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ABSTRACT Wepresent an efficient approach for monocular 4D facial avatar reconstruction using a dynamic
neural radiance field (NeRF). Over the years, NeRFs have been popular methods for 3D scene representation,
but lack computational efficiency and controllabilty, thus it is impractical for real world application such as
AR/VR, teleconferencing, and immersive experiences. Recent the introduction of grid-based encoding by
InstantNGP has enabled the rendering process of NeRF much faster, but it is limited to static 3D scenes.
To address the issues, we focus on developing a novel dynamic NeRF that allows explicit control over
pose and facial expression, while keeping the computational efficiency. By leveraging a low-dimensional
basis from the morphable model (3DMM) with elaborately designed spatial encoding branch and ambient
encoding branch, we condition a dynamic radiance field in an ambient space, improving controllability and
visual quality. Our model achieves rendering speeds approximately 30x faster at training and 100x faster at
inference than the baseline (NeRFace), enabling practical approaches for real world applications. Through
qualitative and quantitative experiments, we demonstrate the effectiveness of our approach. The dynamic
NeRF exhibits superior controllability, enhanced 3D consistency, and improved visual quality. Our efficient
model opens new possibilities for real-time applications, revolutionizing AR/VR and teleconferencing
experiences.

INDEX TERMS Neural radiance field (NeRF), monocular facial avatar reconstruction, face reenactment.

I. INTRODUCTION
Recently,4D dynamic facial avatar reconstruction has
received remarkable attention as a rapid progress of virtual
reality (VR), augmented reality (AR), and teleconferencing.
Beyond simply reconstructing the appearance of the target
facial identity, it requires the ability to faithfully capture
dynamics, where several attributes, e.g., head pose, lips or
facial expressions should be controllable according to a given
driving video (face reenactment) or conditions given by users
(controllable generation).

Several approaches [1], [2], [3] have exploited 2Dmodules
in order to synthesize and edit human portrait videos. They
have leveraged image-to-image translation using generative
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adversarial networks (GANs) and shown photorealistic
results. However, they lack 3D understanding, meaning the
underlying 3D geometry of an object is ignored in the
rendering process.

Due to the complicated structure and diverse rigid and
non-rigid motions of the human head, several approaches
have exploited 3D morphable models (3DMM) [4], [5],
[6] as the prior of the 3D human head. 3DMMs generally
represent a target human face with a 3D mean face and linear
combination of principal bases obtained from pre-captured
3D scans. Early methods [7], [8], [9] have leveraged explicit
surface directly to reconstruct the target head model and they
have the advantage of extracting a 3D facial mesh with a
lower dimension of input (linear coefficient).However, they
fail to generate delicate details that do not exist in template
mesh, e.g., hairs and teeth. Several hybrid methods [10],
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FIGURE 1. Comparison of generated samples and PSNR results according
to training time. Red boxes denote the results at the time when training is
completed.

[11] have improved visual quality and 3D consistency by
combining image synthesis module with 3DMM. While they
have shown notable results, they still struggle to represent
consistent 3D head motion.

To overcome these limitations, we focus on ‘‘NeRF-based
4D avatar reconstruction’’ to obtain both 3D consistency and
rendering quality. Recently, neural radiance field (NeRF) [12]
has achieved remarkable success in novel-view synthesis
tasks and has been applied in various fields since it could
render high-quality images with accurate 3D awareness.
NeRF has a coordinated-based implicit structure, where it
takes a 3D position and view direction as an input and
predicts its view-dependent color and density using MLPs.
However, the training process of the original NeRF assumes
that the target object is static, thus it is not suitable for
dynamic objects such as the human face. To handle the
problem, several dynamic NeRFs [13], [14], [15] capable
of capturing rigid and non-rigid motions of objects have
been proposed. They effectively capture the dynamic scenes
with reasonable visual quality even in a monocular setting
but struggle to explicitly control over pose or appearance of
objects, meaning just playback or reconstruction of the given
video, not controllability.

NeRFace [16] achieved expression control over the
reconstruction of the facial avatar by conditioning the implicit
network with 3DMM expression parameters. As a result,
NeRFace has the advantages of both rendering quality
of NeRF and parametric control of 3DMM. Nevertheless,
NeRFace suffers from slow training and inference speed
because the naive NeRF has to calculate all querying points
sampled from rays including a number of redundant points.
Even worse, conditional NeRFs like NeRFace require more
training images to faithfully capture the relationship between
3DMM parameters and facial dynamics, resulting in slower
convergence. Actually, it takes about 1-2 days to learn scene
dynamics from a 5122 resolution monocular video and about
8-9 seconds to render for each image. Despite the reasonable
rendering quality and 3D consistency of NeRF-based 4D
avatar reconstruction, computational inefficiency is a major
obstacle to real-world application.

To handle the issue, we exploit a concept of grid-based
encoding [17] to reconstruct a controllable 4D facial avatar.

Instead of predicting an arbitrary point in a 3D scene implic-
itly, recently proposed methods [17], [18] divide a 3D scene
into a learnable explicit voxel grid or efficient planes [19]
that stores scene features. With this setting, the value of a
querying point is determined by a combination of features of
the surrounding voxels like bilinear interpolation.However,
directly applying these explicit methods to our problem is
challenging because they capture static 3D scenes or just add
time components, without controllability.

To this end, we add a grid-based ambient encoder which
encodes the 3DMM expression parameters and provides the
condition to NeRF model by slicing the hyper-space of
the model inspired by HyperNeRF [15]. Since our model
takes the 3DMM expression parameter as a condition, it is
capable of face reenactment using a driving video and direct
control over facial expressions like NeRFace. Notably, our
model is much more efficient than NeRFace, showing about
30x faster speed at training (Fig. 1) and about 100x faster
at inference. Therefore, we can obtain a personalized 4D
avatar with fast convergence speed, and evenwhen comparing
visual quality, our model delivers competitive or superior
results. We demonstrate the effectiveness of our method with
qualitative and quantitative results.

In summary, our contributions are as follow:

• We propose a novel dynamic NeRF model for 4D avatar
reconstruction which is computationally efficient.

• Beyond just reconstructing an input video, our model
enables users to control 4D avatar by exploiting 3DMM
parameters as additional condition of the NeRF model.

• We introduce explicit grid-based encoding branches that
encode spatial and conditioning information, resulting in
notable speed up.

II. RELATED WORK
A. FACE RECONSTRUCTION, SYNTHESIS, AND CONTROL
The desire for representing realistic digital human faces has
been a long-standing problem in computer vision and graph-
ics communities due to its endless potential applications.
However, it is challenging to express the unique charac-
teristics and details of each face and to precisely control
them. For this reason, the majority of head reconstruction
approaches [7], [8], [9], [10], [11], [20], [21], [22], [23],
[24] have utilized several parametric 3D Morphable Models
(3DMM) [4], [5], [6] obtained by dimensionality reduction
of complex high-dimensional 3D face scans using PCA.
Here, the morphable models are used as a 3D prior to head
reconstruction. While these methods have shown plausible
reconstruction results and the ability to preserve facial details,
they have struggled with capturing accurate 3D geometry.
Besides, since their 3D prior is heavily based on a template
mesh, it is difficult to restore several missing parts in the
template, such as hair and teeth.

Another mainstream research is 2D generative model-
based approaches. Among them, GAN-based methods have
shown remarkable success in photorealistic facial image
synthesis. It has been extended to facial attribute editing [25],
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FIGURE 2. Overview of our framework. It represents dynamic neural fields from an input video. Spatial and ambient branches encode spatial and
conditioning information, respectively. After that, a template NeRF predicts view-dependent color (c) and its density (σ ).

[26], [27], [28], [29], [30], [31], [32], stylization [33],
[34], [35], [36], [37], and animation [38]. Recent works
have focused on leveraging powerful pretrained generators,
e.g. StyleGAN [39], [40]. They have demonstrated that
semantic editing and animation can be achieved by several
manipulations in the latent space of StyleGAN. Combined
with GAN inversion methods, they have shown powerful
performance for real image editing [41], [42] and anima-
tion [37], [43]. Despite the expressiveness of 2D GANs, they
struggle with preserving multi-view consistency due to a lack
of 3D understanding in synthesis. Recently proposed 3D-
aware generative models and several applications [44], [45],
[46], [47], [48] have alleviated the problem, but they have
limitations in capturing diverse facial dynamics.

B. DYNAMIC NEURAL RADIANCE FIELD
Neural radiance field (NeRF) incorporates implicit neural
representation (INR) where it takes 3D coordinates as an
input and predicts the corresponding information with a
neural network. The output image is rendered into a 2D grid
with a classic volumetric rendering [49].

Since NeRF is a method initially proposed for the
novel-view synthesis of a static object, it fails to represent
dynamic scenes. To address the issue, several dynamic NeRF
models have been proposed to capture the changes in the
scene over time. Nerfies [14] introduced a deformation field
to model deformable dynamic objects, and HyperNeRF [15]
proposed a hyperspace to handle topological variations
inspired by level set methods. NeRFace [16] combines NeRF
network with a low dimensional morphable model to provide
explicit control over pose or expressions in the synthesis
process. Our work is most closely related to NeRFace [16],
on the commonality of introducing 3DMMexpression param-
eters in dynamic NeRF to obtain controllability. Compared
to NeRFace, our method greatly improves the computational
efficiency and rendering quality with the introduction of a
novel architecture and loss function.

C. EXPLICIT GRID STRUCTURE FOR EFFICIENT NERF
After the advent of NeRF, many efforts have been made
to improve the computational efficiency of NeRF-based
rendering. Recently, several hybrid approaches that combine
NeRF with sparse explicit representations such as voxels or
planes have been proposed and shown dramatic speed up in
both training and inference. DVGO [50] replacesMLPs in the
original NeRF with a voxel grid and shows fast convergence
by optimizing the voxel grid directly. Plenoxel [18] prunes
redundant space and represents a scene as a sparse 3D
grid with spherical harmonics. InstantNeRF [17] leverages
a multi-resolution encoding of feature grids using hash
tables. Tensorf [51] proposed low-rank tensor decomposition
to reduce the computational complexity of NeRF-based
scene representation. These methods open up the possibility
that NeRF-based methods can be applied to real-world
applications requiring real-time or equivalent speed e.g.,
teleconference, VR/AR, and the metaverse. Our method is
also inspired by InstantNeRF and leverages amulti-resolution
feature grid to improve computational efficiency. Unlike
InstantNeRF, which aims to represent a static scene, our
approach is applied to a dynamic NeRF which should be able
to capture various facial features.

III. PROPOSED METHOD
In this section, we first explain several backgrounds of neural
radiance field (NeRF) briefly. After that, we propose our 4D
avatar reconstruction framework, by first introducing control
over facial expressions by slicing a hyperspace with 3DMM
parameters, and then by explaining an efficient structure
using explicit grid-based NeRF.

A. PRELIMINARIES: NEURAL RADIANCE FIELDS
Before introducing our method, we briefly explain a vol-
umetric rendering process of NeRF [12] and its variants.
Original NeRF consists of several MLPs, where it takes a
3D position x ∈ R3 and an additional 2D view direction
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d ∈ R2 as input and predicts volume density σ (x) ∈ R
and the view-dependent RGB color c(x,d) ∈ R3. To render
the image, it utilizes a classic volumetric technique (ray-
tracing) [49], accumulating the information of querying
points on each ray from start tn to end tf . It can be formulated
as,

C(r) =

∫ tf

tn
T (t) · σ (o + td) · c(o + td,d)dt,

where T (t) = exp
(

−

∫ t

tn
σ (r(s))ds

)
. (1)

Here, T (t) represents the accumulated transmittance along
the ray from the starting point to t . Therefore, the process
of predicting color and density using NeRF network can be
decribed as,

fNeRF : (x,d) 7→ (c, σ ), (2)

One of the limitations of the original NeRF is that it can
not handle dynamic scenes or objects that move over time
or other conditions. To address the issue, several methods,
called dynamic NeRF [13], [14], [15], [16], [52], have been
proposed in order to capture the motion and deformation of
objects over time or several conditions. Therefore, We can
express this by using an additional variable in Eq. 2, i.e.,

fD.NeRF : (x,d, α) 7→ (c, σ ), (3)

where α denotes some additional conditions which enable the
network to model the dynamics of the object.

B. 4D AVATAR CONTROL WITH 3DMM PARAMETERS
Beyond just the reconstruction from a monocular portrait
video (like ‘‘replaying video’’), we aim to enable users to
control facial expressions and poses. To this end, we need
to modulate NeRF architecture according to conditions.
We selected 3DMM expression parameters [5] as input
condition (α in Eq. 3) since we can extract 3DMMparameters
from a monocular facial video using pretrained face tracking
methods [53], [54], thus it is possible to train the NeRFmodel
with regression-based optimization.

One of the basic methods to condition a NeRF model
involves concatenating 3DMM parameters with the input
3D position. NeRFace [16] employs this approach, yet
it occasionally falls short in capturing the nuances of
facial dynamics due to the limited effectiveness of this
concatenation method in representing intricate and dynamic
scenes. To handle this problem, we adopt a concept of hyper-
space [15] where each training image can be obtained by
slicing a higher dimensional space using 3DMM parameters.
It can be represented as,

w = H (x,ψ), (4)

where H ,ψ,w denote the slicing surface field, 3DMM
expression parameter, and the point of ambient coordinate
space which determines how to slice the higher dimensional
hyper-space, respectively. Therefore, the model is capable

FIGURE 3. Structure of the grid encoder. The feature of an arbitrary 3D
querying point is determined by the interpolation of the surrounding grid
features.

of constructing a higher dimension space including various
expression information. Finally, our dynamic radiance field
conditioned by the 3DMM parameter can be formulated by,

Fθ : (x,d,w, l) 7→ (c, σ ), (5)

where θ denotes the learnable parameters of our model.
In addition, we add a learnable per-frame latent code l which
is widely used for dynamic NeRFs to compensate for missing
information.

The overall framework is described in Fig. 2. As explained
above, a conditioning vector (3DMM expression parameter)
extracted from a source image is encoded with a branch
of ambient slicing surface instead of simply applying
concatenation. After that, a template NeRF which consists
of shallow MLPs takes position and view direction as input
and predicts view-dependent color and its density Finally, the
output image is obtained with a classic volumetric rendering
technique [49]. Note that we do not utilize a positional encod-
ing but exploit grid-based parametric encoding. Because our
network has a grid-based explicit structure and it is described
in the following section (Sec. III-C).

C. GRID-BASED STRUCTURE FOR EFFICIENT RENDERING
Another problem of the original NeRF and its variants
lies in their slow speed at both the training and inference
phases. Besides, conditional or dynamic NeRF methods
like our model require more training images to faithfully
capture the scene dynamics and the change of input images
according to conditions. The reason for the inefficiency is
due to its implicit structure, where the MLP-based NeRF
network should independently perform calculations for all
queried arbitrary points in 3D space for volumetric rendering.
Inspired by recent remarkable advances in computational
efficiency led by explicit grid-based methods [17], [18], [50],
[51], we replace the MLP-based implicit NeRF network with
an explicit grid [17]. Here, discrete voxels on the grid store
their own learnable parametric feature. Encoding of each
point is determined by combinations of grid features, e.g.,
bilinear interpolation, instead of calculating every querying
point on rays (Fig. 3). Unlike other grid-based methods that
handle a static 3D scene, our model needs to capture dynamic
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TABLE 1. Quantitative comparisons with the competitive methods.

scenes. RAD-NeRF [55], which is audio-based NeRF, solves
this problem by exploiting an additional 2D audio grid.
Inspired by RAD-NeRF, we introduce an additional grid
encoder, which encodes a 3D point in ambient coordinates
conditioned by the extracted 3DMMparameter. Our approach
dramatically improves the computational efficiency in both
training and inference phases (about 30x and 100x faster than
NeRFace, respectively) while maintaining competitive visual
quality or even better performance.

D. MODEL OBJECTIVES
Our network takes a facial image from a monocular video
with its extracted 3DMM expression parameter and camera
parameter inputs and is trained to reconstruct the input image
precisely with pixel-level reconstruction loss (MSE), i.e.,

Lrec =

∑
r∈F

∥∥C(r) − Cgt(r)
∥∥2
2 , (6)

where C and Cgt denote predicted color by model
and ground-truth color, respectively. F means face
regions including part of the upper torso. Although
this regression-based optimization is a core objective of
NeRF-based methods it may hurt the expressiveness of
the dynamic NeRF. In other words, a network tends to
produce similar results, rather than producing various results
depending on input conditional parameters. This is especially
noticeable in the region of the mouth because it is a small area
but requires sophisticated movements. To alleviate the prob-
lem, we utilize facial landmarks to guide the network to more
accurately capture facial structure. This is formulated as,

Llmk =

L∑
i=1

∥mi − ni∥1 , (7)

where mi and ni denote i-th facial landmark of ground-truth
and reconstructed image, and L is a number of target
landmarks (we used 68). Finally, the full objective to train
the proposed model can be formulated as,

L = Lrec + λlmkLlmk (8)

where λrec and λlmk are hyper-parameters that balance each
loss term.

IV. EXPERIMENTS
This section firstly describes several experimental settings
and then presents qualitative and quantitative comparisons
with state-of-the-art methods [2], [15], [16] Finally, we ana-
lyze the effectiveness of each component in our method by
ablation study.

A. EXPERIMENTAL SETUP
1) DATASET
We used 1-2 min. of person-specific monocular RGB videos
containing rigid and non-rigid motion of the leader’s face.
This public dataset is widely used for several tasks, e.g.,
dynamic NeRF and talking head generation. We used 9/10 of
the frames for training and the others for testing. Each image
is cropped to 512 × 512 to include the face area. Through
the experiments, we aim to validate two key aspects of each
method: visual quality and the ability to represent dynamics.
To this end, we selected two datasets. First, we used a
talking head dataset [54], which contains several talking head
videos including natural head motions. With this dataset,
we compare reconstruction (self-driving) results. In addition,
we also use the NeRFace dataset [16], which consists of
several monocular person-specific videos. Compared to the
talking head dataset, the NeRFace dataset contains more
dynamic head poses or expressions. Therefore, we utilize it
for the face reenactment experiment.

2) IMPLEMENTATION
We utilize a pretrained face parsing model [56] to extract
facial region in each image, face-alignment network
(FAN) [53] to estimate 68 facial landmarks, and face tracker
to extract 3DMM expression parameter and head pose.
In training, we set coefficients of the loss functions in
Eq. 8 as λrec = 1 and λlmk = 0.1. For NeRF setting,
we sample 2562 rays for each step and at most 16 points
are sampled per ray. We adopt ADAM [57] solver with an
initial learning rate of 0.0005. We implement our network
with PyTorch [58] and all experiments are conducted on a
single 24GB RTX 3090 GPU.

3) BASELINES
We compare our method against several state-of-the-art
methods. Two NeRF-based methods are used in both
qualitative and quantitative comparisons, i.e., NeRFace [16]
and HyperNeRF [15] As described above, NeRFace is the
closest and strongest competitor to our method in that it
leverages 3DMM parameters for facial avatar reconstruction.
HyperNeRF is capable of modeling non-rigid facial motions
from a monocular video. However, it is impossible to
control facial expressions or mouth with a driving video.
Hence, we utilize a modified framework that takes the
3DMM expression parameter as an additional condition (i.e.,
HyperNeRF + Cond.). In addition, we also use First Order
Motion Model (FOMM) [2] to compare with the 2D-based
reenactment model.

B. RECONSTRUCTION (SELF-DRIVING) RESULTS
First, we conduct a self-reenactment analysis by synthesizing
the output video using the same identity as a driving
video. We present the qualitative output in Fig. 4. The top
row denotes the driving sequence images that are unseen
during the training phase. FOMM delivers reasonable results
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FIGURE 4. Qualitative comparison on self-reenactment using talking head videos. The row from top to down is ground-truth images, FOMM [2],
NeRFace [16], HyperNeRF [15] and ours, respectively. Please zoom in to see more details.

according to the driving images, but it fails to capture facial
details, especially mouth, and lips. NeRFace shows more
accurate face reenactment results compared to FOMM, but it
loses high-frequency details. This limitation comes from the
strategy of conditioning expression parameter, where condi-
tioning vector is simply concatenated to input position vector.
HyperNeRF (HyperNeRF + Cond.) preserves the facial
details with good visual quality, but it struggles to capture the
relation between fine regions of the face and input condition,
especially the mouth area. As shown in right (Obama), it fails
to control the mouth area and is expressed ambiguously.
However, our method shows precise self-reenactment results
without losing global and local details of the face. Instead
of direct concatenation, the ambient branch elaborately
encodes 3DMM expression parameter to ambient vector
that slices the hyper-space to control over facial dynamics.
We also report the quantitative comparisons of the methods
in Table. 1. Here, we use Peak Signal-to-Noise Ratio (PSNR),
Learned Perceptual Image Patch Similarity (LPIPS) [59], and
Structure Similarity Index (SSIM) [60] to measure the quality
of reconstructed images. Our method achieves superior
results compared to the competitive models. As explained
in previous sections, one of the main contributions of
our method is computational efficiency. Hence, we also
measure frame per second (Frame/Sec.). Compared to other
NeRF-basedmethods (NeRFace andHyperNeRF), ourmodel

achieves overwhelming results in efficiency by adopting
explicit grid-encoding scheme, where explicit representation
has learnable fixed grid features and updates the features
at each iteration, thus it does not consider an arbitrary
position. As a result, this strategy significantly decreases the
computational cost and our method shows competitive results
with 2D-based FOMM. Lastly, we evaluate the total time
to train each model with a single video. Here, FOMM is
excluded because it does not adopt identity-specific training.
To demonstrate the effectiveness of our method in the training
phase, we additionally present PSNR and generated images
at training time steps in Fig. 6. Our model shows an overall
higher PSNR in the same iteration. We also mark the time
to reach 50k iteration, our method shows fast training and
convergence.

C. CONTROL OVER POSE AND EXPRESSION
We present face reenactment results driven by unseen videos.
By extracting pose and expression information from a driving
video and injecting them into models, we can control pose
and expression. In this scenario, it is important to accurately
represent the pose and expression of the driving video. The
outputs are presented in Fig. 5. As shown in the results, the
shortcomings of the 2D-based approach (FOMM) become
evident due to its absence of 3D perception during the
generation process. It can be seen that FOMM struggles to
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FIGURE 5. Qualitative comparison by face reenactment with novel facial expression and head-pose. Please zoom in to see more details.

FIGURE 6. Comparison of PSNR according to training step up to about
100k iterations (vs. NeRFace). The time for each model to reach 50k is
indicated.

elaborately follow the poses of driving video compared to
NeRF-based methods. Besides, this incorrect recognition of
facial geometry leads to reconstruction failure of expression
in several cases. Compared to FOMM, NeRF-based methods
faithfully capture pose (camera) information. NeRFace
effectively tracks the driving video, but it faces challenges in
faithfully reconstructing intricate facial expressions, due to
its conditioning strategy. HyperNeRF encounters difficulties

in capturing a wide range of facial expressions and head
positions, often exhibiting artifacts like blurring and halo
effects in the generated images. Furthermore, it struggles
to accurately model changes around the mouth region.
Our model demonstrates a remarkable ability to faithfully
replicate both the poses and expressions of the driving video
with exceptional visual fidelity. In addition, it is important
to highlight that our approach significantly outpaces the
NeRF-based baseline models in terms of training and
inference speed.

D. ABLATION STUDY
To demonstrate the effectiveness of each part in the proposed
method, we evaluate the performance of our model by
excluding or replacing key components. We compare our
model with three different versions, i.e., (i) adopting a
direct conditioning method (like NeRFace) instead of using
hyperspace concept (w.o. ambient), (ii) training without
landmark loss (w.o. Llmk), and (iii) using only 1/10 dataset
for training (1/10 training). Fig. 7 represents the output
of each method. When we discard the ambient encoding
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FIGURE 7. Results of the ablation study. All the same areas in each image
are cropped and zoomed in (red box).

module and apply simple direct concatenation for expression
conditioning, the model fails to capture facial expression and
the visual quality of the outputs drops significantly. Although
Llmk does not prominently affect image quality, fine details
of the face are lost when our model is trained without Llmk.
When we use only 1/10 sequences for training, the model
does not sufficiently learn the conditions, thus it shows some
errors in control head pose or expression.

V. CONCLUSION
In this research paper, we have introduced a novel and effi-
cient dynamic neural field for reconstructing 4D avatars with
controllable features. Our approach leverages an ambient
encoder to effectively encode the low-dimensional basis of
the 3D Morphable Model (3DMM) for precise control over
facial expressions. In a comparison with the conventional
direct conditioning method (concatenation), our technique
consistently outperformed in both qualitative and quanti-
tative evaluations. Additionally, through the incorporation
of explicit grid encoding, our model achieved significant
improvements in computational efficiency, being 100 times
faster during inference and 30 times faster during training
when contrasted with existing methods. We believe that
our approach holds great potential for practical applications
in the realm of 4D facial avatar reconstruction. However,
it’s worth noting that a limitation of our method, which is
also a shared challenge in NeRF-based approaches, is the
necessity for independent training for each distinct identity.
Recently, there has been a growing trend among researchers
to combine NeRF with generative models. Although 3D-
aware generative models currently have limited applicability,
the prospect of extending the versatility of NeRF is an
intriguing avenue for future research, and we defer this
exploration to our forthcoming work.
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