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ABSTRACT In the era of a more advanced and intelligent Internet, the highly sophisticated service-oriented
internet provides users with a diverse array of similar services. Accurate Quality of Service (QoS) prediction
plays a pivotal role in helping users choose the optimal service from a multitude of available options.
Traditional federated learning models offer a secure method for multiple clients to collaborate on QoS
predictions. However, these models still employ a uniform approach that overlooks the unique requirements
of individual clients. In order to meet the different needs of a wide range of customers for models, we propose
an innovative personalized federated learning framework with layer-wised and neighbor-based aggregation
for QoS prediction (pFedLN). In the proposed framework, we consider the privacy and functional disparities
among layers in neural networkmodels and employ diverse aggregation strategies for layers serving different
functions. In addition, the similarity between neighbors will be taken into account during the aggregation
process. This results in the creation of personalized models for each client that better align with their specific
requirements. Sufficient experiments are conducted on a real-world dataset and the results indicate that our
approach have a clear advantage in improving the effectiveness of personalization compared to existing
approaches.

INDEX TERMS Internet of service, personalized federated learning, QoS prediction.

I. INTRODUCTION
With the continuous development of intelligent service
technologies, the concepts of the ‘‘Internet of Things’’
and ‘‘Everything as a Service’’ are reaching new levels of
maturity. The growing interconnectivity between numerous
services has given rise to the Internet of Services (IoS)
[1]. In the IoS environment, the interoperability among a
wide range of services, domains, and business processes and
rules has resulted in the emergence of a highly complex
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service ecosystem [2]. However, effectively identifying and
extracting high-quality services can be a challenging task
since the the diversity of user demands and the variability
of service quality available in the service ecosystem.
To address this challenge, utilizing QoS metrics is the most
widely accepted approach. The QoS metrics describe the
non-functional attributes of a service, such as response time
(RT) and throughput, and are regarded as crucial indicators
of service quality [3], [4].

Studies [5] and [6] have focused on analyzing historical
QoS data and predicting the unknown QoS values to provide
clients with personalized recommendations for high-quality
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FIGURE 1. Pictorial view of client/server architecture in federated
learning system.

services. They rely on the centralized collection of extensive
client data, which provides a substantial foundation for data
analysis and model training, significantly enhancing predic-
tion efficiency. But while we enjoy the convenience brought
by centralized data collection, we are also increasingly aware
of the significant challenges in data security and privacy
protection.

Federated learning provides an effective solution. As a
distributed machine learning paradigm, federated learning
is gaining widespread attention. The core idea of federated
learning is to share model parameters rather than private
raw datasets for collaborative training, so as to protect user
privacy [7]. In a typical federated learning system, clients
retain their raw data locally and conduct local model training.
Additionally, clients can share their model parameters with
a cloud server to participate in collaborative training. The
details of client/server architecture in federated learning
system is shown in Figure 1. The model training will contains
three parts: (1) clients are allowed to retain the raw data
locally and perform model training locally; (2) client i can
share the model parameters 2i to the cloud server and
participate into the collaborative training; (3) the cloud server
will aggregate the parameters received from clients and
generate a set of global parameters 2̄ for clients. This three
parts will be conducted for iterations until the model become
convergence. It not only greatly reduces the pressure on
data security, but also provides an effective way to handle
distributed data.

It is worth noting that the aggregation way has a significant
impact on the performance of federated learning. The
traditional approach for aggregation in federated learning
is known as FedAvg [7]. This method achieves model

aggregation by directly computing the average of param-
eters. Under the FedAvg framework, local parameters are
transmitted to the server for aggregation after several rounds
of local model training, which represents an improvement
over the previous approach of uploading parameters after
each individual round. The FedAvg algorithm not only
prioritizes the privacy of the participants, but also reduces
the computational burden on the server by somewhat
reducing the data transfer between the client and the server.
This positions federated learning with FedAvg as highly
advantageous for managing distributed learning scenarios,
especially those involving sensitive data. However, despite
its widespread practical use, FedAvg does suffer from two
notable drawbacks:

A. FAILING TO MEET PERSONALIZED NEEDS
The FedAvg approach uses average aggregation to construct
a global model, which will dilute the variability of the
clients. In real-world application scenarios, sharing a global
model for all clients may lead to slow convergence or poor
inference performance because the needs of different clients
are different [8]. As a result, the approach of using an unified
model formultiple clients is impractical and it does not satisfy
the individual needs of the clients.

B. NOT SUITABLE FOR NON-IID DATA
The FedAvg method assumes that the data distributions of all
participants are the same. However, a characteristic of feder-
ated learning is that client data tends to exhibit non-identical
and independently distributed (non-IID) patterns [7]. In non-
IID environments, the distribution of data among participants
can vary significantly. As a result, the average aggregation
method, which assumes equal contributions from all local
models, becomes inapplicable, and its use may result in a
degradation of model performance [9].

In response to the challenges posed by personalized
requirements and non-IID data, personalized federated
learning has emerged as an effective solution. Personal-
ized methods in federated learning perform differentiated
aggregation strategies by taking into account differences
between participants. They can balance the diverse needs
of participants, ultimately yielding more precise prediction
models.

We aim to leverage the advantages of personalized
federated learning to construct an efficient QoS (Quality of
Service) neural network prediction model. Within person-
alized federated learning approaches, we have discovered
an effective parameter aggregation strategy, which involves
aggregating only a specific portion of the network layers
instead of aggregating the entire model. This strategy
primarily from the fact that different layers of a neural
network can have different utilities, e.g., the shallow layers
focus more on local feature extraction, while the deeper
layers are for extracting global features [10]. Therefore,
we can adopt a new aggregation method, integrate the
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idea based on the difference between layers, and adopt
a partial aggregation strategy for our personalized model.
In this strategy, the shallow network responsible for capturing
fundamental, generic features is shared and aggregated, while
the more personalized deeper layers are retained and updated
locally. This strategy strikes a balance in amalgamating global
and local knowledge, ultimately providing more precise
personalized recommendations to users.

In this paper, we propose an innovative personalized
federated learning framework for QoS prediction, named
layer-wised and neighbor-based aggregation for personalized
federated learning (pFedLN). We combine the distinctions
in layer functionalities and the interrelation among clients,
resulting in highly personalized predictions. Additionally,
we have achieved significant advancements in data privacy
protection and learning performance. This paper highlights
our improved ability to personalised training for federated
learning model, emphasising substantial benefits in the area
of QoS prediction. Our solution can be integrated into
the federated learning application scenario to address the
challenge of personalized training across multiple clients.
The main contributions of the paper are as follows:

1) We propose a innovative layer-wised and neighbor-
based aggregation scheme for personalized federated
learning model. Our scheme takes into account the
privacy and functionality of neural network layers and
proposes a novel hierarchical approach, innovatively
employing different aggregation strategies for layers
with distinct functionalities.

2) We perform parameter aggregation based on neighbor
similarity, using contextual similarity to create the
adjacency matrix A. This similarity is then employed to
assign weights to client aggregation, thereby enhancing
the personalization effect.

3) We verify the effectiveness of pFedLN through exten-
sive experiments. And the results show that our method
not only improves the personalized prediction effect of
the model, but also greatly improves the convergence
speed.

The paper is organized as follows. In Section II, we provide
a review of the current related work. In Section III,
we provide a detailed description of our proposed solution.
The performance of our scheme under different settings is
evaluated in Section IV. Finally, in Section V, we conclude
the paper.

II. RELATED WORK
In this section, we focus on aggregation methods in per-
sonalized federated learning. Traditional federated learning
methods typically employ FedAvg aggregation. However,
this does not apply to scenarios where clients have
non-independent co-distribution and different requirements
between clients. In order to meet the specific needs of each
participating client, client personalization has become a core
topic in the federal learning field.

In the field of personalized federated learning, numerous
studies concentrate on factors such as client variability,
heterogeneous data and models, and the enhancement of
privacy protection. Researchers are actively working to
achieve highly personalized learning performance by mak-
ing adjustments to the framework, improving optimization
algorithms, and implementing additional privacy safeguards.
Based on the nature of the problems they address and
the methodologies employed, these efforts can be broadly
categorized into twomain groups: methods for heterogeneous
data problems and methods based on model framework
adjustment.

A. METHODS DESIGNED FOR HETEROGENEOUS DATA
PROBLEMS
Duan et al. [11] proposed a self-balancing federated learn-
ing framework called Astraea. The primary objective is
to mitigate training bias resulting from imbalanced data
distributions. The core concept of Astraea involves adopting
a novel role mediation approach to align the client’s data
distribution with a standardized data distribution. However,
this method require the federated learning server to access
statistical information regarding the client’s local data
distribution (e.g., class size, mean, and standard deviation).
This requirement raises potential concerns regarding privacy
policy compliance.

B. METHODS BASED ON MODEL FRAMEWORK
ADJUSTMENT
Federated learning based on model framework adjustment
can be divided into single-model and multiple-model
approaches according to aggregation results.

In single-model approach, the optimization combines both
client model optimization and global model optimization,
resulting in a unified global model. This kind of approaches
extend from traditional FL algorithms such as FedAvg [7]
and include four different methods: local fine-tuning [12],
[13], regularization [14], meta-learning [15], and parameter
decomposition [16].

In contrast to the single-model approach, the multi-model
approach adopts the idea that different clients maintain their
own training models instead of a unified global model.
It takes the different needs of the clients into account in
order to achieve personalization. The multi-model approach
includes two strategies: 1) Clients are segmented into
multiple groups [9]. For each group, the server maintains an
aggregate model and performing model optimization tailored
to group members. 2) Each client holds a unique model for
individualized requirements, and the server only aggregates
the select parameters.

Inspired by prior research and considering the diversity in
client data, varying requirements in federated learning, and
the efficiency of information transfer, we embrace the con-
cept of multiple models, where each user possesses a unique
model. We apply this approach to neural network-based
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personalized federated learning. Huang et al. [17] computed
the similarity between client models and use this similarity
to aggregate similar client models. However, in scenarios
with a large number of users, calculating model similarity
can become time-consuming. Moreover, common methods
for measuring model similarity often involve assessing model
distances. Yet, due to functional differences among neural
network layers, these distance-based methods may overlook
inter-layer distinctions, potentially resulting in inaccuracies
in personalization.

Each layer in a neural network model has a different
function. Shallow networks are usually responsible for
extracting basic, generalized features, while deeper networks
focus on task-specific and individual feature learning. Based
on this idea, Arivazhagan et al. [12] proposed a base +
personalization layer approach named FedPer, for federated
training of deep feed forward neural networks. They directly
divided the neural network into the base layers and the
personalization layers. They train the base layer locally and
perform global average aggregation on the server, while the
personalization layer is updated only locally. It is to be noted
that this approach requires explicit planning of the base and
personalization layers at the initial stage. In a different vein,
Ma et al. [8] presented pFedLA, a method that incorporates
a dedicated supernetwork on the server side for each client.
This supernetwork computes client similarity, facilitating
the learning of weights for cross-client layers during per-
sonalized federated learning (pFL) training. This enhances
personalization for non-IID datasets. Unlike FedPer, pFedLA
eliminates the need for manual parameter configuration,
making its supernetwork more adaptable to complex network
parameter variations. Chen et al. [18] proposed a structured
federated learning framework named SFL, which enhances
the knowledge sharing in pFL by leveraging the graph-based
structural information among clients. They also proposed
generating a GCN network from the server side to extend
and learn hidden relationships between clients. This approach
inspired us that we can further enhance the personalization
effect of the model by considering the relationship between
clients.

Inspired by FedPer, pFedLA, and SFL, we consider the
functional distinctions among each neural network layer and
the similarity relationships between clients, motivating the
development of an efficient personalized federated learning
model for QoS prediction.

III. pFedLN FRAMEWORK
In this section, we introduce the design of our pFedLN
framework, which employs layer-wise and neighbor-based
aggregation for federated learning in the context of QoS
prediction. To provide a comprehensive understanding of
our approach, we begin with the presentation of relevant
definitions for the problem in the first subsection. Following
that, in the second subsection, we provide a detailed
description of the method’s implementation.

TABLE 1. Main notations and description.

A. PROBLEM FORMULATION
In this subsection, we will state the relevant definitions of the
QoS prediction problem. Considering N clients with non-IID
datasets, let Di = {i, j, ri,j}

mi
j=1(1 ≤ i ≤ N ) be the dataset on

the i-th client, where ri,j is the QoS value of the i-th client
and j-th service, mi is the services set that the i-th client have
invoked. Let 2i represent the model parameters of the i-th
client, the objective of pFedLN can be formulated as:

argmin
2i

N∑
i=1

Li(2i) , (1)

where Li is loss of the i-th clients associated with dataset Di.
Li is calculated as:

Li(2i) =
1
|Oi|

∑
(i,j)∈Oi

|ri,j − r ′i,j| , (2)

where ri,j denotes the real QoS value of i-th clients and j-th
service, r ′i,j denotes the predict value of i-th clients and j-th
service, Oi denotes the gathered invocations matrix and |Oi|
is the number of valid QoS values in Oi.
Equation (1) is our objective function, optimizing the

minimum of the sum of the overall client model losses. The
loss of each client is defined as the average of the difference
between all predicted and true values, and the difference is
calculated by the loss function (2). To optimize the objective
loss function, we adopt the Adam [19] optimizer.

B. LAYER-WISED AND NEIGHBOR-BASED AGGREGATION
OF pFedLN
As shown in Figure 2, we propose a novel aggregation
strategy applied in the federated learning framework. We aim
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FIGURE 2. The framework of pFedLN approach for personalization federated learning. Clients only upload the parameters of service
embedding layer θ l2 and the parameter of base layer θ lbase to the cloud server for collaborative training. On the cloud server, θ l2 and θ lbase
will be aggregated by different strategies. Then the aggregated results will be sent to the corresponding clients.

FIGURE 3. Illustration of the introduction of neural network layers in
pFedLN and the functionally division of these layers.

at the QoS prediction neural network model, considering the
privacy and functional differences of each layer in it.

We categorize the layers of the neural network model
into four segments as depicted in the Figure 3: the user
embedding layer, the service embedding layer, the base
layers, and the personalization layers. This categorization
is based on the depth and the distinct functionality of
model layers. More specifically, we designate the two input
layers as user embedding layer and service embedding layer,
layers 3 through k-1 of the network as the base layer,
with layers k through the final output layer categorized as the
personalization layer. This novel division offers the potential

for more efficient training and improved personalization
performance within the context of federated learning.

For these four types of layers, we use different aggregation
strategies:
(1) The user embedding layer is only allowed to be trained

and stored locally. To ensure the security of users’ local
data, we exclusively conduct local training and storage
for this layer, which may potentially contain user privacy.
And the user embedding layer remains uninvolved in
collaborative training.

(2) After the service embedding layer is trained locally,
it will be uploaded to the server for average aggregation,
and then the aggregation result will be sent to each
client for local update. The service embedding layer
encompasses global service information, while each
client possesses only a limited dataset. Therefore, the
server-side collaborative training for the service embed-
ding layer is necessary, effectively enhancing the model’s
predictive capabilities.

(3) The base layers will be uploaded by the client to the
server for neighbor-based aggregation, and then sent to
each client for local update.

(4) The personalization layers are only locally trained and
not uploaded for aggregation because its functional
characteristics are conducive to personalization and have
less impact on global convergence.

We define the model produced by client i at the t-th local
training iteration as 2t

i :

2t
i = {θ

l1,t
i , θ

l2,t
i , θ

lbase,t
i , θ

lper ,t
i }, (3)
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where θ denotes the parameter of a layer of the model,
θ l1,t denotes the parameter of the 1-st layer of client i at
the t-th iteration, and similarly θ l2,t , θ lbase,t , θ lper ,t denote
the parameter of the 2-nd layer, the base layers, and the
personalization layers, respectively. Here, θ l1,t and θ lper ,t

represent the user embedding layer and the personalization
layer, respectively, both of which are only updated locally,
not shared, and not aggregated. θ l2,t and θ lbase,t represent the
service embedding layer and the base layers, respectively,
which can be shared and co-trained by multiple clients, but
they are aggregated in different ways.

The service embedding layer uses gradient averaging
aggregation [7]:

θ̄ l2,t = θ̄ l2,t−1 −

∑N
i=1

(
θ̄ l2,t−1 − θ

l2,t
i

)
N

, (4)

where θ l2,t represents the local service embedding layer
parameters at the t-th iteration, and θ̄ l2,t denotes the update
layer parameters at the (t − 1)-th iteration. Here θ̄ l2,0 is
initialized as θ l2,0. N represents the number of clients
participating in collaborative training, θ

l2,t
i denotes the

parameters of the i-th client at the t-th iteration. The gradient
at t-th iteration is the difference between θ

l2,t
i and θ̄ l2,t . The

aggregation results are distributed to all clients, and each
client updates these results locally before proceeding with the
next training iteration.

The base layers utilize similarity neighbor models for
average aggregation. We adopt a matrix A to represent the
similarity between clients. A is a N ∗ N matrix and N
represents the number of clients in the system. The element
Ai,j indicates the similarity between client i and client j.
In collaborative training, contextual information is com-

monly employed to determine the similarity between clients.
For services with similar functionalities, the quality of
service data may be influenced by various factors, includ-
ing geographical location and network conditions. Among
the contextual information available, clients’ geographical
details, such as their region, can be particularly informative.
Clients sharing similar geographic locations are likely to
exhibit similarity in QoS values. However, due to privacy
concerns, we only collect a subset of contextual information,
such as the country. This partial context information serves as
the foundation for calculating similarity. Using this context
information, we compute a similarity matrix, denoted as
matrix A where Ai,j ∈ {0, 1}, to quantify the similarity
between clients. When the context information (e.g., the
country of residence) is the same, the value of Ai,j is 1,
and vice versa, Ai,j is 0. After establishing the 0-1 similarity
matrix, we perform a normalization transformation on it to
obtain the final similarity matrix.

After completing the construction of the matrix A, we use
A to perform neighbor-based aggregation on the base layers:

θ̄
lbase,t
i =

N∑
j=1

θ
lbase,t
j · Ai,j, (5)

where θ lbase denotes the base layer parameters, θ lbasei denotes
the parameters of the i-th client aggregated by the server at the
t-th iteration, N denotes the number of clients participating
in the aggregation, θ lbasej denotes the parameters of neighbor
j at the t-th iteration result, and Ai,j denotes the similarity
between client i and client j. The server performs neighbor
aggregation for each client separately and generates the
corresponding parameters for each client. Distinguishing
from the traditional approach where all users share the same
global model, our approach generates N different sets of
parameters corresponding to N clients after the base layer
aggregation, which better achieves personalized federated
learning training.

The local model parameter 2t
i is updated as:

2t
i = {θ

l1,t
i , θ̄

l2,t
i , θ̄

lbase,t
i , θ

lper ,t
i }, (6)

where θ
l1,t
i and θ

lper ,t
i are still the results of the local training,

while θ̄
l2,t
i and θ̄

lbase,t
i are the aggregated results. When the

model reaches convergence, the predicted value is computed
as follow:

r ′i,j = F
(
ui, sj | 2t

i
)
, (7)

where ui,sj denote client i and service j, respectively, andF (·)

denotes the neural network model function, ui and sj are two
inputs of F (·), 2t

i denotes the model parameters, and r ′i,j is
the model output.

Algorithm 1 demonstrates the pFedLN procedure. The
whole process consists of three parts: initialization, client
execution and server execution. In the initialization phase,
each client adopts the initial model parameters provided
by the server; the server computes the similarity by the
context information from users, and constructs an adjacency
matrix using the GetNeighbor() function. The main idea of
GetNeighbor() is to compute the similarity based on the
context information, so as to generate the adjacency matrix A.
During the client execution phase, the client carries out local
training to update its model parameters. Equation (1) is the
objective function for model optimization. Upon completion
of the local training, each client then transfers the parameters
of the service embedding layer and the base layer to the
server. In the server execution phase, the server collects
parameters uploaded by clients and subsequently aggregates
the parameters of both the service embedding layer and the
base layers. Equation (4) represents the aggregation method
for the service embedding layer parameters, while (5) is
the aggregation method for the base layer parameters. The
aggregated results comprise two parts: one is a set of global
service embedding layer parameters, and the other is a
collection of N sets of base layer parameters, with each of
these N sets corresponding respectively to N different clients.

After receiving the aggregated results, each client subse-
quently updates its local model. The next round of training
will also be initiated after the update, during which both the
client and server-side programs will continue to iterate until
the model converges.
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Algorithm 1 pFedLN Algorithm
Input:

dataset {D1,D2, . . . ,DN }, learning rate η. Total commu-
nication rounds T .

Output: Trained personalized models {θ1, θ2, . . . , θN }.
1: Initialize local model parameters: 20

1, 2
0
2, . . . ,2

0
N .

2: Initialize adjacency matrix A: GetNeighbor().
3: for each communication round t ∈ {1, . . . ,T } do

Procedure Client Executes:
4: model training: F(ui, sj|2

t−1
i )

5: local parameters: 2t
i : {θ

l1,t
i θ

l2,t
i , θ

lbase,t
i , θ

lper ,t
i }

6: parameters send to server: θ l2,ti , θ
lbase,t
i

Procedure Server Executes:
7: initialize the sum of the parameters of the service

embedding layer: suml2
8: for each client i do
9: suml2+ = θ

l2,t
i

10: end for
11: θ̄

l2,t
i = θ̄

l2,t−1
i −

(
suml2
N − θ

l2,t
i

)
12: for each client i do
13: initialize θ̄

lbase,t
i

14: for each client j ∈ N do
15: θ̄

lbase,t
i + = θ

lbase,t
j · Ai,j

16: end for
17: end for

Procedure Client Executes:
18: receive paramters from server and update model:

2t
i ← {θ

l1,t
i θ̄

l2,t
i , θ̄

lbase,t
i , θ

lper ,t
i }

19: end for
GetNeighbor():

20: initialize A = [0 ∗ N ] ∗ N
21: for each client i do
22: for each client j do
23: if the context of client i is equal to that of client j

then
24: Ai,j = 1
25: else
26: Ai,j = 0
27: end if
28: A← Normalization_transformation(A)
29: end for
30: end for
31: return A

IV. EXPERIMENT
In this section, sufficient experiments are conducted in a
real-world dataset to answer the following research questions:

RQ1: Dose our proposed approach perform more effectively
in QoS prediction based on federated learning than
existing methods?

RQ2: What is the effect of layer-wised and neighbor-based
aggregation on prediction accuracy?

RQ3: How does our method perform on convergence speed?

In the following subsections, we will conduct experiments
based on the aforementioned three research questions and
delve into a comprehensive discussion of these three issues.

A. EXPERIMENT SETTINGS
1) DATASET AND PARAMETER SETTINGS
To evaluate our approach, we conducted our experiment on
a real-world QoS dataset, WS-DREAM [20]. This dataset
includes 1,974,675 real-world Web service invocations
conducted by 339 service users from 30 countries on 5,825
actual web services in 73 countries. Here is a set of default
settings for our experiments: 1) batch_size: the number of
samples at each training iteration, was set to 256. 2) iteration:
the number of iterations of the model, default is 500. 3)
client_epochs: the number of iterations of local training,
default is 1. 4) learning rate: a rate controls themodel weights
updated during training, is set to 0.01. For each experiment,
we tested our proposed model five times at each density and
took the average of the results as the final outcome.

2) EVALUATION METRIC
In order to measure the performance of our model, we use
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) as the predictive accuracy metrics.
• MAE: It measures the average absolute difference
between the predicted and the actual values of a dataset.
The formula for calculating MAE is:

MAE =

∑
(i,j,ri,j)∈O

∣∣r̂i,j − ri,j∣∣
|O|

, (8)

• RMSE: It measures the square root of the average of the
squared differences between the predicted and the actual
values. The formula for calculating RMSE is:

RMSE =

√√√√∑
(i,j,ri,j)∈O

∣∣r̂i,j − ri,j∣∣2
|O|

, (9)

where O denotes observed records in the training dataset, |O|
denotes the number of records in O, ri,j denotes the actual
QoS value of server j invoked by user i, while r̂i,j denotes
the predicted value. Both MAE and RMSE are measures of
the error between predicted and actual values, where a lower
value of either metric indicates higher prediction accuracy.

B. PREDICTION ACCURACY COMPARISON (RQ1)
To verify the prediction accuracy of our approach, we com-
pare it via the following existing personalization federated
learning methods:
• FedAvg [7]. FedAvg is an aggregation method for
federated learning, which operates by averaging the
parameters across all participating clients. In this
methodology, each client uploads its individual param-
eters, and all users collaboratively train a unified global
model.

• FedAtt [21]. A method for introducing attention mecha-
nisms in federated learning involves aggregating client
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TABLE 2. Comparison of response-time prediction MAE and RMSE among baseline approaches and pFedLN.

parameters according to attention weights. In this
method, clients upload all their parameter information
and collaboratively train a unified global model.

• FedPer [12]. A personalized federated learning aggre-
gation method that directly divides the neural network
layers into the base layers and the personalized layers,
where the base layers are globally averaged and updated,
while the personalized layers are only updated locally.
In this method, users only upload the parameters of the
base layer and all users train a unified global model
together.

In the IoS environment, obtaining paired QoS values is
a challenging task, leading to a highly sparse collection of
QoS data [3]. To accurately simulate a QoS scenario with
high sparsity, we set the density of the training set to 0.5%,
1%, 1.5%, and 2%. Table 2 provides comparative prediction
MAE and RMSE results on RT in WS-DREAM.We have the
following observations:
1) The experimental results show that FedPer and our

proposed pFedLNmethod have better effectiveness than
FedAvg and FedAtt. This improved performance can be
attributed to the consideration of functional differences
between neural network layers. In both the FedPer and
pFedLN, attention is given to the functional disparities
among neural network layers, and the layers are divided
based on the disparities. As a result, in the case of
uploading only some of the parameters for co-training,
it achieves improving the effect of personalized training.

2) Among the baseline methods, we found that FedPer has
the best results overall. Comparing with FedPer, our
method has superior performance. TheMAE criterion of
our method is decreased by 22.47% to 30.37%, and the
RMSE criterion is decreased by 20.99% to 26.36%. This
demonstrates the enhanced efficiency of our approach
in personalized prediction. Importantly, our method
consistently outperforms these baseline techniques, even
in scenarios with sparse training data, underscoring its
robustness in such data-scarce conditions.

C. EFFECT OF LAYER-WISED AND NEIGHBOR-BASED
AGGREGATION (RQ2)
In this section, we will discuss the effects of layer-based
aggregation and neighbor-based aggregation in our model.

FIGURE 4. Comparison of the models’ performance at different densities,
evaluated by the criterion MAE.

We conducted controlled ablative experiments using pFedLN
to explore the effects of specific functionalities:
• pFedLN-neighbors: User similarity is not considered in
client-side aggregation in this method.

• pFedLN+layers: Rather than segmenting the neural net-
work layers, all layers are aggregated in this approach.
The user embedding layer and service embedding layer
are aggregated using gradient average aggregation,
while the remaining layers are aggregated through
simple average aggregation.

• pFedLN*: In this method, the same aggregation method
employed for the base layer is also applied to the service
embedding layer.

The MAE and RMSE results are shown in Figure 4 and
Figure 5 respectively. We have the following observations:
• Comparing pFedLN-neighbors to pFedLN, pFedLN
outperforms, enhancing the effectiveness by 1.04%
overall. This suggests that considering neighbor rela-
tionships and assigning aggregation weights to neigh-
bors based on similarity can enhance the model’s
performance.

• When comparing pFedLN+layers to pFedLN, pFedLN
significantly outperforms pFedLN with an overall
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FIGURE 5. Comparison of the models’ performance at different densities,
evaluated by the criterion RMSE.

improvement of 24.54%. Experimental results indicate
that the performance of all layers participating in
collaborative training does not improve with an increase
in parameter size. In contrast, pFedLN, which only
utilizes a subset of layer parameters for collaborative
training, performs better. This achievement can be
attributed to the consideration of functional differences
between various neural network layers. Specifically,
we adopted a unique aggregation method for shallower
network layers, enabling the capture of fundamental and
general features. For deeper network layers focused on
task-specific and personalized feature learning, we per-
form updates only locally. Notably, for user embedding
layers containing user information and potential privacy
concerns, we strictly conduct updates locally to enhance
user privacy protection in the model.

• Comparing pFedLN* and pFedLN, pFedLN outper-
forms pFedLN* with an overall improvement of
19.18%. The design of pFedLN* is aimed at investi-
gating whether using gradient updates or employing a
similar neighbor aggregation approach for the service
embedding layer leads to better model performance.
Experiments have demonstrated that applying a specific
aggregation approach to the service embedding layer is
more conducive to improving the model’s effectiveness.
This idea is inspired by the practice of gradient updating
for latent factors in federated matrix factorization [5],
where collaborative training overcomes the limitations
of local service feature quantities, enabling access to
global service features.

In summary, the development of distinct aggregation
methods that consider the layer-to-layer disparities in neu-
ral networks and rely on client similarity proves highly
advantageous for personalized aggregation. This grants our
approach a distinct advantage in enhancing the efficacy of
personalization.

FIGURE 6. The MAE value of models as the iteration proceeds.

FIGURE 7. The RMSE value of models as the iteration proceeds.

D. CONVERGENCE SPEED COMPARISON(RQ3)
In this subsection, we conduct a comparison of the conver-
gence times required for each method. We have configured
the maximum number of iterations to 300 and established
a training matrix density of 1%. The learning rates for the
different methods have been set to their optimal values.
We document the number of iterations necessary for each
method to achieve convergence. The MAE and RMSE results
are shown in Figure 6 and Figure 7 respectively. We have the
following findings:
• The pFedLN method demonstrated the shortest con-
vergence time, becoming close to convergence by
the 60th iteration. In comparison, among the base-
line methods, FedPer was approaching convergence
at the 120th iteration, while FedAtt did not come
close until the 245th iteration. Simultaneously, FedAvg
reached optimal MAE value around the 90th iter-
ation, subsequently experiencing some fluctuations.
When comparing pFedLN’s performance with the three
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baseline methods - FedAvg, FedAtt, and FedPer - it’s
clear that pFedLN has significant advantages, taking
33.33%, 75.51%, and 50.00% less time to converge,
respectively. These findings illustrate another advantage
of ourmethod: pFedLNnot only bolsters personalization
effectiveness but also accelerates model convergence.

• Among the ablation methods, pFedLN-neighbors
was approaching convergence at the 85th iteration,
pFedLN+layers was at the 235th iteration, and
pFedLN* was at the 240th iteration. Comparing to
pFedLN-neighbors, pFedLN+layers, and pFedLN*, the
convergence time of FedPer is reduced by 29.41%,
74.47%, and 75.00%, respectively.

• We observed that the MAE and RMSE for the pFedLN
and pFedLN-neighbors schemes bounce back slightly
after continuously decreasing for around 100 iterations.
One possible reason is that when the training iter-
ations exceed the optimal number, the learning rate
or other model parameters go beyond their adaptive
range. In practice, the training only needs to meet the
convergence requirement to end, and does not require as
many iterations.
This demonstrates that the method of aggregating
the service embedding layer and the base layer in
different ways is very effective, significantly improving
the convergence speed of the model. Furthermore,
implementing the neighbor-based aggregation can also
contribute to the acceleration of the model’s conver-
gence rate to a certain degree.

In a real-world scenario, the time required for model
training serves as a critical criterion for assessing the
practicality of a model. It has been demonstrated that our
method effectively enhances the model’s convergence speed
while ensuring higher-quality personalized predictions.

V. CONCLUSION AND FUTURE WORK
In this paper, we focus on enhancing pFL QoS prediction in
IoS scenarios. Our proposed scheme has several advantages
over existing QoS prediction methods, which include:
(1) Highly accurate personalization prediction: Our approach
considers the privacy and functional differences between
neural network layers, and makes a classification of these
layers. We develop different aggregation strategies for the
co-trained service embedding layer and the base layers.
In addition, the user embedding layer which may contain user
privacy, and the personalization layer which is more effective
for personalized feature mining, are only trained and updated
locally. Our scheme greatly improves the effectiveness of pFL
model. The experimental results indicated that comparing
the best performing baseline method, pFedLN reduced the
MAE values by 22.47% to 30.37% and the RMSE values
by 20.99% to 26.36%. (2) Considering neighbor similarities
for aggregation: For clients participating in collaborative
training, we do not perform aggregation in general, but
select similar clients for weighted aggregation, which
effectively improves the efficiency of collaborative training.

(3) Enhancing model convergence speed. In pFedLN, the
clients involved in co-training only need to upload part of the
model parameters, and the server only aggregates this part of
parameters, which greatly reduces the time consumption for
training. Experimental results show that our method improves
at least 67.54% in convergence speed over the baseline
method.

In our future work, we will continue to explore more
effective and adaptable personalization methods. In pFedLN,
the classification of the layers is designed simply by the
results of the experiment. But for more complex and flexible
models, a more flexible classification strategy is needed.
What’smore, ourmethod is now only experimented on offline
data.Wewill further consider personalized federated learning
in mobile edge environment, where the client’s contextual
information will change in real time. It is also necessary
to consider how the client’s similarity should be computed
to adapt to the characteristics of the dynamic environment.
Moreover, the model will further take into account the
analysis of the online data, and enhance its scalability and
robustness to better suit real-world applications. This will
ensure that our model is more practical and effective in real-
world environments.
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