decision
process (MDP), which is a 5-tuple that encompasses:

1) A set of states S,
2) a set of actions A,
3) a transition probability function T (st+1|st , at),
4) a reward functionR(st , at) determining the reward rt+1,
5) and a discount factor γ ∈ [0, 1) for discounting future

rewards.

Over the last decade, several RL algorithms have been
developed. One of themost widespread is the Proximal Policy
Optimization (PPO) algorithm developed by OpenAI [23],
which is a so-called policy-based method. We select PPO as
basis for our RL solution, as it has been shown in preliminary
experiments to be more robust and less hyperparameter
sensitive than other RL algorithms (see also [24]).
The goal of PPO is to learn parameters θ that maximize the

expected cumulative discounted reward:

θ ← argmaxθE[6tγ
tR(st , at)|πθ]

PPO achieves this by maximizing a clipped surrogate
objective:

LCLIPt (θ) = Êt [min(rt (θ)Ât , clip(rt (θ), 1− ϵ, 1+ ϵ)Ât)],

(11)

where Ât is the estimated advantage at time step t (calculated
by a generalized advantage estimator [25]), rt (θ) is the
likelihood ratio rt (θ) = πθ (at |st)/πθold (at |st), and ϵ is a small
positive scalar that limits the update step size. This objective
ensures moderate updates of θ , so that πθ is not deviating too
much from πθold .

B. MDP DEFINITION
Crucial for the successful application of RL to solve this
optimization problem is an adequate formulation of the
MDP. For ease of understanding, we explain and specify
the MDP using the concrete problem instance at Miele. The
household appliance production consists of a PAS where
|
◦
τ | = 8 different SFP types can be produced. After being
produced, these are stored in a buffer with a static capacity of
bmax = 2900. Four final assembly stations pick SFPs out of
the buffer to produce the final products. The planning period
is a week with five working days. The MDP is described in
the following.

1) STATE SPACE
The state space must include all information necessary for the
agent to fulfill the demands of the final assembly stations.
I.e. there must always be enough SFPs available in the
buffer so that the demanded household appliances can be
produced and the final assembly stations are not idle (1).
We therefore introduce several features that condense the
information about when and how much SFPs are demanded
at the current time step. These features cover all relevant
parameters of the MIP.

• uτ,24(t): The amount of SFPs of type τ that is required
from all FAS in the next 24 hours.

• uτ,end (t): The amount of SFPs of type τ that is required
from all FAS until the end of the planning period.

• bτ (t): The amount of SFPs of type τ in the buffer.
• vτ,24(t) = uτ,24(t)− bτ (t): The amount of SFPs of type

τ still to be produced, so that the FAS demand is covered
in the next 24 hours.

VOLUME 12, 2024 11391

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

• vτ,end (t) = uτ,end (t) − bτ (t): The amount of SFPs of
type τ still to be produced, so that the FAS demand is
covered until the end of the planning period.

• tτ (t): This represents the duration for which the demand
of SFP type τ in the buffer is still covered.

All variables are normalized and clipped between 0 and 1.
We incorporate vτ,24, vτ,end , and tτ of all SFP types into the
state space. If the amount of an SFP of type τ in the buffer
exceeds the amount required until the end of the planning
period (i.e. bτ > uτ,end), vτ,end is set to 0 and tτ is set to 1.
Similarly, vτ,24 is also set to 0 if there are enough SFPs of the
required type in the buffer for the next 24 hours. Additionally,
we add bu(t) to the state space, which represents the sum of
all SFPs in the buffer divided by bmax .

The second objective is to minimize the setup efforts,
as seen in (2). In order for the agent to take the setup efforts
into account, the last produced SFP type τ ′(t) is included into
the state space as one-hot-encoded vector.

Taking all components into account, the state is represented
by the following vector:

st = [v0,24(t), . . . , v7,24(t), v0,end (t), . . . , v7,end (t),

t0(t), . . . , t7(t), bu(t), τ ′(t)]

2) ACTION SPACE
Since there are eight different SFP types, we define the action
space to be discrete, where an action a is an integer with
a ∈

◦
τ = {0, 1, . . . , 7}. When the RL agent selects an action,

a predefined amount o1 of the selected SFP type will be
produced on PAS 1. In this way, the production schedule
is not given from the start, but is built up successively as
the agent interacts with the environment. In retrospect, the
production plan is then created by stringing together the
actions. o1 is held constant over the whole planning period
and for each SFP type. Since for each SFP type the same
processing time is given, a constant o1 ensures equidistant
time steps for the agent-environment interactions. Otherwise,
a more sophisticated approach such as a so-called Semi-MDP
would be needed to cope with varying production amounts
and therefore non-equidistant time steps [26], [27].We define
o1 to be 50 based on domain expertise. Smaller values allow
the agent to produce more fine-grained and thus potentially
better production plans, but they prolong training because
more steps would be required to achieve the same number
of episodes.

Furthermore, we use action masking to integrate domain
knowledge into the agent in order to shorten the training
time and increase the probability of successful training.
Action masking is a technique known in reinforcement
learning approaches for computer games [28] or traffic
signal control [29], among others. This involves masking
undesirable or non-permissible actions at each decision point
of the agent, so that the agent cannot select them. We use
action masking to ensure that only SFP types are produced
for which there is a need until the end of the planning horizon
(vτ,end > 0). This restriction ensures that the agent does

not select any unrequired SFPs and is therefore not wasting
production capacity for required SFPs.

We define the mask as a vector ma(t) = [ma,0(t),
ma,1(t), . . . ,ma,7(t)], where each element is defined as

ma,τ (t) =

{
1, if vτ,end (t) > 0
0

(12)

The values for the mask are computed immediately before
each decision point of the agent. For undesirable actions, the
probability that the agent will choose that action is set to 0.

3) REWARD SHAPING
In RL, objectives have to be converted into a reward function.
With regard to the objective functions 1 and 2, the obvious
approach is to punish high idle times in the FAS stage as
well as high setup efforts in the PAS stage. The agent would
then learn to minimize idle times and setup efforts in order to
evade punishment. For this purpose, we introduce d(t), which
is the sum of the idle times of all FAS between the last and
the current decision time step t . The reward function is then

r1(t) = −αidled(t)− αseqτ,τ ′ (t), (13)

where qτ,τ ′ (t) is the sequence-dependent setup effort in the
last time step and αidle and αse represent the weights of the
respective objectives.

An alternative approach for the reward function is achieved
by reward shaping. Reward shaping is used to guide the learn-
ing process of an agent towards the desired behavior [30],
[31]. It involves modifying the reward function through
integrating of domain expertise to make it easier for the agent
to learn the optimal policy. This shortens the training time and
increases the probability of successful training.

Therefore, instead of directly minimizing idle times,
we shape the reward to focus on avoiding critical demands so
that idle times do not occur in the first place. The advantage
with using criticality is that it provides finer granularity in
evaluating the agent’s performance, which helps guide the
learning process in the desired direction.

To this end, we define a reward function for each SFP
type rv/t,τ that punishes critical requirements more than
non-critical. Critical in this context means that the ratio
vτ,24(t)/tτ (t) - the required amount of SFP type τ relative to
the remaining time of how long the demand is covered - is
high. The higher this value, themore likely idle times in a FAS
will occur because the required quantity of type τ cannot be
produced in time. Conversely, a smaller ratio indicates a less
critical demand. The fewer SFPs are required (low value of
vτ,24) or the more time is available for production (high value
of tτ), the more this ratio moves towards its low point of 0.
We define a section-wise linear function consisting of

3 sections (see Figure 1) to map the criticality of an SFP type
to a continuous range of values. In the first range [0− 0.036)
representing the non-critical situation, the reward decreases
from 0 (no demand for this SFP type) to−2. The second range
[0.036 − 0.072) represents the critical situation. The reward

11392 VOLUME 12, 2024

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

FIGURE 1. Reward Function for punishing the criticality of an SFP type.

drops from −2 to −7 with increasing ratio vτ,24(t)/tτ (t). All
ratios ≥ 0.072 reflect a highly critical situation, reflected by
a reward of −7. The sum of these rewards is denoted as rv/t :

rv/t =
∑
τ∈
◦
τ

rv/t,τ

Additionally, we define a penalty value of −1.5 for all
demands that are required in less than tmgn = 30min.

rmgn,τ (t) =

{
−1.5, if tτ (t) < tmgn
0

(14)

The sum of these rewards for all SFP types is denoted as rmgn:

rmgn =
∑
τ∈
◦
τ

rmgn,τ

This motivates the agent to keep a sufficiently large stock in
the buffer for all SFP types, so that a safety margin in terms
of time is maintained.

To account for setup effort, we use qτ,τ ′ (t) as we did in (13).
The total reward of this alternative approach using reward
shaping is thus given by:

r2(t) = rv/t + rmgn − αseqτ,τ ′ (t) (15)

Both approaches, r1 and r2, will be compared in the
experiments.

4) EPISODE LENGTH
An episode ends when the buffer covers the demand for
SFPs for the remaining planning period, but at the latest at
smax . However, if the capacity of the buffer is reached due to
misplanning (see (10)) and at the same time the FAS cannot
produce any more due to the lack of the required SFPs in the
buffer, the episode is ended prematurely.

C. CURRICULUM LEARNING
The two objectives (minimization of idle times and setup
efforts) conflict with each other. For instance, to minimize
setup effort, there should ideally be no change of SFP types on
station 1. This, in turn, would mean that the requirements of
the SFPswould not bemet, resulting in idle times. Conflicting
optimization goals pose a challenge for the learning process.
To guide the agent in the learning process, we use curriculum
learning [32], [33], i.e. the agent is exposed to a sequence
of tasks with increasing complexity. Thereby we divide the

learning problem into 3 tasks from easy to hard. The agent
starts with the easiest task until it masters it, and then learns
the next harder task. The resulting algorithm is presented in
Algorithm 1.
Since minimizing idle time is the main objective, this is

trained in the first task. The punishment for setup effort
from (15) is removed for this purpose:

r2,easy(t) = rv/t + rmgn (16)

To further simplify this task, the original action mask in
equation 12 is constrained to produce only the 3 most
critical SFPs. We define the mask as measy(t) =

[measy,0(t),measy,1(t), . . . ,measy,7(t)], where each element is
defined as:

measy,τ (t) =

{
1, if v24,τ /tτ among the greatest 3 values
0

(17)

At the end of each episode, the sum of all idle times
∑

t d(t)
is added to a QueueDwith a capacity of 100. The agent learns
the first task until the mean of D, i.e. the average sum of idle
times of the last 100 episodes, is less than 100s. Then, this
task is considered as solved. After that, it switches to the next
task. In task 2, the original action mask (12) is used. Thus,
the agent must now learn from a larger set of SFPs to choose
those that minimize idle times. In the last task, the penalty of
setup effort is added to the reward function, resulting again
in the original reward function (15). For reducing the training
time, we use a parallel algorithm that leverages the computing
resources of multiple CPUs on a machine.

It is theoretically possible that the initial buffer allocation
is so poor that mean(D) < 100s will never be reached. In this
case, this condition would have to be relaxed. However, from
the practical experience of domain experts, it is known that
this case rarely occurs.

D. GENETIC ALGORITHM (GA)
In order to benchmark the performance of the RL agent in
a representative way, a suitable metaheuristic algorithm was
employed. Here, we utilized a Non-dominated Sorting GA
(NSGA-II), which is a widely used multi-objective GA in
the current scheduling literature as well as in many real-
world applications [34], [35]. The GA was implemented
in the Python framework pymoo, which provides a set of
modern, suitably preconfigured metaheuristics for multi-
objective optimization [36]. Appropriate and modified GA
operators were used for fair comparability and are described
in the following subsections.

1) SCHEDULE ENCODING AND EVALUATION
A solution candidate of a schedule (=individual) is repre-
sented as a sequential vector of SFP types τ ∈

◦
τ (see Table 2)

to be processed on the PAS from left to right. The individual’s
SFP sequence includes all SFP types required by the FAS to
complete all production jobs. In order to evaluate (encode) an

VOLUME 12, 2024 11393

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

Algorithm 1 Parallelized PPO With Action Masking and
Curriculum Learning
1: Initialize parameters θ .
2: Initialize Task = 1 and Queue D with length 100.
3: for each iteration do
4: for each actor do

{parallelized across CPUs}
5: Collect set of trajectories by running policy πθ in

the environment
6: end for
7: for each trajectory do
8: At the end of the episode, append sum of idle times∑

t d(t) to D
9: end for

10: Update θ to maximize L(θ)
11: if mean(D) < 100 then
12: T ← T + 1
13: end if
14: if T == 1 then
15: Use measy and r2,easy
16: else if T == 2 then
17: Use ma and r2,easy
18: else if T ≥ 3 then
19: Use ma and r2
20: end if
21: end for

individual and to determine its fitness, the simulation model
introduced in Section IV-A1 is utilized. Upon completing the
full simulation of the SFP sequence, the individual’s fitness
value, which corresponds to the objective function value
(see Eq. 1 and 2), can be calculated by obtained simulation
metrics.

2) INITIALIZATION
Due to the limited capacity of the central buffer, it was
not possible to generate feasible individuals for the base
population by randomly permuting the SFP sequence. As a
result, the number of viable sequences for processing the
SFP on the PAS is restricted and must be determined with
consideration of this bottleneck. For this purpose, let the
matrix M be the starting point for generating a feasible
individual. Each row corresponds to a specific FAS, where
the columns (from left to right) determine the predefined
sequence based on ri,j (see Table 2). As also depicted in
Figure 2, the individual is generated as follows:

1) For a diversity of possible sequences, M undergoes
a line-wise shuffling using a randomly generated
permutation matrix P: M ← M × P

2) M is column-wise flattened to create a valid sequence
for the PAS, where the buffer capacity cannot be
exceeded. However, the setup effort is still high when
using this vector.

3) From left to right: Remove all types from the sequence,
which are initially available in the buffer and therefore
not required to be processed on the PAS.

4) The sequence is clustered according to a randomly
selected group size n, grouping identical SFP types and
reducing setup efforts. The clustering starts with the
first element of the sequence, followed by moving the
next n − 1 elements of the same type in front of the
current element. Afterwards, the next element in the
sequence is selected and the process is repeated.

FIGURE 2. An exemplary creation of an individual (SFP sequence) for the
base population, taking into account the bottleneck of the central buffer
and the clustering of identical SFP types to minimize PAS setup efforts.

3) CROSSOVER AND MUTATION
We used the well-known Job Order Crossover and Swap
Mutation as operators to create neighbor individuals. Figure 3
illustrates the essential principle of the operators. Job Order
Crossover involves combining two parent individuals: First,
a random selection of SFP types from the first parent is
transferred positionally to the offspring individual (see blue
markings). Then, the free positions of the offspring are filled
upwith the remaining SFP types from the second parent in the
order of the second parent (see red markings). [37] The Swap
Mutation only changes the structure of a single individual by
interchanging two random genes in their position (see green
markings) [38].

FIGURE 3. Simplified representation of Job Order Crossover and Swap
Mutation.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) PROBLEM INSTANCE, DATA, AND SIMULATION MODEL
Our approach is evaluated on realistic data from Miele
production for 5 different weeks (w1, w2, w3, w4, w5). Each
data set contains the following information for one week:

11394 VOLUME 12, 2024

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

• The initial amount of SFPs in the buffer (bτ,0) for each
type.

• A setup efforts matrix to determine qτ,τ ′ .
• All work shifts Sk (including maintenance and break
times) for the scheduling horizon for each station k .

• A set of jobs J with precedence constrains (determined
by ri,j). An example for all jobs assigned to a final
assembly station for week 2 is shown in Figure 4.

• All processing times for all jobs on each station (pi,k).

FIGURE 4. Example of all jobs of an FAS for week 2. Each color represents
a different type.

As a basis for training the RL agent, a high-level simulation
model of the household appliance production at Miele was
developed with the DES FlexSim. Only the relevant parts
and dependencies for the planning problem (see Sect. II)
were modeled. Prior to each training episode or inference,
the model is initialized with a week-specific data set. At each
step, FlexSim collects all the data necessary to compute the
state vector and reward and passes it to the agent. Based on
these inputs, the agent decides which SFP type to produce
next and sends that decision back to FlexSim. This is how
the agent determines the production sequence in the PAS.
A screenshot of the simulation model and its integration into
the RL workflow is depicted in Figure 5.

FIGURE 5. High-Level Simulation Model in FlexSim with conceptual
integration of RL.

2) SOFTWARE ARCHITECTURE AND REINFORCEMENT
LEARNING IMPLEMENTATION
We use a PPO algorithm from the Ray RLlib module [39],
that we modify according to Algorithm 1 for training the
RL agent. Since Ray RLlib requires Python, we encapsulated
the FlexSim simulation model as a Python class. This class
inherits from the Gymnasium module [40] and represents the
training environment for the RL agent. FlexSim offers an RL
connector that is used to communicate with the environment
class via a socket connection.

For training, the environment class is handed over to
Ray RLlib. The training process is parallelized with several
environment instances on multiple CPUs, speeding up data
collection. For inference, the trained agent π∗ is packed in an
HTTP Server. At every decision event, the simulation model
queries the HTTP Server for the next action. The software
architecture is shown in Figure 6.

To generate a schedule S∗ for a week, the sampled actions
are recorded sequentially in S∗. To do this, an environment
env is first initialized with the data belonging to a week, such
as bτ,0, Sk , etc. The environment provides the current state
st and action mask ma for each decision point, which are fed
into π∗ in order to sample the next action at . at is appended
to S∗ and fed back into the environment until the planning
period is over or the buffer provides enough SFPs for all
jobs (done=True). Algorithm 2 illustrates the generation of
a schedule.

Algorithm 2 Schedule Generation With Trained PPO Agent
1: Input Trained PPO agent π∗, Environment env, S∗ = ∅
2: st , ma = env.reset()
3: while not done do
4: sample at from π∗(st) using action mask ma
5: append at to S∗

6: st , ma, done = env.step(at)
7: end while

B. BENCHMARK WITH GENETIC ALGORITHM
In this experiment, the RL approach is benchmarked against
GA in III-D. The hyperparameters for the RL algorithm
were determined in preliminary experiments (Table 4). RL is
trained with 700k steps, where one step is defined as
producing o1 SFPs. To ensure fair comparison, GA is stopped
after the same number of steps. Both algorithms search for the
optimal sequence of SFPs to be produced for five realistic
data sets in order to lexicographically minimize idle times
first and subsequently setup efforts. In this process, each trial
is repeated 10 times to evaluate the stability and variance of
the performance of the algorithms. The results are shown in
Table 5. Here, an attempt is evaluated as failed if the algorithm
was not able to minimize the idle time to 0. The average of
the setup efforts SE refers only to the successful attempts of a
week. For a more detailed evaluation of the setup efforts see
Figure 7.

The results show that RL is significantly more robust
in finding feasible solutions than GA. In fact, with RL
all trials were successful, whereas with GA 38% of all
trials failed. However, there is a significant fluctuation here
between weeks. For example, the number of failed trials
for week 1 is 8, whereas for week 2 it is 0. A possible
explanation for this could be different complexity of the
problem instances, where it might be more difficult to
minimize the conflicting objectives. Further research should
be undertaken to investigate the impact of the instance’s
structure on the problem’s complexity.

VOLUME 12, 2024 11395

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

FIGURE 6. Software Architecture for training and inference of Ray RLlib RL agents with FlexSim.

TABLE 4. Hyperparameter for PPO algorithm. Nomenclature follows Ray
RLlib.

TABLE 5. Performance of RL and GA.

Furthermore, the average setup efforts in weeks 1-4 are
in some cases significantly smaller with RL than with the
successful trials with GA. For example, with RL at week
3 the setup effort is on average 36.6% smaller compared to
GA, at week 1 even by 76.1%. Likewise, the variance of the
setup efforts for weeks 1-4 is smaller with RL, as can be seen
from the boxplots. At week 5, no successful solution could be
learned with GA 4 times. The remaining 6 trials, on the other
hand, show an average of 5.6% smaller setup effort compared
to the RL results.

Overall, it can be concluded that our proposed RL approach
leads much more robustly to successful solutions with
on average less setup effort compared to state-of-the-art
metaheuristics.

C. ABLATION STUDIES
In the following, we examine the impact of reward shaping
(RS), action masking (AM), and curriculum learning (CRCL)
on the performance of the RL solution. For this purpose,
we conducted several experiments with modified variants of
our algorithm, in which we successively disabled some of
these elements to quantify their impact on the success rate
of the training. We tested the following variants:
• AM+CRCL+RS: Original variant, serving as baseline.
• CRCL+RS: Here, no AM was used, i.e., the agent could
choose any action at any decision point. Accordingly,
the curriculum learning protocol was adapted so that the
first task was skipped.

• AM+RS: In this case, no Curriculum Learning was
used. However, the action space of the agent has been
restricted to the extent that only those SFPs may be
produced for which there is a need until the end of the
planning horizon (see Eq. 12).

• RS: No use of action masking or curriculum learning.
• AM+CRCL: The natural approach using idle time and
setup effort directly as punishment is chosen as the
reward function (see Eq. 13).

Each variant is thereby trained 10 times each for week 1 and 2.
According to the success rate of GA, week 1 and 2 represent
a difficult and a rather easy planning problem, respectively.
The results are shown in Figure 8.

Omitting AM or CRCL leads to a 40% reduction in the
successful training rate at week 1. This highlights the ability
of AM and CRCL to enable the agent to find better policies
in challenging planning problems. For week 2, omitting
CRCL leads to a reduction of only 20% due to the lower
problem complexity, while omitting AM has no effect on
the success rate at all. The success rate for the RS variant is
also noteworthy. Here, omitting both AM and CRCL at week

11396 VOLUME 12, 2024

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

FIGURE 7. Setup efforts as boxplots for all successful trials. The results for GA at week 1 are not shown here because they are significantly
larger than the other values.

FIGURE 8. Number of successful trials for different ablations. AM=action
Masking, CRCL=curriculum learning, RS=reward shaping.

1 leads to a 70% reduction in the success rate compared to
the original variant. This emphasizes that also the interaction
of AM and CRCL helps the agent to find good policies and
not only the single algorithmic elements themselves. The
highest impact on the success rate, however, is from reward
shaping, as can be seen in the results of AM+CRCL. In this
case, for week 1, no successful agent could be trained in any
of the 10 trials. For week 2, the success rate also dropped
significantly to only 20%.

It can be concluded from the ablation studies that
integrating domain knowledge through RS, AM and CRCL
is necessary to generate successful and performant schedules.
This is even more true the more complex the data set is.
Notably, these algorithmic building blocks are necessary
to overcome the solving difficulties of the competing
objectives in the two interdependent stages. At the same
time, however, this also shows that these building blocks

are sufficient to provide the agent with enough assistance
during training. Thus, a purely RL-based approach to solving
this optimization problem is possible, whereas many rather
runtime-intensive approaches in the literature combine RL
with other methods, as shown in section I.

D. SETUP EFFORTS WEIGHTING FACTOR
To mitigate the challenge of conflicting objectives, curricu-
lum learning was applied, so that the agent first learns to
minimize the idle times and then the setup efforts. However,
balancing these objectives through the weight αse in the
reward function is also crucial, since it determines the
trade-off between minimizing idle times and setup efforts.
Therefore, in this experiment we investigate the impact of this
weight by varying it from 0 to 16 in steps of 0.5 and training
5 runs for each of these values for weeks 1 and 2.

The average sum of the idle times and setup efforts per αse
are shown in Figure 9. First, it is noticeable that between 0 -
the agent focuses only on minimizing idle times - and an only
slightly higher value of 0.5, there is a significant reduction
in setup efforts. For instance, in week 1, setup efforts are
reduced from an average of 1829 to 343.

As αse increases, setup efforts continue to decrease,
as expected, since the agent gives more weight to minimizing
them. However, an excessively high αse leads the agent to
prefer accepting idle times rather than planning in a way that
ensures the final assembly lines always have an adequate
supply of SFPs. This effect is observed at week 1 starting
at an αse of 9.5, where idle times are on average 1041s.
As αse increases, this effect occurs more severely, so that at

VOLUME 12, 2024 11397

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

FIGURE 9. Setup efforts and idle times for different αse.

αse = 15 there are more than 8h of idle times. For week 2,
this effect occurs somewhat later (from αse = 12), but with
the same magnitude in terms of the resulting idle times, e.g.
ca. 8.9h at αse = 13.

This effect is thus dependent on the complexity of the data
set. Therefore, it would be ideal to fine-tune αse for each
week to achieve the lowest possible setup effort. However,
it is worth noting that there is a fairly wide range of values for
αse in which setup effort remains low and no idle time occurs,
while further increasing αse results in only a small reduction
in setup effort. This mitigates the need for fine-tuning. For
example, doubling αse from 3.5 to 7 only results in a reduction
of setup effort by only ca. 19 respectively 8.1% for week 1.

V. CONCLUSION AND FUTURE RESEARCH
In this paper, we addressed a scheduling problem occurring in
one of Miele’s household appliance productions: a two-stage
PFSSP with a finite buffer, sequence-dependent setup efforts,
and work shifts. The objective is to minimize the idle times
and setup efforts in lexicographic order. For this purpose,

the problem was formulated as a Markov decision process
and then solved with RL. We developed an RL approach that
integrates domain knowledge through reward shaping, action
masking and curriculum learning.

Experiments on realistic data show the superiority of our
approach over a state-of-the-art GA. They also demonstrated
that incorporating domain knowledge is critical to successful
planning on complex data sets. In addition, we investigated
adjusting the setup effort weighting parameter to ensure
minimization of idle time and setup effort in a lexicographic
order. Moreover, we developed a software architecture to
connect the DES to the Ray RLlib framework. Our work thus
provides a successful example of the applicability of RL in
real-world production planning.

In the future, we plan to further develop the system for real-
world use, addressing three aspects in particular: robustness,
explainability, and universality.
In real-world production, sporadic disturbances (e.g.

because of machine failures) are unavoidable. Therefore, our
approach has to be extended so that the agent can generate
sequences that avoid idle times and keep setup efforts as
minimal as possible despite occurring disturbances. The
approach should make it possible to integrate historical data
on disturbances such as machine failures in order to make
the plans only as robust as necessary so that the actual
optimization goals are not unnecessarily underprioritized.

Furthermore, the agent’s decisions are to be made transpar-
ent so that production planners working with this system can
understand and evaluate the decisions. And finally, an agent
is to be developed that can perform well over a variety of
different problem instances with varying complexities in a
zero-shot or few-shot learning manner. Such an universal
agent would save training time, since currently for each week
a new agent has to be trained.

ACKNOWLEDGMENT
The authors would like to thank Felix Möhlmann from
FlexSim Germany for his advice and support in building the
simulation model.

REFERENCES
[1] S. M. Johnson, ‘‘Optimal two- and three-stage production schedules with

setup times included,’’ Nav. Res. Logistics Quart., vol. 1, no. 1, pp. 61–68,
Mar. 1954.

[2] C. Shyalika, T. Silva, and A. Karunananda, ‘‘Reinforcement learning in
dynamic task scheduling: A review,’’ Social Netw. Comput. Sci., vol. 1,
no. 6, p. 306, Nov. 2020.

[3] M. Panzer and B. Bender, ‘‘Deep reinforcement learning in production
systems: A systematic literature review,’’ Int. J. Prod. Res., vol. 60, no. 13,
pp. 4316–4341, Jul. 2022.

[4] B. M. Kayhan and G. Yildiz, ‘‘Reinforcement learning applications
to machine scheduling problems: A comprehensive literature review,’’
J. Intell. Manuf., vol. 34, no. 3, pp. 905–929, Mar. 2023.

[5] F. Grumbach, N. E. A. Badr, P. Reusch, and S. Trojahn, ‘‘A memetic
algorithm with reinforcement learning for sociotechnical production
scheduling,’’ IEEE Access, vol. 11, pp. 68760–68775, 2023.

[6] E. Taillard, ‘‘Benchmarks for basic scheduling problems,’’ Eur. J. Oper.
Res., vol. 64, no. 2, pp. 278–285, Jan. 1993.

[7] J. Carlier, ‘‘Ordonnancements a contraintes disjonctives,’’ RAIRO-Oper.
Res., vol. 12, no. 4, pp. 333–350, 1978.

[8] C. R. Reeves, ‘‘A genetic algorithm for flowshop sequencing,’’ Comput.
Oper. Res., vol. 22, no. 1, pp. 5–13, Jan. 1995.

11398 VOLUME 12, 2024

A. Müller et al.: RL for Two-Stage Permutation Flow Shop Scheduling—A Real-World Application

[9] J. Heller, ‘‘Some numerical experiments for an M × J flow shop and
its decision-theoretical aspects,’’ Oper. Res., vol. 8, no. 2, pp. 178–184,
Apr. 1960.

[10] C.-X. Wu, M.-H. Liao, M. Karatas, S.-Y. Chen, and Y.-J. Zheng,
‘‘Real-time neural network scheduling of emergency medical mask
production during COVID-19,’’ Appl. Soft Comput., vol. 97, Dec. 2020,
Art. no. 106790.

[11] J. F. Ren, C. M. Ye, and Y. Li, ‘‘A new solution to distributed permutation
flow shop scheduling problem based on Nash Q-learning,’’ Adv. Prod. Eng.
Manage., vol. 16, no. 3, pp. 269–284, Sep. 2021.

[12] Z. Pan, L. Wang, J. Wang, and J. Lu, ‘‘Deep reinforcement learning
based optimization algorithm for permutation flow-shop scheduling,’’
IEEE Trans. Emerg. Topics Comput. Intell., vol. 7, no. 4, pp. 983–994,
Aug. 2023.

[13] S. Yang and Z. Xu, ‘‘Intelligent scheduling for permutation flow shop with
dynamic job arrival via deep reinforcement learning,’’ in Proc. IEEE 5th
Adv. Inf. Technol., Electron. Autom. Control Conf. (IAEAC), Mar. 2021,
pp. 2672–2677.

[14] Q. Yan,W.Wu, andH.Wang, ‘‘Deep reinforcement learning for distributed
flow shop scheduling with flexible maintenance,’’Machines, vol. 10, no. 3,
p. 210, Mar. 2022.

[15] Z. Dong, T. Ren, J. Weng, F. Qi, and X. Wang, ‘‘Minimizing the
late work of the flow shop scheduling problem with a deep reinforce-
ment learning based approach,’’ Appl. Sci., vol. 12, no. 5, p. 2366,
Feb. 2022.

[16] X. Gao, S. Yang, and L. Li, ‘‘Optimization of flow shop scheduling based
on genetic algorithm with reinforcement learning,’’ J. Phys., Conf. Ser.,
vol. 2258, no. 1, Apr. 2022, Art. no. 012019.

[17] J. Brammer, B. Lutz, and D. Neumann, ‘‘Permutation flow shop scheduling
with multiple lines and demand plans using reinforcement learning,’’ Eur.
J. Oper. Res., vol. 299, no. 1, pp. 75–86, May 2022.

[18] Z. He, K. Wang, H. Li, H. Song, Z. Lin, K. Gao, and A. Sadollah,
‘‘Improved Q-learning algorithm for solving permutation flow shop
scheduling problems,’’ IET Collaborative Intell. Manuf., vol. 4, no. 1,
pp. 35–44, Mar. 2022.

[19] H. Li, K. Gao, P.-Y. Duan, J.-Q. Li, and L. Zhang, ‘‘An improved artificial
bee colony algorithm with Q-learning for solving permutation flow-shop
scheduling problems,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 53,
no. 5, pp. 2684–2693, May 2023.

[20] Z. Pan, L. Wang, C. Dong, and J.-F. Chen, ‘‘A knowledge-guided end-to-
end optimization framework based on reinforcement learning for flow shop
scheduling,’’ IEEE Trans. Ind. Informat., early access, 2023.

[21] J. Ren, C. Ye, and F. Yang, ‘‘Solving flow-shop scheduling problem with
a reinforcement learning algorithm that generalizes the value function
with neural network,’’ Alexandria Eng. J., vol. 60, no. 3, pp. 2787–2800,
Jun. 2021.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[24] F. Grumbach, A. Müller, P. Reusch, and S. Trojahn, ‘‘Robust-stable
scheduling in dynamic flow shops based on deep reinforcement learning,’’
J. Intell. Manuf., vol. 2022, pp. 1–12, Dec. 2022.

[25] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, ‘‘High-
dimensional continuous control using generalized advantage estimation,’’
in Proc. 4th Int. Conf. Learn. Represent., Jun. 2015, pp. 1–14.

[26] L. Zhang, C. Yang, Y. Yan, and Y. Hu, ‘‘Distributed real-time scheduling
in cloud manufacturing by deep reinforcement learning,’’ IEEE Trans. Ind.
Informat., vol. 18, no. 12, pp. 8999–9007, Dec. 2022.

[27] Z. Ling, X. Wang, and F. Qu, ‘‘Reinforcement learning-based maintenance
scheduling for resource constrained flow line system,’’ in Proc. IEEE 4th
Int. Conf. Control Sci. Syst. Eng. (ICCSSE), Aug. 2018, pp. 364–369.

[28] A. Kanervisto, C. Scheller, and V. Hautamäki, ‘‘Action space shaping
in deep reinforcement learning,’’ in Proc. IEEE Conf. Games (CoG),
Aug. 2020, pp. 479–486.

[29] A. Müller and M. Sabatelli, ‘‘Safe and psychologically pleasant traffic
signal control with reinforcement learning using action masking,’’ in
Proc. IEEE 25th Int. Conf. Intell. Transp. Syst. (ITSC), Oct. 2022,
pp. 951–958.

[30] M. E. Taylor and P. Stone, ‘‘Transfer learning for reinforcement learning
domains: A survey,’’ J. Mach. Learn. Res., vol. 10, pp. 1633–1685,
Jul. 2009.

[31] B. Badnava, M. Esmaeili, N. Mozayani, and P. Zarkesh-Ha, ‘‘A new
potential-based reward shaping for reinforcement learning agent,’’ in Proc.
IEEE 13th Annu. Comput. Commun. Workshop Conf. (CCWC), Mar. 2023,
pp. 1–6.

[32] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, ‘‘Curriculum
learning,’’ in Proc. Int. Conf. Mach. Learn., Montreal, QC, Canada,
Jun. 2009, pp. 41–48.

[33] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone,
‘‘Curriculum learning for reinforcement learning domains: A framework
and survey,’’ J. Mach. Learn. Res., vol. 21, no. 1, pp. 1–13, Jan. 2020.

[34] R. Washington, D. Garmatyuk, S. Mudaliar, and R. M. Narayanan,
‘‘Many-objective RadarCom signal design via NSGA-II genetic algorithm
implementation and simulation analysis,’’ Remote Sens., vol. 14, no. 15,
p. 3787, Aug. 2022.

[35] W. Zheng, Y. Liu, and B. Doerr, ‘‘A first mathematical runtime analysis
of the non-dominated sorting genetic algorithm II (NSGA-II): (Hot-off-
the-press track at GECCO 2022),’’ in Proc. Genetic Evol. Comput. Conf.
Companion. New York, NY, USA, Jul. 2022, pp. 53–54.

[36] J. Blank and K. Deb, ‘‘Pymoo: Multi-objective optimization in Python,’’
IEEE Access, vol. 8, pp. 89497–89509, 2020.

[37] I. Ono, M. Yamamura, and S. Kobayashi, ‘‘A genetic algorithm for job-
shop scheduling problems using job-based order crossover,’’ in Proc. IEEE
Int. Conf. Evol. Comput., Mar. 1996, pp. 547–552.

[38] S.-H. Chen and M.-C. Chen, ‘‘Operators of the two-part encoding genetic
algorithm in solving the multiple traveling salesmen problem,’’ in Proc.
Int. Conf. Technol. Appl. Artif. Intell., Nov. 2011, pp. 331–336.

[39] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg,
J. E. Gonzalez, M. I. Jordan, and I. Stoica, ‘‘RLlib: Abstractions for
distributed reinforcement learning,’’ in Proc. 35th Int. Conf. Mach. Learn.,
vol. 7, 2018, pp. 4768–4780.

[40] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. de Cola,
T. Deleu, M. Goulão, A. Kallinteris, K. G. Arjun, M. Krimmel,
R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis, ‘‘Gymnasium,’’ Zenodo, Farama Found., Greenbelt,
MD, USA, Mar. 2023. Accessed: Jul. 8, 2023. [Online]. Available:
https://zenodo.org/record/8127025, doi: 10.5281/zenodo.8127026.

ARTHUR MÜLLER received the B.Sc. degree
in electrical engineering and information tech-
nology from the Ostwestfalen-Lippe University
of Applied Sciences and Arts, Lemgo, Germany,
in 2012, and the M.Sc. degree from Got-
tfried Wilhelm Leibniz University, Hannover,
Germany, in 2015. He is currently pursuing the
Ph.D. degree with the University of Groningen,
The Netherlands. He is also a Research Associate
with the Industrial Automation Branch, Fraun-

hofer Institute of Optronics, System Technologies, and Image Exploitation,
Lemgo. His research interest includes the application of reinforcement
learning algorithms in real-world use cases.

FELIX GRUMBACH received the B.Sc. degree in
information systems from the Bielefeld University
of Applied Sciences, Bielefeld, Germany, in 2015,
and the M.Sc. degree from the University of
Hagen, Germany, in 2020. He is currently pursuing
the Ph.D. degree with the Doctoral Center for
Social, Health and Economic Sciences, Saxony-
Anhalt, Germany. He is also a Research Associate
with the Center for Applied Data Science, Biele-
feld University of Applied Sciences. His research

interest includes the robust and holistic optimization of complex production
processes with the help of machine learning techniques.

FIONA KATTENSTROTH received the B.Eng.
degree in industrial engineering from the Bielefeld
University of Applied Sciences, Germany, in 2019,
and the M.Eng. degree from the Ostwestfalen-
Lippe University of Applied Sciences and Arts,
Lemgo, Germany, in 2020. She is currently pur-
suing the Ph.D. degree with the University Pader-
born, Germany, in cooperationwith the Fraunhofer
Institute for Mechatronic Systems Design. She is
also a Simulation Engineer with Miele & Cie.KG

Company, Gütersloh, Germany. Her research interest includes the longterm
use of discrete-event simulation for industrial use cases.

VOLUME 12, 2024 11399

http://dx.doi.org/10.5281/zenodo.8127026

