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ABSTRACT Agricultural systems are being revolutionized due to emerging technologies that aim to make
improvements in the traditional agriculture system. The major goal is not just to enhance agricultural
output per hectare but also to enhance crop quality while protecting the natural environment. Weeds
pose a significant threat to crops as they consume nutrients, water, and light, thereby reducing crop
productivity. Spraying the entire field uniformly to control weeds not only incurs high costs but also has
adverse environmental effects. To address the limitations of conventional weed control methods, in this
research, Machine Learning (ML) and Deep Learning (DL) based techniques are proposed to identify
and categorize weeds in crops. For ML-based techniques, several statistical and texture-based features are
extracted, including central image and Hu moments, mean absolute deviation, Shannon entropy, gray level
co-occurrence matrix (GLCM) and local binary patterns (LBP), contrast, energy, homogeneity, dissimilarity,
correlation, and summarized local binary pattern histogram. YOLOv8m is employed to identify weeds and
for weed classification, features extracted from two standard benchmark datasets, CottonWeedID15 and
Earlycrop-weed are fed to Support Vector Machine (SVM), Random Forest, and Artificial Neural Network
(ANN) while employing Synthetic Minority Oversampling Technique (SMOTE) to balance the classes.
In addition to ML-based techniques, Deep learners such as VGG16, VGG19, Xception, DenseNet121,
DenseNet169, DenseNet201, and ConvNeXtBase are trained on raw data with balanced classes for
automated feature extraction and classification. Among the ML-based techniques, SVM with a polynomial
kernel achieves 99.5% accuracy on the early crop weed dataset, and Artificial neural network attains 89%
accuracy on the Cottonweedid15 dataset. Meanwhile, the combined employment of ConvNeXt and Random
Forest results in the highest accuracy among DLs, specifically 98% on the early crop weed dataset and
90% on the Cottonweedid15 dataset. The high accuracy achieved underscores the practical viability of these
methods, offering a sustainable and cost-effective solution for modern agriculture.

INDEX TERMS ConvNeXtBase, DenseNet, generative Al, smart agriculture, VGG, Xception, YOLOVS.

I. INTRODUCTION will reach 9 billion. Due to the increase in the population,
Every year, the world’s population is growing at a rate of the demand of food is also increasing. To meet this demand,
1.09%. By 2050, it is projected that the global population agricultural production needs to be increased by 70% [1].
However, the agricultural sector faces many challenges, such

The associate editor coordinating the review of this manuscript and as lack of cultivable land, saline land, barren land, climate
approving it for publication was Rongbo Zhu ™. change, water scarcity, as well as weeds in crops. Artificial
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intelligence can play crucial role in mitigating these issues
in agriculture with the aid of computer vision, machine
learning, and deep learnings [2]. According to their leaf
shape, weeds are divided into three primary groups: broad-
leaf weeds, grasses, and sedges. Weeds are non-essential
plants that are found in different parts of the crop. These
weeds not only damage the crop but also provide shelter
and breeding grounds for various pests. As per European
Crop Protection (ECPA), weeds and pests cause about a
40% loss in crop yields. Therefore, many methods have been
devised to eliminate weeds from the crop to avoid damage.
One of these methods is to remove weeds from the crop by
hand [3]. This method demands lots of hard work and time.
Another method is to remove weeds with the help of specially
designed mechanical devices. These devices are moved
between the rows of crops. however, these devices are not
workable on crops that are not grown in rows. One approach
to eliminating weeds in crops is to use chemical sprays.
Our farmers spray uniformly across the entire field to keep
weeds at bay. Spraying in fields uniformly raises production
costs and has negative environmental consequences. Fig 1
shows the conventional weed-control techniques. Artificial
intelligence is able to make a weed control system with the
help of computer vision, deep learning, and machine learning.
Artificial intelligence has both economic and environmental
benefits. The first stage in building an automated weed
removal system is to correctly detect and recognize weeds by
the automated weed removal system [4]. Weed classification
and detection in crops are challenging problems because
most of the time, weeds and crops have the same color
and texture. It is difficult to differentiate between them.
Due to different sun angles, lighting varies on the surface
of weeds and crops, producing illumination and shadow,
which creates more difficulty in detection and classification.
Image capture, pre-processing of pictures, feature extraction,
and weed detection and classification are the four main
phases of a typical weed detection system [5]. In recent
years, with the advancement of science, Technology, and
artificial intelligence, both have experienced rapid growth.
For solving classification and detection problems, many
new computer vision, machine learning, and deep learning
algorithms have been introduced which are only able to work
due to the graphics processing unit. Deep learning models,
such as deep neural networks, demand high computation.
But with the help of transfer learning, we are able to
reduce computation. In transfer learning, we use already
learned weights that are transferred from another problem-
related domain. Transfer learning (also known as transferring
deep learning model’s weights) solely entails fine-tuning
model parameters using additional datasets in the target
domain. Transfer learning is really helpful in achieving
good results with less computation. The authors of [6]
discovered that optimizing DL models on agricultural
datasets helps decrease training epochs while enhancing
model accuracy. On the early-crop-weeds Dataset [6]
and the Plant Seedlings Dataset, they enhanced the
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classification accuracy by 0.51% to 0.89% by fine-tuning four
DL models [7].

Major Research Contributions: Our research addresses
the challenges in weed detection and classification by
focusing on the features that can produce upstanding ML
and DL-based models. The research makes significant
contributions to the smart agriculture field by introducing
novel feature-based approaches and generating a comparative
insight into the effectiveness of features for weed identifica-
tion and classification, and proposing solutions for removing
weeds.

« A meticulous effort has been made to annotate the “Cot-
tonWeedID15” dataset. The dataset contains images of
various weeds commonly found in cotton fields. These
images are scrupulously annotated with rectangular
regions of interest (ROI) markings and are released with
this research [8]. By providing this annotated dataset, the
research serves as a valuable resource for the research
community for future investigations in the field of weed
identification and control.

e Our research makes a significant contribution by
thoroughly investigating the efficacy of various sta-
tistical and texture features, encompassing simple
moments, Hu moments, GLCM (Gray-Level Co-
occurrence Matrix), and LBP (Local Binary Pattern),
in addition to exploring the potential of deep learning
features. This exploration of diverse feature sets is
crucial for advancing the understanding of feature
extraction methods and computation in the context
of weed detection.Models and feature sets yielded
results of more than 88% on the testing set of both
datasets.

o U2Net is used in a novel way to remove the background
from the images and a rigorous comparison is made to
evaluate the performance of the learners on images with
a background and without a background.

o Our research contributes by disseminating a vital aware-
ness message to the world’s population, highlighting the
transformative potential of deep learning technology in
agriculture. By emphasizing the benefits of adopting
deep learning techniques, we aim to inspire and educate
farmers about the potential improvements in crop yield
and overall prosperity that can be achieved through the
integration of advanced technologies. This awareness
initiative is a proactive step toward bridging the
gap between technological advancements and practical
implementation in the agricultural sector, fostering a
more informed and tech-savvy farming community in
the world.

The remaining sections of the article are structured as
follows: Section II probes into related work and explores
existing approaches relevant to the topic while section III
outlines the proposed methodology with Fig 2, detailing
the techniques. Section IV discusses the experimental setup
along with results obtained from the multiple experiments.
Finally, the findings and implications of the research are
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thoroughly discussed in section V, and the conclusion is
presented in Section VI.

automated

FIGURE 1. Weed removal approaches.

Il. RELATED WORK

Machine learning and deep learning techniques are used in
the detection and recognition of weeds in crops, producing
astonishing results in precision farming. Reference [3]
proposed two techniques for classification based on weed
density. They used three classes, with each class representing
weed density. In their first technique, after creating a density-
based dataset, they converted each image to grayscale, then
reduced the image size to reduce computing time. Grey level
co-occurences matrix is calculated from the reduced-size
images, and features like correlation, contrast, homogeneity,
and energy are extracted from each grey level co-occurences
matrix. They trained a support vector machine model with
a radial basis kernel and achieved a 10-fold cross-validation
accuracy of 72.73%. They also conducted a comparison of
radial bases and linear kernels. The highest accuracy achieved
with a linear kernel is 51.52%, which is comparatively lower
than a radial base kernel. Random forest achieved a 69.70%
cross validation accuracy after a 10 fold cross-validation
with GLCM features. In their second method, they extracted
the green channel from the RGB image of a density-based
dataset. Then they calculated Mean, variance, kurtosis, and
skew. They trained a support vector machine model with a
radial basis kernel and achieved a 10-fold cross-validation
accuracy of 84.85%.

To address dataset issues, the generative adversarial
techniques of deep learning are critical for creating synthetic
images [9] They generate synthetic images with traditional
augmentation as well as with a deep convolutional generative
adversarial network. In their work, they use transfer learning
to set the weights of a neural network. They took a neural
network with ImageNet weights. In their experiment with
DCGAN, they used the PlantVillage dataset. The best FID
score was achieved after 46,000 iterations, and the FID was
86.93% for synthetic tomato images, and for synthetic black
nightshade images, the FID score is 146.85, which was
achieved by DCGAN after 29,500 iterations. In a noisy test
set, the performance of inception-resnet was 89.06%. With
real and synthetic images, the inception F1 score was 98.63,
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and in a noisy test set, the performance of inception was
87.05%.

Many researchers used image processing techniques for
weed identification. Reference [10] provided a review of
image processing techniques. After collecting the dataset,
then researchers apply preprocessing on the dataset, and
after preprocessing, image enhancement algorithms are
used. On enhanced images segmentation algorithms are
used, which are threshold-based or learning-based. Then
researchers extract features from the binary image. Feature
extraction is based on morphology, spectral property, visual
texture, and spatial context. Then these features are fed in
machine learning or deep learning models and classified the
weed images. Deep learning models such as GANS and CNN
were also discussed. Agriculture’s massive dataset challenges
require deep learning to solve.

Turf grass is used in athletics grounds, lawns, golf courses,
and many other areas. So [11] proposed methods to avoid
weeds in turf grass. They used a Sony DSC-HX1 camera
for dataset collection. They took images from multiple
golf courses (Riverview, Sun City, Tampa, and Miami).
Hydrocotyle spp., Hedyotis cormybosa, and Richardia scabra
were the weeds used in their datasets. They did training with
one weed and with turf grass and also with multiple weeds
with turf grass. For training, they used VGGnet, Googlenet,
and Detectnet architectures.The F1 score values of VGGnet
and Googlenet for Hydrocotyle spp. are 0.9990 and 0.667 on
validation dataset. The F1 score values of VGGnet and
Googlenet for Hedyotis cormybosa are 0.9950 and 0.7091 on
validation dataset. The F1 score values of VGGnet and
Googlenet for Richardia scabra are 0.9911 and 0.6667 on
the validation dataset. For multiple species Googlenet F1
score was 0.72667 and VGGnet F1 score was 96.33 on
the validation dataset. Many classification and detection
experiments have been conducted in agriculture as a result
of the advent of deep learning algorithms. Reference [12]
did a survey of deep learning techniques. They conducted
a survey of existing deep learning algorithms for weed
identification and classification in various crops. Deep
learning architectures used in research papers are VGGNet,
modified Xception, Inception-ResNet, MobileNet, DensNet,
ResNet-50, VGG-16, VGG-19, Inception v3, SegNet-512,
SegNet-256, YOLO-v3, tiny YOLO-v3, single-shot detector,
convolutional neural network, segnet, alexnet, deeplab-v3,
U-net, artificial neural network, VGG-F, VGG-vd-16,
AlexNet, U-Net, SegNet, hybrid network, faster R-CNN,
ESNet, Joint unsupervised learning deep cluster, LeNET,
etc. Various crops and weeds are used with various deep
learning models. Furthermore, they discussed how GANS
and synthetic data can also play an important role in
catering to the problems of complex patterns in agriculture.
For weed removal applications, High precision is required,
But achieving high precision in agriculture is still a
challenging problem. [13], they did work with sugar beet
fields and four species of weeds, which are named as Pig-
weed, Lambsquarters, Hare’s-ear mustard, and turnip weed
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(scientifically known as. Amaranthus chlorostachys,
Chenopodium album,Conringia orientalis and Rapistrumru-
gosum). They used fourier transform and moment features
with SVM and ANN. The ANN achieved a 99.50% accurate
classification of weed. The ANN exhibited an overall
accuracy rate of 92.92%. On the other hand, SVM overall
accuracy was 95. 93.33% SVM correctly classified 93.33%
of weeds.

In [6], they generated Early-crop-weed dataset, which
includes tomato and cotton crops along with two weed
species (black nightshade and velvetleaf). They combined
fine-tuned pre-trained convolutional networks (Inception-
Resnet, Densenet, Xception, VGNets, and Mobilenet) with
“traditional” machine learning classifiers (Logistic Regres-
sion, Support Vector Machine and XGBoost). They used
transfer learning for training. Their results showed that the
fine-tuned Densenet with Support Vector Machine combina-
tion achieved a micro F1 score of 99.29%. Other architectures
also achieved more than 95% accuracy. In [14] they purposed
several experimented approaches and explained how to
fine-tune parameters and extract deep features using deep
learning, combining them with machine learning algorithms.
They used four public datasets in their work named as
flavia, swedish leaf, UCI leaf and plantvillage. They extracted
features with deep neural networks (AlexNet and VGG-16)
and after extracting features, they applied classic machine
learning classifiers (LDA and SVM) for classification.
In their last experiment, they produced features with AlexNet
and VGG 16. Then they combined the features which are
produced by AlexNet and VGG16. Then they used end-
to-end RNN on these featues, and after training, produced
classification results on test data. All their experiment
produced more than 90% classification accuracy.

Broadleaf crops and weeds that also have broadleaf make
it more difficult to identify broadleaf weeds inside broadleaf
crops [15]. They used wheat and weed species (cleavers,
crickweed, and shepherds purse). For weed detection, they
used CenterNet2, Faster R-CNN, TridentNet, VFNet, and
YOLO version 3. For weed classification, they used Alexnet,
DenseNet, ResNet, and VGGNet. On weed detection, YOLO
v3 achieved the highest F1 score on validation as compared
to other models, which is 0.65. VGGNet and DenseNet F1
scores are 1, which is higher than as compared to other mod-
els. In another work [16], they did a comparative performance
analysis of 3 image classification models that were trained for
classifying various species of weed, as well as the detection
model performance developed to detect and classifying weed
species. The dataset contain 462 RGB photos of early
season weeds commonly found in corn and soybean crops
(redroot pigweed, gigantic ragweed, foxtail, and cocklebur).
There are 181 images of redroot pigweed, 173 images of
gigantic ragweed,73 images of foxtail, and 35 photographs
of cocklebur. They used models named Resnet50, VGG16,
and inception for image classification. With an accuracy
of 98.90, VGG16 was the best performing classification
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model. In their research work [17] they presented a new
dataset which had 5187 coloured images, captured under
different natural light conditions, that contained images of
15 different weed classes (Morning Glory, Carpetweed,
Palmer Amaranth, Waterhemp,Purslane, Nutsedge, Eclipta,
Sicklepod, Spotted Spurge, Ragweed, Goosegrass, Prickly
Sida, Crabgrass, Swinecress, and Spurred Anoda). This study
also evaluates 35 state-of-the-art deep learning models for
multi-class weed identification. In total 35 models are trained
and among all these models the top 5 models that performed
the best were ResNeXt101, RepVGG-B1, RepVGG-B2,
ResNeXt50, and RepVGG-A2.

An improved YOLOv5 Convolutional Neural Network is
constructued for Solanum rostratum Dunal detection [18].
Solanum rostratum Dunal weed is classified as one of the
most harmful weeds in the US and China. Total 413 images
of Solanum rostratum Dunal at different stages of growth
were obtained using different devices. YOLOVS is combined
with the Convolutional Block Attention Module (CBAM) to
increase the extraction of relevant features while suppressing
others. This combination is known as YOLO-CBAM. YOLO-
CBAM is made up of four parts: input, backbone, neck,
and prediction. The model results in a precision of 0.9036,
recall of 0.9012 and an average precision of 0.9272. This
research [19] was carried out to identify weeds in the fields
of bell pepper. During preprocessing, lighting variations and
noise were removed, and data augmentation was applied to
enhance quality and avoid overfitting. AlexNet, GoogLeNet,
InceptionV3 and Xception are those Convolutional Neural
Network architectures that were applied during this research.
All the models provided results with 94.5% - 97.7% of
accuracy. Overall, InceptionV3 provided the highest accuracy
of 97.7%. In weed identification tasks, speed, computation
time, accuracy, and memory are very noticeable things [20].
In their work, they focused on such things and used
lightweight, deep learning models for weed identification.
Using the SLIC super pixel technique, images were divided
into 15336 segments: 3249 for soil, 7376 for soybeans,
3520 for grass, and 1191 for broadleaf weeds. For weed
identification, they used mobilenetv2, resnet50, and three
custom models. The 5-layer CNN design has the lowest
latency and memory utilisation (1.78 GB and 22.245 ms,
respectively), as well as the highest detection accuracy
97.7%.

In this research [21] optimization algorithms(Adagrad,
AdaDelta, Adaptive Moment Estimation (Adam), and
Stochastic Gradient Descent (SGD)) were used with
deep convolution neural networks (AlexNet, GoogLeNet,
VGGNet, and ResNet). VGGNet is particularly designed for
small convolution kernels to limit the number of neurons
and number of parameters. ResNet (Residual Network) is
used to fix the degradation problem for deep networks by
using residual learning to train the deeper networks. For the
best performing input image size, the classification accuracy
hierarchy, from lowest one to highest one, was VGGNet,
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GooglLeNet, AlexNet ResNet. The study [22] shows how
we can use Siamese neural networks to solve large dataset
problems. The Siamese neural network with convolutional
layers was used for training. The support dataset contains
1,5,10,15, and 20 images of each type, while the query
contains 40 images of each. Support datasets were used to
fine tune the SNN. Then it was evaluated on a testing set,
and further enhancement in accuracy was observed as the
accuracy jumped to 70.1% and 70.0% from 67.5% and 66.6%
for the validation and testing data sets, respectively.

In this paper [23], the main purpose was to train Deep
Convolutional Neural Networks (DCNNs). Four DCNNs
(GoogLeNet, ShuffleNet, MobileNet, and VGGNet) were
assessed to find and differentiate weeds that are growing in
bermudagrass turf. Both VGGNet and ShuffleNet demon-
strated exceptional overall accuracy in the validation process,
with values equal to or greater than 0.999. SE-YOLOv5x
was first time tested on lettuce crops and weeds dataset [24].
The dataset they used in their work had five kinds of weeds
and one lettuce crop. For classification, SVM, SE-YOLOv5x
surpassed YOLOv5x, SSD (VGG), SSD (Mobilenetv2),
Faster-RCNN (Resnet50), and Faster-RCNN (VGG) are
used. SE-YOLOv5x demonstrates superior performance in
the classification of lettuce and weeds. The aim of [25] was
to recognize plants in UAV images using the transformer’s
architecture. The dataset was divided into 5 classes: weed,
beet, off-type beet, parsley, and spinach. Each class contains
3200 to 4000 images, except off-type beets, which only have
653 samples. Random rotations and flips were performed
so the total dataset contains 19265 images. EfficientNet BO,
EfficientNet B1 and ResNet 50 were the conventional neural
networks that were applied to the dataset and provided a
Fl-score of 98.7%, 98.9% and 99.2% respectively. A deep
learning model named the original generative adversarial
network designed by Ian Goodfellow [26] is proposed.
In their network, they used two learning models: one called
the generator, and the other called the discriminator. They
trained them in an adversarial process. Generators try to
fool discriminators, and discriminators try to classify fake
and real data. Finding a discriminator with the highest
classification efficiency and a generator that confuses the
discriminator the most is the method for training a GAN
model. This first architecture of the GAN model is the
next step towards augmentation [27]. This paper provides an
overview of GAN’s architectural evolution and its application
in agriculture. They evaluate how GAN’s architecture plays
a role in weed detection, postharvest detection of fruit
defects, plant phenotyping, plant health conditions, animal
farming, and aquaculture. Handcrafted features are used
with machine learning and automated features through deep
learning [28]. For knowing which features produce better
results. For handcrafted features, they used a local binary
pattern and a grey level co-occurrence matrix. From the
grey level co-occurrence matrix, they extract features like
contrast, energy, dissimilarity, area second moment (ASM)
and correlation. Distance, angle, and a number of levels were
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the parameters used in the grey level co-occurrence matrix
for feature extraction. Points and radius were the parameters
that were used in the local binary pattern. They experimented
with different numbers of features, and SVM produced the
best results with 90% accuracy, on 55 features (LBPS-1;
5 LBP162; 14 LBP24-3; 15 contrast; 15 dissimilarity; and
4 correlation).

Various models and algorithms exhibit distinct accuracies
when applied to diverse datasets, each necessitating varying
computational resources. It is imperative to delve into the
intricacies of these models and algorithms, meticulously
analyzing their features to gauge the requisite computational
power. Developing methodologies to address weed-related
challenges with efficient computations is paramount. Exist-
ing studies often overlook the nuanced impact of background
areas on the accuracy of weed and crop identification
under varying lighting conditions. A notable research gap
lies in understanding how the background area influences
the performance of different models. A comprehensive
exploration of this aspect is essential for advancing the
precision and applicability of weed detection methodologies
Overcoming variations in lighting conditions, diverse weed
species, and the demand for expansive annotated datasets
is pivotal. Particularly in countries, where traditional agri-
cultural approaches persist, there is a pressing need to
raise awareness about modern technologies. This not only
promises increased yields and profitability but also advocates
for environmentally sustainable practices by discouraging
the excessive use of herbicides. Bridging this awareness
gap would contribute significantly to advancing agricultural
practices in the world.

Ill. PROPOSED METHODOLOGY

|

Dataset

Data labelling (Annotation)
Convert into gray scale
Resize
Remove background using u2net
Remove class imbalance using
Synthetic Minority
Oversampling Technique

1

Preprocessing

H

Manual features
and Feature
extraction

Deep learning
features

i

SVM
Random forest

Train model ANN

YOLO v8 m

|

Trained model

|

FIGURE 2. High level methodology diagram.

A. DATASETS

We are using two datasets in our work: one called
early-crop-weed [6] and the other CottonWeedID15 [17].
early-crop-weed datasets have two weeds (velvet leaf and
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black night shade) and two crops (cotton and tomato),
whereas CottonWeedID15 has fifteen weeds (carpetweeds,
crabgrass, eclipta, goosegrass, morningglory, nutsedge,
palmeramaranth, prickly sida, purslane, ragweed, sicklepod,
spotted spurge, spurred anoda, swinecress, and water-
hemp).Fig 3 and 4 shows both datasets are unbalanced.

Early crop weed dataset
250

201
200

150
123 130

100
54
) -
0
mBlack nightsade mCotton mTomato Velvet_leaf

FIGURE 3. Early-crop-weed dataset class imbalance.

CottonWeedID15 dataset
1200 1115
1000
800

763 o
600 451 450
400 I 273 254 240 234 216
200 129 129 111 35 ¢
. LTS

B Morninggglory  ® Carpetweed B Palmer Amaranth = Waterhemp

M Purslane m Nutseedge mEclipta o Sicklepod

W Spotted Spurge M Goosegrass W Prickly Sida m Ragweed

m Crabgrass Swinecress Spurred Anoda

FIGURE 4. CottonWeedID15 dataset class imbalance.

B. PREPROCESSING

1) ANNOTATION

For YOLO training, an annotated dataset is required;
therefore, we annotated using Labellmg. We concentrated
on creating bounding boxes only around the areas where
weed’s leaves are present. We made sure to maximize the
weed’s leaf coverage while minimizing the soil area. The
objective of our bounding box was to minimize the inclusion
of soil and maximize the area covered by weed’s leaves.This
approach also helps in reducing land pollution since the spray
was intended for leaves and not for the soil. Fig 5 shows
annotation of purslane class image.

2) GRAYSCALE AND RESIZE

To reduce computation, we converted the color images to
grayscale. This allowed us to process only one channel image.
Since the dataset images had large dimensions, we resized
them to 224 by 224. By reducing the image size, we were
able to significantly reduce the computation time required for
further processing.
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FIGURE 5. Annotation of purslane class image from cottonweed dataset.

3) REMOVE BACKGROUND USING U2-NET

The U2-Net model is a deep learning model developed by
researchers from Hefei University of Technology in China.
It consists of 23 layers and is an improved version of the U-
Net model. The U2-Net architecture is specifically designed
to capture multi-scale contextual information and accurately
detect salient objects in images. In U2-Net, the image is
passed through an encoder. The encoder includes multiple
convolutional layers that extract features and reduce the
image dimensions. The encoded features are then passed
to the decoder layer, which consists of upsample layers.
These layers gradually increase the spatial dimensions while
preserving the learned features.U2-Net also utilizes skip
connections between the encoder and decoder, which help
in achieving accurate image segmentation. The output of
the decoder is a saliency map, which is a binary mask. The
saliency map helps in segmenting the image by highlighting
the regions of interest. Fig 6 shows background removed
through U2-Net.

Original image Background removed image

u2net

FIGURE 6. Background removed through U2-Net.

4) SMOTE SYNTHETIC MINORITY OVER-SAMPLING
TECHNIQUE

SMOTE is a data upsampling technique that is helpful in
addressing class imbalances. SMOTE aims to create synthetic
samples that lie along the line segment connecting the original
minority class sample and its nearest neighbor. SMOTE
selects a random sample image from the minority class and
examines the most closely similar images using k nearest
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neighbors. Then, using interpolation, SMOTE generates a
new image, and this process continues until all classes are
not balanced.

C. MANUAL FEATURES

In our first experiment which named as manual features
with background and without background, we used the
pretrained U2Net to remove the background from the images.
This process helped isolate the interest area in the images
Next, we converted the color images to grayscale. For
reducing computational complexity, we resized the images to
a dimension of 224 pixels. For feature extraction, we utilized
the Grey Level Co-occurrence Matrix (GLCM) approach.
We calculated the GLCM using different angles (0°, 90°, 45°,
and 135°) and considered neighboring pixel distances of 1, 3,
and 5. These settings allowed us to capture various texture
patterns and spatial relationships in the images.From the
GLCMs, we derived several texture features including energy,
correlation, dissimilarity, homogeneity, contrast, and entropy.
And the summation of the local binary uniform pattern his-
togram from local binary pattern. Additionally, we computed
statistical features such as mean, standard deviation, vari-
ance, mean absolute deviation, contrast, skewness, kurtosis,
entropy, and image moments. Furthermore, we calculated
seven Hu moments [29]. Which are invariant image moments
representing shape and geometric properties.To account for
edges and finer details in the images, we performed the
calculation of image moments and Hu moments twice. The
first calculation was carried out on the original grayscale
images, while for the second calculation, we applied the
Prewitt filter to extract edge gradient before computing
the image moments and Hu moments. We performed this
experiment without background removal too for knowing
the importance of background.Normalization is applied to
these features before being fed into classifiers. We utilized
the Synthetic Minority Oversampling Technique (SMOTE)
to address class imbalance in the dataset.

N N
Energy = Z Z GLCM(, j)*

i=1 j—l
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Z Z (i —w( - M)GLCM(l )

i=1 j=1
N N

Disimilarity = »_ > |i — jIGLCM(., j)
i=1 j—l

GLCM
Homogeneity = Z Z T 8 J|)
i=1 j=1 J

N N

Contrast = »_ > (i — )’ GLCM(, )

i=1 j=1
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— (frogg — 3Mjtoy ) ({10 + ftags)
x [3(ftagg+ o ) — (fiany +#rogs) .

where:

. ﬁwij denotes the central moment of order (i, j),
o The central moments are calculated using the formulas
mentioned earlier for central moments.

D. DEEP LEARNING FEATURES

Deep learning features from images are extracted through
CNNs (Convolutional Neural Networks). The early layers
of CNNs extract features like corners, textures, and edges.
Deeper layers of CNNs extract higher-level features, such
as shapes, objects, and semantic representations. To address
class imbalance, we applied synthetic minority oversampling
technique (SMOTE). After balancing the classes, we used
transfer learning and utilized the ImageNet weights with
some famous cnns models for feature extraction. Fig 7 and 8
show the results of applying SMOTE on the early-crop-weed
and CottonWeedID15 datasets, respectively.

CottonWeedID15 dataset after SMOTE
1200 111511151115111511151115111511151115111511151115111511151115
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Palmer Amaranth m Waterhemp

B Purslane B Nutseedge B Eclipta B Sicklepod
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FIGURE 7. Class imbalance removed from the CottonWeedID15 dataset
using SMOTE.

Early crop weed dataset after SMOTE
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FIGURE 8. Class imbalance removed from the early-crop-weed dataset
using SMOTE.

IV. EXPERIMENTS AND RESULTS

1) MANUAL FEATURES AND CLASSIFIERS

After extracting the manual features, we divided them into
three ratios. The training dataset ratio was 65%, 20% was for
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validation and 15%was for testing. These ratios were used to
train and evaluate our classifiers: SVM, random forest, and
ANN. Among these classifiers, the ANN (Artificial Neural
Network) showed superior performance compared to SVM
and random forest. The testing accuracy achieved by the
Artificial Neural Network was 89.26 on CottonWeedID15
dataset, and on early-crop-weed dataset SVM showed
superior performance compared to ANN and random forest.
The testing accuracy achieved by the SVM with polynomial
kernel was 99 on early-crop weed dataset. We utilized
Autokeras for the artificial neural network. Autokeras tests
100 different architectures and selects the best architecture
based on validation accuracy.Fig 13 shows the validation
and trainning loss. The SVM model’s optimal parameters
were determined using grid search. After evaluating various
options for C, gamma, and degree, the grid search identified
the best combination as C = 0.1, degree = 3, gamma = 0.4,
and kernel = ‘poly’. These parameters were chosen from a
range of possibilities: C values included 0.1, 0.2, 0.3, 0.5, 0.6,
0.7,0.8,0.9, 1, 10, and 100; gamma values included 0.1, 0.2,
0.3, 0.5, 0.6, 0.7, 0.8, and 0.9; and degree values included 1,
2,3, 4,5, and 6. In random forest, we start training with
2 trees and incrementally add 1 tree until we reach a total of
300 trees. Then, we select the tree that achieves the highest
validation score and train the random forest using that specific
number of trees. Table 1 shows the experiment and results
on early-crop-weed dataset of manual features with Artificial
neural network classifiers. Table 2 shows the experiment
and results on CottonWeedID15 datset of manual features
with Artificial neural network classifiers. Fig 9 shows the
comparative analysis of classifiers on both dataset. Table 3
shows the experiment and results on early-crop-weed dataset
of manual features with SVM and Rndom forest classifiers.

TABLE 1. Experiment and results on early-crop-weed dataset of manual
features with Artificial neural network classifiers.

Classes Experiment 1 Experiment 2
ECW+ANN+SMOTE SEG+ECW+ANN+SMOTE
minmax normalization | minmax normalization

Blacknightsade F1 score 0.97 0.79
Cotton F1 score 1 0.95
Tomato F1 score 0.98 0.98

Velvetleaf F1 score 1 0.8

Analysis of early crop weed dataset results Analysis of CottonWeedID15 dataset results
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FIGURE 9. Experiment and results on the CottonWeedID15 dataset and
early-crop-weed dataset of manual features.

2) DEEP LEARNING FEATURES AND CLASSIFIER
Various CNN architectures, including VGG16, VGGI19,
Xception, DenseNet-121, DenseNet-169, DenseNet-210, and
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TABLE 2. Experiment and results on CottonWeedID15 dataset of manual
features with ANN.

Classes Experiment 1 Experiment 2
CWIDI15+ANN SCWID15+ANN
+SMOTE +SMOTE
+Manual features | +Manual features

Carpetweed F1 score 0.79 0.94
Crabgrass F1 score 0.97 0.96
Eclipta F1 score 0.87 0.86
Goosegrass F1 score 0.95 0.92
Morningglory F1 score 0.54 0.55
Nutsedge F1 score 0.95 0.89
Palmer Amaranth F1 score 0.76 0.7
Prickly Sida F1 score 0.96 0.93
Purslane F1 score 0.86 0.87
Ragweed F1 score 0.97 0.93
Sicklepod F1 score 0.91 0.94
Spotted Spurge F1 score 0.91 0.89
Spurred Anoda F1 score 0.98 0.97
Swinecress F1 score 0.99 0.96
Waterhemp F1 score 0.86 0.79

ConvNeXt, were utilized for automated feature extraction.
These architectures were initialized with pre-trained weights
from the ImageNet dataset. Following the extraction of
automated features, a random forest algorithm was employed
for classification. Notably, the features obtained from the
ConvNeXt architecture outperformed both manual features
and features extracted from other CNNs when used with
random forest. On the early-crop weed dataset, the random
forest model with ConvNeXt achieved a testing accuracy of
98%, while on the CottonWeedID15 dataset, the accuracy
reached 89%. In Fig 10 and 11, a comparative analysis is
presented, examining the performance of automated features
across various architectures when combined with the random
forest. table 4 and 5 shows experiments and results on
erarly crop weed and segmenter early-crop-weed dataset of
deep learning features with random forest classifiers.Table 6
and 7 shows experiments and results on CottonWeedID15
and segmented CottonWeedID15 dataset of deep learning
features with random forest classifiers. In random forest,
we start training with 30 trees and incrementally add 30 tree
until we reach a total of 300 trees. Then, we select the tree
that achieves the highest validation score and train the random
forest on cotton weed id 15 dataset using that specific number
of trees. And on early-crop-weed dataset, we start training
with 10 trees and incrementally add 10 tree until we reach a
total of 300 trees. Then, we select the tree that achieves the
highest validation score and train the random forest on early-
crop-weed dataset using that specific number of trees.

3) YOLO V8

YOLOVS, belongs to You Only Look Once (YOLO) family,
represents a real-time object detection algorithm that has
demonstrated substantial advancements compared to its
previous versions. YOLOv8 has a Backbone consists of
convolutional layers that extract features from the input
image. YOLO v8 also utilizes SPPF layer and convolution
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FIGURE 10. Analysis of CottonWeedID15 dataset results.
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FIGURE 12. YOLOVS training and validation loss.

layers, YOLO v8 processes features at different scales.
The Upsample layers enhanced the feature resolutions. For
enhacing detection accuracy, YOLO v8 used C2f module
for the integration of contextual information and feature.The
Detection module utilizes convolution layers and linear
layers for bounding boxes and object classes. We utilized
YOLOV8-M for object detection. We initialize the learning
rate to 0.01 and used stochastic gradient optimizer with a
batch size of 1. Additionally, we initialize weight decay
with 0.0005 to prevent the model from becoming overly
complex and momentum with 0.9.After 100 epochs, utilizing
YOLOV8-M, achieved an overall mean average precision
of 89.Table 8 shows analysis of YOLOVS results. Fig 12
shows YOLOvVS validation and training loss. Fig 14 shows
the YOLOVS confussion matrix on cotton weedid 15 dataset.
Fig 15 shows precision recall curve. Fig 16 shows detetection
of weed.
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TABLE 3. Experiment and results on early-crop-weed dataset of manual features with SYM and Random forest classifiers.

classes Experiment 1 Experiment 2 Experiment 3 Experiment 4
ECW+RF+SMOTE | SEG+ECW+RF+SMOTE | ECW+SVM+SMOTE | SEG+ECW+SVM+SMOTE
minmax minmax minmax minmax
normalization normalization normalization normalization

Blacknightsade F1 score 0.96 0.94 1 0.83
Cotton F1 score 1 0.95 0.99 0.92
Tomato F1 score 0.98 0.98 1 0.95

Velvetleaf F1 score 0.99 0.93 0.99 0.79

Best Parameters 19 trees 35 trees C=0.1 C=0.3
gamma=0.4, gamma=0.3,
kernel=poly kernel=poly
degree 3 degree 4

TABLE 4. Experiment and results on early-crop-weed dataset of deep learning features with Random forest classifiers.

classes Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 Experiment 5 | Experiment 6 | Experiment 7
ECW+RF ECW+RF ECW+RF SEG+ECW+RF | ECW+RF ECW+RF ECW+RF
+SMOTE +SMOTE +SMOTE +SMOTE +SMOTE +SMOTE +SMOTE
VGG16 VGG19 Xception Densenet 121 Densenet 169 | Densenet 201 | Convnext Base
[ Blacknightsade FI score | 0.96 [ 0.91 [ 0.7 [ 0.86 [ 0.85 [ 0.9 [ 0.97 |
[ Cotton F1 score [ 0.93 [ 0.95 [ 0.75 [ 0.89 [ 0.83 [ 0.96 [ 0.96 |
[ Tomato F1 score [ 1 [ 1 [ 0.91 [ 1 [ 0.97 [ 1 [ 1 |
Velvetleaf F1 score 0.9 0.9 0.73 0.94 0.86 0.89 0.99
Best Parameters 200 trees 100 trees 160 tree 70 tree 200 trees 90 trees 130 trees

TABLE 5. Experiment and results on segmented early-crop-weed dataset of deep learning features with Rndom forest classifiers.

classes Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | Experiment 5 | Experiment 6 | Experiment 7
SECW+RF SECW+RF SECW+RF SECW+RF SECW+RF SECW+RF SECW+RF
+SMOTE +SMOTE +SMOTE +SMOTE +SMOTE +SMOTE +SMOTE
VGG16 VGG19 Xception Densenet 121 | Densenet 169 | Densenet 201 | Convnext Base

[ Blacknightsade FI score | 0.94 [ 0.92 [ 0.88 [ 0.94 [ 0.95 [ 0.0.84 [ 0.95 |
[ Cotton F1 score [ 0.93 [ 0.88 [ 0.9 [ 0.88 [ 0.87 [ 0.88 [ 0.95 |
[ Tomato F1 score [ 0.95 [ 0.91 [ 0.9 [ 0.97 [ 0.96 [ 0.95 [ 0.96 |
Velvetleaf F1 score 0.91 0.92 0.88 0.88 0.82 0.99 0.95
Best Parameters 200 trees 100 trees 160 tree 70 tree 200 trees 90 trees 130 trees

TABLE 6. Experiment and results on CottonWeedID15 dataset of deep learning features with Random forest classifiers.

classes Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | Experiment 5 | Experiment 6 | Experiment 7
CWIDI5+RF | CWID15+RF | CWIDI5S+RF | CWID15+RF | CWIDI5+RF | CWIDI5+RF | CWIDI5+RF
+SMOTE +SMOTE +SMOTE +SMOTE +SMOTE +SMOTE +SMOTE
VGG16 VGG19 Xception Densenet 121 | Densenet 169 | Densenet 201 | Convnext Base

[ Carpetweed FI score | 0.7 [ 0.77 [ 0.46 [ 0.64 [ 0.62 [ 0.69 [ 0.91 |
[ Crabgrass F1 score [ 0.86 [ 0.88 [ 0.57 [ 0.76 [ 0.78 [ 0.72 [ 0.93 |
[ Eclipta F1 score [ 0.63 [ 0.68 [ 0.45 [ 0.55 [ 0.59 [ 0.57 [ 0.81 |
[ Goosegrass FI score | 0.63 [ 0.68 [ 0.45 [ 0.55 [ 0.59 [ 0.57 [ 0.81 ]
[ Morningglory F1 score | 0.68 [ 0.77 [ 0.36 [ 0.65 [ 0.6 [ 0.62 [ 0.96 |
[ Nutsedge F1 score [ 0.84 [ 0.87 [ 0.54 [ 0.67 [ 0.65 [ 0.66 [ 0.91 |
[ palmer Amaranth FI score | 0.6 [ 0.62 [ 0.42 [ 0.56 [ 0.55 [ 0.53 [ 0.84 |
[ prickly sida FI score | 0.72 [ 0.77 [ 0.6 [ 0.7 [ 0.71 [ 0.68 [ 0.86 |
[ purslane F1 score [ 0.76 [ 0.76 [ 0.5 [ 0.69 [ 0.68 [ 0.71 [ 0.84 ]
[ Ragweed F1 score [ 0.8 [ 0.77 [ 0.6 [ 0.74 [ 0.79 [ 0.78 [ 0.97 |
[ Sicklepod Fl score | 063 | 073 | 046 [ 058 | 067 [ 06 | 08 |
[ Spotted spurge F1 score | 0.7 [ 0.73 [ 0.5 [ 0.65 [ 0.64 [ 0.63 [ 0.86 |
Spurred Anoda F1 score 0.84 0.83 0.71 0.8 0.79 0.74 0.95
Swinecress F1 score 0.85 0.85 0.75 0.82 0.82 0.83 0.98
[ Waterhemp FI score [ 0.62 [ 0.73 [ 0.47 [ 0.6 [ 0.58 [ 0.63 [ 0.84 ]
[ Best Parameters [ 9Otrees [ 190trees [ 210tee | 210tree | 300 trees [ 240 trees [ 300 trees |
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TABLE 7. Experiment and results on Segmented CottonWeedID15 dataset of deep learning features with Random forest classifiers.

classes Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7
SCWID15+RF | SCWIDI5+RF | SCWID15+RF | SCWIDI15+RF | SCWIDI5+RF | SCWIDI15+RF | SCWID15+RF
+SMOTE +SMOTE +SMOTE +SMOTE +SMOTE +SMOTE +SMOTE
VGG16 VGG19 Xception Densenet 121 Densenet 169 Densenet 201 Convnext Base

[ Carpetweed F1 score | 0.61 [ 0.61 [ 0.41 [ 0.59 [ 0.55 [ 0.52 [ 0.73 |
‘ Crabgrass F1 score ‘ 0.71 ‘ 0.73 ‘ 0.62 \ 0.59 \ 0.54 \ 0.52 \ 0.8 |
\ Eclipta F1 score \ 0.78 \ 0.8 \ 0.64 \ 0.67 \ 0.68 \ 0.62 \ 0.75 |
[ Goosegrass F1 score | 0.71 ‘ 0.74 ‘ 0.49 ‘ 0.65 ‘ 0.62 ‘ 0.61 ‘ 0.8 |
[ Morningglory F1 score | 0.74 [ 0.69 [ 0.62 [ 0.67 [ 0.65 [ 0.63 [ 0.68 |
‘ Nutsedge F1 score ‘ 0.57 ‘ 0.55 ‘ 0.45 ‘ 0.53 ‘ 0.47 ‘ 0.46 ‘ 0.72 |
[ palmer Amaranth F1 score | 0.78 ‘ 0.75 ‘ 0.64 ‘ 0.7 ‘ 0.64 ‘ 0.61 ‘ 0.84 |
[ prickly sida FI score | 0.67 ‘ 0.67 ‘ 0.56 ‘ 0.58 ‘ 0.57 ‘ 0.5 ‘ 0.77 |
[ purslane F1 score [ 0.79 [ 0.78 [ 0.73 [ 0.73 [ 0.75 [ 0.75 [ 0.78 |
‘ Ragweed F1 score ‘ 0.71 ‘ 0.76 ‘ 0.55 ‘ 0.58 ‘ 0.52 ‘ 0.54 ‘ 0.85 |
\ Sicklepod F1 score \ 0.77 \ 0.71 \ 0.58 \ 0.7 \ 0.62 \ 0.6 \ 0.67 |
[ Spotted spurge F1 score | 0.92 ‘ 0.92 ‘ 0.76 ‘ 0.83 ‘ 0.84 ‘ 0.82 ‘ 0.95 |
Spurred Anoda F1 score 0.92 0.88 0.78 0.83 0.77 0.74 0.79
Swinecress F1 score 0.58 0.53 0.4 0.54 0.41 0.4 0.74
[ Watethemp FI score | 0.87 ‘ 0.88 ‘ 0.77 ‘ 0.81 ‘ 0.8 ‘ 0.74 ‘ 0.91 |
| Best Parameters [ 90 trees [ 190 trees | 210 tree [ 210 tree [ 300trees | 240 trees [ 300 trees |
TABLE 8. Analysis of YOLO v8 reults. Training and validation loss
Classes images | instances | Box(P) | Recall(R) | map 50 2.0 . Iaal:zgl?olr??;ss
All 1563 1770 0911 0.839 0.822
Carpetweed 1563 328 0.83 0.686 0.664
Crabgrass 1563 56 0.97 0.586 0.587
Eclipta 1563 95 0.79 0.758 0.722 154
Goosegrass 1563 68 0.948 0.838 0.827
Morningglory 1563 367 0.909 0.874 0.865
Nutseedge 1563 84 0.867 0.94 0.704 n
Palmer Amaranth 1563 209 0.986 0.952 0.918 § 1.0 1
PricklySida 1563 42 0.922 0.85 0.868
Purslane 1563 154 0.916 0.916 0912
Ragweed 1563 40 0.96 0.605 0.866
Sicklepod 1563 73 0.973 0.98 0.691 0.5
SpottedSpurge 1563 72 0.986 0.957 0.945
SpurredAnoda 1563 20 0.824 0.8 0.755
Swinecress 1563 22 0.875 0.909 0.864
‘Waterhemp 1563 140 0.914 0.936 0.877 0.0
2:5 5.‘0 7.I5 lOI.O l2l.5 ].SI.O 17‘.5 20I.D
Epochs

V. DISCUSSION

Do deep learning features yield more accurate results
compared to hand-extracted features? Yes, deep learning
features indeed produce more accurate results than hand-
extracted features, as demonstrated by our experiments.
Despite the utilization of Prewitt filters for edge and fine
detail enhancement, ConvNext still outperformed manual
features in terms of accuracy. But with deep learning,
we require high computation compared to using manual
features with classifiers.

Is the synthetic minority oversampling technique (SMOTE)
effective for weed classification problems? Yes, the synthetic
minority oversampling technique (SMOTE) proves to be
effective for weed classification problems, especially when
dealing with unbalanced datasets. The use of Synthetic
Minority Over-sampling Technique (SMOTE) addressed
the class imbalance inherent in weed detection datasets.
By generating synthetic samples for the minority class,
the training set became balanced, preventing the model
from being biased toward the majority class. This led
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FIGURE 13. Training and validation loss of artificial neural network.

to improved generalization and better performance on
previously underrepresented weed instances. With the
implementation of SMOTE, we were able to achieve 89%
accuracy on the cotton weed ID 15 dataset and 99% accuracy
on the early-crop-weed dataset. Both of these datasets were
unbalanced, and SMOTE played a crucial role in attaining
such high accuracy.

Does YOLOVS8 perform well in agricultural problems?

Yes, YOLOvVS is an extremely powerful state-of-the-
art object detection model. The model’s ability to handle
complex scenes and diverse weed types is a significant
advantage, showcasing its suitability for agricultural appli-
cations. It performed exceptionally well in agricultural
problems. The implementation of YOLO v8 for weed
detection yielded promising results, achieving an overall
mean average precision (mAP) of 89.
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FIGURE 15. YOLO v8 Precision recall curve on CottonWeedID15 dataset.

FIGURE 16. Detection of weed using YOLO v8.

IoT devices find application in agriculture, yielding
positive outcomes. For secure operation of IoT devices in
agriculture, an Intrusion Detection System (IDS) is essen-
tial [30]. The authors explored Machine Learning (ML) and
Deep Learning (DL) techniques to enhance cybersecurity and
prevent potential threats. Optimization algorithms enhance
the learning capabilities of mathematical models [31]. In their
work, the authors proposed an improved Chicken Swarm
Intelligence (CSI) to optimize Support Vector Machine
(SVM) learning parameters. They compared their proposed
CSI with Particle Swarm Optimization (PSO) and Bat
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Algorithms. As observed, deep learning models are produc-
ing good results, but they still need improvement. To enhance
deep learning models performance, [32] introduced marginal
deep architectures, incorporating marginal Fisher analysis
and introducing stacked feature learning modules. Their
results show improvement, particularly in classification, and
speech recognition problems.

Agricultural countries, with their predominantly agrarian
economies, play a crucial role in the global agricultural
landscape. The application of advanced technologies, such as
deep learning, in the agricultural sector can have profound
implications for improving productivity, sustainability, and
crop yield. The integration of deep learning models, such as
YOLOVS, into agricultural practices holds the potential to
address challenges related to crop monitoring, pest control,
and resource optimization.

To further advance weed detection in crops, future research
could focus on refining the model’s robustness to environ-
mental factors and expanding the dataset to encompass a
broader range of agricultural scenarios. Investigating transfer
learning techniques and exploring the use of multi-sensor data
for more accurate weed identification are potential avenues
for improvement.Current research predominantly relies on
RGB images for weed detection. Exploring the integration of
multispectral data, such as infrared or hyperspectral imagery,
could provide additional insights into weed characteristics
and improve the model’s accuracy, particularly in scenarios
where visual cues alone may be insufficient.

VI. CONCLUSION

Agriculture is facing weed challenges, and automated weed
control systems can assist farmers in crop production while
also lowering production costs. A large image dataset is
required for future work to meet the challenges of real
time in agriculture. Moreover, deep convolutional generative
adversarial networks should utilized for crop and weed
augmentation. This approach allows us to enhance the
agricultural dataset. Deep learning architectures produced
great results, but room for improvement still exists. Deep
learning algorithms are becoming a new step in improving
crop yield and getting rid of these weeds more efficiently.
People in agricultural countries are continuing to use
traditional approaches due to lack of awareness of deep
learning technologies. However, they should be directed
toward modern technology to improve agriculture and crop
yield. The key contributions of this research lie in advocating
for the utilization of advanced technologies, particularly deep
learning, to overcome traditional agricultural constraints.
This shift has the potential to significantly impact the
agricultural community by fostering increased awareness and
adoption of modern techniques in the world, thereby elevating
agricultural practices and crop yields. The study aims to
catalyze a transformative impact within the community
of practice and the relevant industry by promoting the
integration of state-of-the-art technologies for sustainable and
efficient weed management in agriculture.
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