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ABSTRACT In response to the growing waste problem caused by industrialization and modernization, the
need for an automated waste sorting and recycling system for sustainable waste management has become
ever more pressing. Deep learning has made significant advancements in image classification, making it
ideally suited for waste sorting applications. This application depends on the development of a suitable deep
learningmodel capable of accurately categorizing various categories of waste. In this study, we present RWC-
Net (recyclable waste classification network), a novel deep learning model designed for the classification
of six distinct waste categories using the TrashNet dataset of 2,527 images of waste. The performance of
our model is subjected to intensive quantitative and qualitative evaluations and is compared to various state-
of-art waste classification techniques. The proposed model outperformed several state-of-the-art models
by obtaining a remarkable overall accuracy rate of 95.01 percent. In addition, it receives high F1-scores
for each of the six waste categories: 97.24% for cardboard, 96.18% for glass, 94% for metal, 95.73% for
paper, 93.67% for plastic, and 88.55% for litter. The reliability of the model is demonstrated qualitatively
through the saliency maps generated by Score-CAM (class activation mapping) model, which provide visual
insights into its performance across various waste categories. These results highlight the model’s accuracy
and demonstrate its potential as an effective automated waste classification and management solution.

INDEX TERMS Waste management, recycling, waste classification, multi-label classification, convolu-
tional neural network (CNN), deep learning.

I. INTRODUCTION
Globalization, fueled by rising populations, industrial expan-
sion, and economic expansion, has led to an increase in
the demand for natural resources. This increased resource
consumption has simultaneously led to an alarming increase
in waste production [1]. A significant amount of urban waste
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continues to be illegally disposed of, primarily through land-
fills and incineration [2]. This continuous flow of pollution
poses a serious risk to urban ecosystems and the health of
local residents. Notably, a significant portion of this waste
consists of household garbage, and the decomposition of
certain components within household garbage can lead to the
accumulation of hazardous compounds in the environment,
thereby escalating ecological risks [3]. In addition, certain
residential waste materials manifest poor biodegradability,
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as exemplified by the common plastic pollution observed
in underwater ecosystems worldwide [4]. One-third of the
world’s waste is improperly managed, lacking proper sorting
and adequate measures, thereby causing extensive environ-
mental pollution and posing a grievous threat to sustainable
development [5]. In response to these escalating environmen-
tal challenges, the Environmental Protection Agency (EPA)
has emphasized the significance of reprocessing municipal
solid waste (MSW) as an environmentally responsible waste
management strategy [6]. Indeed, the global production of
municipal solid waste reached 2.01 billion tons in 2016, with
projections indicating an increase to 2.59 billion tons by
2030 [5]. In order to mitigate environmental consequences
and assure the development of sustainable societies, the need
for efficient waste management procedures has never been
greater.

In the past ten years, the field of deep learning has
witnessed remarkable advancements, driven by substantial
improvements in computational capabilities and theoretical
underpinnings [7]. These advancements have had a sig-
nificant impact on a variety of computer vision domains,
producing exceptional results in tasks such as image classifi-
cation, object detection, and semantic segmentation. Notably,
Convolutional Neural Networks (CNNs) have ushered in
a new era of image classification. These networks auto-
mate feature extraction, improve accuracy, and redefine the
capabilities of computer vision, which is especially rele-
vant for the efficient detection and classification of waste
in recycling, thereby reducing labor-intensive processes and
costs [8]. Computer vision and deep learning methodolo-
gies hold great promise for automating the identification
and classification of waste types, thus streamlining waste
management processes [9]. Recognized as effective strategies
for reducing waste production and promoting sustainability,
recycling and waste sorting have encountered obstacles such
as low efficiency in traditional machine and manual waste
classification, limited public awareness of waste categoriza-
tion, and the inherent complexity of the waste classification
process [10], [11], [12]. These obstacles have prompted the
investigation of automatic waste detection and classification
technologies with the goal of enhancing operational effi-
ciency and reducing costs. Due to their robust modelling
capabilities [13] and end-to-end learning paradigm, reducing
the need for explicit feature engineering [14], deep learning
approaches have proven superior to conventional machine
learning techniques. The success of these deep learning mod-
els is defendant upon the availability of relevant datasets [15].
Yang and Thung’s 2016 introduction of the TrashNet Dataset
marked a milestone in waste image classification [16].
While additional waste datasets such as TACO, AquaTrash,
and VN-trash have since emerged, expanding the available
resources [9], [17], [18], they have certain limitations, such
as small sample sizes, a focus on specific environmen-
tal contexts, and restricted accessibility as non-open-source
datasets. Addressing these obstacles and optimizing the

performance of waste classification remains a top priority for
researchers.

The TrashNet dataset, which includes the most prevalent
waste types – cardboard, glass, metal, paper, plastic, and litter
– is the focal point of our experiment. Our objective is to
develop a robust deep learning framework that can accurately
classify these waste types, thereby improving the effective-
ness and efficiency of waste sorting and recycling processes.
The main contributions of our work can be summarized as
follows:

• Six different categories of waste were classified with
high reliability in this study.

• A novel deep learning model, recyclable waste classifi-
cation (RWC-Net) is proposed to classify the wastes.

• A saliency map-based visualization generated score-
CAM (class activation mapping) was shown as quanti-
tative evaluation.

The manuscript is organized as follows: In Section II,
we present a comprehensive literature review of the Trash-
Net dataset. Section III offers an in-depth discussion of the
methods and materials used in our study, encompassing a
detailed dataset description, preprocessing steps, model spec-
ifications, and the evaluation metrics employed. Section IV
provides an extensive analysis of both quantitative and qual-
itative aspects of our investigation. Finally, in Section V,
we conclude with a discussion of our findings and outline
potential future research directions aimed at advancing sus-
tainable waste management practices.

II. RELATED WORKS
Effective waste management has become a major social con-
cern, necessitating an efficient automated waste classification
system. In a rapidly expanding and industrialized world,
encouraging residents to participate actively by sorting and
recycling waste has become essential to the effective man-
agement of waste. In the early phases of research, images
of waste were classified using traditional machine learn-
ing techniques. In 2016, Mindy et al. applied the Support
Vector Machine (SVM) algorithm to the TrashNet dataset,
attaining a 63% accuracy [16]. In 2018, Bernardo et al.
classified six categories of garbage images from the same
dataset using the K-Nearest Neighbors (KNN) algorithmwith
an impressive 88% accuracy [19]. Other efforts, including
those by Mandar, employed the Random Forest (RF) and
Extreme Gradient Boosting (XGBoost) algorithms, yielding
62.61% and 70% accuracy, respectively [20]. However, with
the recent advancement in the field of deep learning, the
landscape of waste classification has changed. The supe-
rior performance of deep learning models over traditional
machine learning techniques has led to significant advances
in waste management [21], [22].

In recent years, deep learning models have made signifi-
cant contributions to the field [23]. In early 2018, Kennedy
et al. implemented the OscarNet network, which was refined
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FIGURE 1. An overview of our overall methodology for waste image classification.

by VGG19 to attain an accuracy of 88.42% on Trash-
Net dataset [24]. Notably, in October 2018, the team led
by Costa et al. presented a fine-tuned AlexNet network
with 91% accuracy and a fine-tuned VGG16 network with
93% accuracy [19]. In addition, Rabano et al. incorpo-
rated a MobileNet network with an accuracy of 87.2% [25].
In December of 2018, Rahmi et al. evaluated several clas-
sical networks using the TrashNet dataset. Inception-Resnet
V2 and DenseNet121 achieved an accuracy of 89%, which
was notably remarkable. They also fine-tuned these models
using the ImageNet dataset, where fine-tuned DenseNet121
obtained 95% accuracy and fine-tuned Inception-ResNet V2
attained 94% accuracy [26]. In June of 2019, Victoria et
al. built upon this foundation to further develop the field.
They attained 87.71% accuracy using the Inception network,
88.34% accuracy using the Inception-ResNet network, and
88.66% accuracy using the ResNet network [27]. These
developments demonstrate the substantial progress made in
waste classification using deep learning models. The transi-
tion from conventional machine learning to deep learning has
not only improved classification accuracy, but also created
new avenues for comprehending the intricate refuse catego-
rization process.

III. MATERIALS AND METHODS
In this section, we explore extensively into the TrashNet
dataset, exploring its preprocessing phases, data preparation
procedures, and waste image classification procedures. Sub-
sequently, the following sections provide a comprehensive
breakdown of the deep learning methodologies utilized in
this study, detailing their complexities and methodological
foundations. In addition, we elaborate on the quantitative

metrics used to evaluate the success of each experiment,
as well as the qualitativemethodologies employed to interpret
the results. FIGURE 1 is an illustrative visual representation
intended to provide a comprehensive overview of our pro-
posed waste classification method. This diagram depicts the
comprehensive workflow of our waste classification method.

A. DATASET DESCRIPTION
In this study, we utilized the publicly accessible Trash-
Net dataset, a valuable resource for our study. This dataset
includes 2,527 high-resolution images precisely categorized
into six distinct waste categories, including cardboard, glass,
plastic, paper, metal, and litter. Notably, each image in this
dataset depicts a single object and corresponds to a standard
resolution of 512 by 512 pixels. This comprehensive dataset,
with its variety of waste categories and single object focus,
served as the foundation of our research, allowing us to
investigate and classify waste materials in a structured and
methodical manner. Table 1 provides detailed information on
each fold split of the training, validation, and testing sets of
the dataset.

B. DATA PREPROCESSING
The TrashNet dataset consists of images in Portable Net-
work Graphic (PNG) format, with standardized dimensions
of 512 by 512 pixels each. The creators of the dataset arranged
all the data into six different folders, each of which corre-
sponds to a distinctive waste category, including cardboard,
glass, plastic, paper, metal, and litter. The dataset under-
went a thorough series of preprocessing steps in preparation
for training our deep learning models. These procedures
included data resizing, augmentation, normalization, and
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TABLE 1. The complete details of each fold data split for training,
validation, and test set.

cross-validation. These steps were taken to improve the over-
all performance of our deep learning models in this study.

1) DATA PREPARATION
To facilitate the training of various deep learning models,
we conducted essential data preparation steps. These mea-
sures included resizing the data and implementing k-fold
cross-validation, a common method for evaluating the per-
formance of deep learning models across the entire dataset.
In this investigation, we started by shuffling the entire dataset
and creating five folds, with each fold containing the entire
dataset alongwith different validation and test set.We utilized
the conventional data allocation split of 70% for training, 20%
for validation, and 10% for testing. In terms of image sizes,
we resized the images to 224 by 224 pixels, the standard
measurement for training our deep learning models. For spe-
cificmodels, such as Inception-v3, the images were resized to
299 by 299 pixels to meet the model’s optimal performance
requirements. Throughout this research, these detailed data
preparation stages were carried out to ensure the robustness
and dependability of our deep learning models.

2) AUGMENTATION
The data set details for each category, as presented in Table 1,
reveal significant disparities in the distribution of images
across the several categories. To correct these disparities and
improve the quality of the dataset, a suite of diverse data
augmentation techniques was carefully implemented with
the PyTorch framework using Python. Initially, we imple-
mented a ‘Random Horizontal Flip’ with a probability of
0.5 that entailed horizontally flipping images. This technique
substantially increased the dataset’s variability, enriching
the training data for deep learning models. Consequently,
we implemented a ’30-degree RandomRotation,’ introducing
random rotations to the images and expanding the dataset’s
representation of diverse viewpoints. In addition, a ‘Random
Crop’ operation with a probability of 0.5 was used to increase
dataset size and enhance the accuracy of class representation.

These combined augmentation strategies increased the num-
ber of training images per class to roughly 2,500, laying
the groundwork for the training and evaluation of our deep
learning models. The number of images for each class after
augmentation is presented in Table 1.

3) NORMALIZATION
Normalization is a widely used image processing technique
in the field of computer vision that is used to standardize the
pixel values of images within a dataset. In our implementation
of normalization, we first calculated the global mean and
standard deviation of the dataset. The mean represents the
average pixel value, whereas the standard deviation quantifies
the amount of variation in pixel values around this mean. This
method entails transforming pixel values by subtracting the
mean and dividing by the standard deviation, both of which
are computed parameters. This operation scales the pixel
values to attain a mean of zero and a variance of one, thereby
centering the data distribution around zero. During the image
loading phase, the normalization process was implemented,
particularly for RGB images, necessitating the normalization
of all three colors channel. Formally, the equation for normal-
izing each channel is expressed as Eq. (1).

Xnorm =
X − µ

σ
(1)

Here X represents the original pixel value of the image,
Xnorm represents the normalized pixel value, µ (mu) is the
global mean, and σ (sigma) is the global standard deviation
across the dataset. The incorporation of normalization into
our image processing techniques improves the convergence
of machine learning models and ensures consistent perfor-
mance across the variety images in the dataset.

C. MODEL DESCRIPTION
In this section, we explore the architecture of our pro-
posed waste image classification model and provide key
insights into its construction. FIGURE 1depicts how our
model was trained to classify waste images into six dis-
tinct categories: cardboard, glass, metal, plastic, paper, and
litter. Prior research on waste classification has investi-
gated well-known deep learning models such as AlexNet,
GoogleNet, ResNet, DenseNet, Inception, MobileNet, and
EfficientNet [23], [28]. In our experimental configuration,
we examined five well-known deep learning models in
depth: GoogleNet [29], ResNet50 [30], Inception-v3 [31],
MobileNet-v2 [32], and DenseNet201 [33]. DenseNet201
and MobileNet-v2 demonstrated the highest performance
on the Trashnet dataset among these models. As a result,
we developed a novel model, RWC-Net, that combines the
advantages of MobileNet-v2 and DenseNet201, achieving
the highest performance among all the pretrained models
we evaluated. In Section IV, a comprehensive comparison
based on various evaluation metrics is presented. For the
waste classification, we employed the ‘LogSoftMax’ acti-
vation function and the Cross-Entropy loss function in the
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FIGURE 2. The architecture of the (a) DenseNet201, (b) MobileNet_v2 against the proposed (c) RWC-Net model.

output layer. The loss function was optimized using the Adam
optimizer with a learning rate of 0.00001. In the following
sections, we provide an in-depth discussion of these models’
architectures, casting light on their detailed design principles
and operational characteristics.

1) ARCHITECTURE OF DENSENET201
DenseNet201 is a well-known deep convolutional neural
network (DCNN) whose architecture prioritizes information
flow and gradient propagation [33]. Each layer, which is
composed of multiple dense blocks, forms dense connections
with all preceding layers within the same block. This dense
connectivity strategy promotes efficient feature reuse, allow-
ing the model to capture intricate patterns effectively. The
design optimizes performance with bottleneck layers, bulk
normalization, and ReLU activations. These bottleneck layers
employ 1×1 convolutions strategically prior to 3×3 convolu-
tions, thereby effectively reducing computational complexity.
Batch normalization improves the consistency of feature
maps to increase training stability. ReLU activations intro-
duce nonlinearity to model complex data relationships while

mitigating the possibility of gradient vanishing. To control
spatial dimensions, deliberate transition layers are inserted
between dense blocks. These transition layers typically con-
sist of batch normalization, an 1×1 convolutional layer, and a
2×2 average pooling layer, all of which reduce computational
complexity. After the final dense block, global average pool-
ing is used to convert 4D featuremaps into 2D feature vectors,
thereby reducing spatial complexity prior to the dense layers.
Class predictions are generated by a dense layer whose size
corresponds to the number of classes, followed by a ‘LogSoft-
Max’ activation. The architecture of DenseNet201 is depicted
in FIGURE 2(a) of the paper, which provides a visual repre-
sentation of dense connectivity, obstruction layers, transition
layers, and global average pooling. DenseNet201’s architec-
ture optimizes information flow, gradient propagation, and
feature learning efficacy, making it a versatile option for a
wide range of computer vision tasks [33].

2) ARCHITECTURE OF MOBILENNET-V2
MobileNet-V2, the third version of the MobileNet series,
is a lightweight and highly efficient deep learning model
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that excels in resource-constrained environments, meeting
the needs of mobile devices and peripheral computing sys-
tems [32]. At its core, MobileNet-V2 features a streamlined
architecture that has been carefully designed to achieve
an optimal balance between model size and computational
efficiency. This design paradigm is based on the incorpora-
tion of ‘‘bottleneck’’ layers, which are composed primarily
of depth-separable convolutions. These layers play a cru-
cial role in reducing the number of model parameters and
computational complexities, thereby enhancing the model’s
efficiency while conserving its representational capacity.
MobileNet-V2 is also distinguished by the ingenious concept
of ‘‘inverted residuals.’’ This design decision navigates the
delicate balance between lightweight expansion and a linear
constraint, enhancing the model’s efficiency and adaptability.
In addition, MobileNet-V2 incorporates the ‘‘squeeze-and-
excitation’’ module, which improves its ability to capture
critical features by recalibrating channel-specific feature
responses. Versatility is one of the model’s most notable
qualities. For class prediction, the architecture concludes with
a fully connected layer containing the class size followed
by the ‘LogSoftmax’ activation function. The architecture
of MobileNet-V2 is depicted in FIGURE 2(b) of the paper,
which provides a visual representation of the model’s archi-
tectural details. MobileNet-V2’s architecture is delicately
designed to accommodate a variety of applications and con-
straints, making it an indispensable asset in computer vision
and deep learning [32].

3) ARCHITECTURE OF THE PROPOSED RWC-NET
The proposed RWC-Net model for waste image classification
was developed using a combination of two deep convolu-
tional neural network (DCNN) models: DenseNet201 and
MobileNet-v2. The motivation for combining them was to
leverage the complementary feature extraction and learning
capabilities of both networks. To achieve this, we utilized
pretrained DenseNet201 and MobileNet-v2 models, origi-
nally trained on the extensive ‘ImageNet’ dataset, to acquire
rich image representations. Multiple auxiliary outputs were
implemented to optimize the loss function and improve the
model’s overall performance. FIGURE 2(c) depicts the archi-
tecture of RWC-Net, which includes two auxiliary outputs.
The first auxiliary output extracts and concatenates features
from the second dense blocks of DenseNet201 and the fifth
inverse residual block ofMobileNet-v2. The second auxiliary
output is derived from the third dense blocks of Densenet201
and combined with characteristics from the final inverse
residual block of MobileNet-v2. The final RWC-Net out-
put was created by concatenating the DenseNet201 and
MobileNet-v2 outputs, resulting in a comprehensive repre-
sentation that combines characteristics from both networks.
In order to fine-tune the model further, we incorporated an
exponential weight loss adjustment from deeper to shallower
layers, as shown in Eq. (2).

Li(adjusted) =
Li
2i

; i = 0, 1, 2 . . . (2)

Here, following a 1
2i polynomial decay, Li(adjusted) represents

the altered loss weight for the primary loss output Li. When
i = 0, it presents the final output, refers to the ultimate
loss function (i.e., Li(adjusted) = Li), where it maintains a
loss weight of 1. While the loss weights of shallower layers
decrease gradually. In this case, the auxiliary losses 1 and
2 are multiplied by 1

4 and 1
2 , respectively.

The collective characteristics of auxiliary outputs and the
final output traverse custom auxiliary branches to generate an
output with consistent characteristics. The auxiliary branches
generate six classes for the final output layers, as described in
the dataset, making RWC-Net highly supervised. For the aux-
ilary output, we extracted features from the inverse residual
modules of MobileNet-v2 and combined them with features
arriving from DenseNet201. The final output was produced
by concatenating the features of the final CNN layers of
both models, followed by adaptive average pooling, flatten-
ing, and passing through a linear Multi-Layer Perceptron
(MLP) layer and classifier. The inspiration for the use of
auxiliary branches and loss function optimization came from
the architecture of Inception-v3 [31]. In our implementation
of auxiliary branches, we mirrored the structure of the orig-
inal Inception-v3 model. The feature vectors were average
pooled with large kernels, such as 5 × 5, 7 × 7, etc., and then
compressed by a convolutional block with a kernel size of
(1,1). The original dimension of the feature map was then
restored using a convolutional block with kernels of the same
size. Utilizing effective feature pooling with (1,1) kernels
facilitated consolidation of features across all three branches.
After reducing the feature vector to a single dimension, it was
passed through a linear MLP block and classifier. The MLP
block has the same number of input neurons as the number of
features in the 1D feature vector and the same number of out-
put neurons as the output classes (six for all the categories of
waste). To facilitate the classification task, both auxiliary and
final activations were endowed with ‘LogSoftmax’ functions,
as defined by Equation (3).

LogSoftmax (xi) = log
(

exi∑
i e
xi

)
(3)

The RWC-Net architecture exploits the synergy between
DenseNet201 and MobileNet-v2 in an effort to maximize
their complementary capabilities and improve the model’s
accuracy in refuse image classification.

D. EXPERIMENTS
In this experimental section, a variety of deep learning
models, each designed to classify waste into six distinct
categories, were used to classify waste. The investigation
was conducted on TrashNet dataset containing 2,527 images
in total. To ensure reliable model training and evaluation,
the training dataset was augmented to 15,000 images, with
252 images intended for validation and 504 images allocated
for testing. This splitting approach was followed to the stan-
dard 70%/10%/20% split for training, validation, and testing
for each fold of the 5-fold cross-validation of the dataset.
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Throughout the experiment, a 5-fold cross-validation strategy
was employed, enabling a complete assessment of the entire
dataset across various test sets (5 ∗ 20% = 100%).

E. QUANTITATIVE EVALUATION
In this study, we have used a variety of deep learning models
to classify six distinct waste categories, including cardboard,
glass, plastic, paper, metal, and debris. To properly eval-
uate the performance of our models, we have employed
established evaluation metrics that include precision, recall
(sensitivity), specificity, and the F1 score. In this evaluation,
these metrics were computed using data extracted from the
confusion matrix, which contains crucial parameters such
as true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). Notably, these metrics were
accompanied by confidence intervals (CIs) of 95%, a crucial
measure of the dependability and robustness of our evaluation
outcomes. The confidence interval (CI) for each evaluation
metric was calculated using the formulation outlined in Eq.
(4) [34].

r = z
√
metric (1 − metric) /N (4)

whereN is the number of test samples and z is the significance
level for 95% CI, which is 1.96. All values were computed
using the global confusion matrix, which consists of all test
fold results from the 5-fold cross-validation in respective
investigations.

In Eqs. (5) to (9), we highlighted the exact formulation of
accuracy, precision, recall or sensitivity, specificity, and F1-
score for subject-by-subject evaluation in our study [35], [36].

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

Precision =
TP

TP+ FP
(6)

RecallorSensitivity =
TP

TP+ FN
(7)

Speicificity =
TN

TN + FP
(8)

F1 − score ≡ 2 ∗
Precision ∗ Recall
Precision+ Recall

=
2TP

2TP+ FP+ FN
(9)

To account for class imbalance, all metrics except accuracy
were weighted. For accuracy, we reported the overall macro
value derived from the confusion matrix for the entire dataset.
We have also displayed the confusion matrix for the model
with the best performance.

F. QUALITATIVE EVALUATION
Class Activation Mapping (CAM) techniques were utilized
for qualitative evaluation of our CNN-based deep learn-
ing models [37]. CAM generates weighted activation maps
for individual images based on the model’s predictions,
emphasizing regions that have a significant impact on these

predictions. We conducted our analysis using Score-CAM,
one of several advanced CAM techniques such as Grad-
CAM [38], Grad-CAM++ [39], Smooth Grad-CAM++

[40], and Score-CAM [41]. This method employs the model’s
unique characteristics to generate weighted heatmaps for test
images within each class, thereby enabling visualization of
the classifier’s class-specific learning process. Score-CAM
is distinguished by its reliance on the specific attributes of
the trained model, unlike other CAM variants such as Grad-
CAM, which utilize generic algorithms. In addition to the
quantitative metrics used, CAM’s qualitative evaluation pro-
vides a deeper comprehension of the performance of the
model. It improves our understanding of how the model
arrives at its predictions and provides additional validation
for the CNN-based deep learning models used in this study.

G. IMPLEMENTATION DETAILS
In this study, the algorithm was implemented using the
PyTorch deep learning framework to trainwaste classification
models. Our server configuration for the train via Google
ColabPro consisted of a single NVIDIA Tesla T4 with 15GB
GPU memory, a 2-core Intel Xeon CPU at 2.00GHz, and
26GB of system memory. All investigations were conducted
utilizing Python 3.10.12 and PyTorch 1.11.0.

IV. RESULTS AND DISCUSSION
This section addresses the performance of our deep learning
model in classifying the above-mentioned six categories of
waste. Our thorough assessment includes both quantitative
and qualitative evaluations of our experimental outcomes.
In addition, we provided a comparison with respect to var-
ious state-of-art models featured in the literature on waste
management. As we analyze our findings, we also put light
on the limitations we encountered in our research. In addi-
tion, we discuss prospective avenues for future research and
development to address the issue.

A. CLASSIFICATION RESULTS OF THE DEEP LEARNING
MODELS
The cumulative results of our deep learning models’ 5-fold
experiments are depicted in Table 2, highlighting their perfor-
mance metrics and their ability to accurately classify images
of waste. In addition, Supplementary Table 1 provides a
comprehensive breakdown of the 5-fold results obtained by
these models for a more in-depth understanding of the exper-
iment. We explored various optimizers and learning rates to
determine the most effective combination in the course of our
investigation. The results of this exploration are presented in
Supplementary Table 2 for comparative analysis.

The intention behind the development of the RWC-Net
model was to leverage the unique feature extraction capa-
bilities of two separate models, namely Densenet201 and
Mobilenet-v2. This fusion resulted in the development
of the RWC-Net model, which achieved the highest F1-
score of 95.01% across a variety of performance metrics,
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TABLE 2. The performance of different models for classifying the waste images with 95% of CI.

TABLE 3. The class-based performance of the proposed model on different categories waste with 95% of CI.

outperforming various state-of-the-art models. Moreover,
the model’s overall accuracy was exceptional coming in at
95.01%, and it also exhibited notable precision (95.04%),
recall (95.01%), and specificity (98.88%). These results
demonstrate the model’s proficiency in accurately classifying
images of waste. In Table 3, we presented the class-based
evaluation metrics to provide a more thorough evaluation.
The ‘‘cardboard’’ class received the highest F1-score of
97.24%, while the ‘‘litter’’ class received the lowest F1-
score of 88.55%, as shown in the table. Remarkably, the
model consistently produced F1-scores of at least 94% for
the remaining classes. Notably, the ‘‘litter’’ class presented
particular difficulties due to its limited representation in the
original dataset, which consisted of only 137 images contain-
ing small-sized waste objects. This inherent class imbalance
had a minimal effect on the overall performance of the
model. For further transparency and deeper insights into our
investigation, we present the fold-wise evaluation matrices in
Supplementary Table 3.

In FIGURE 3, we present the combined class-based con-
fusion matrix, a visual depiction of the collective results of
all the 5 folds of our proposed model. The above diagram
is an effective illustration of the model’s ability to classify
waste materials into all the six distinct categories of waste.
The robust performance is evident as the model consistently
demonstrates accurate and reliable classification across all
the different categories of waste, reinforcing its impressive
performance in classifying distinct categories of waste.

B. CAM BASED QUALITATIVE EVALUATION
In this section, we evaluate our proposed RWC-Net model
using saliency maps, specifically Class Activation Maps
(CAM) derived by the Score-CAM model. These CAM
heatmaps highlight our model’s ability to focus on the most
relevant regions of an image and accurately classify var-
ious waste types. FIGURE 4 depicts a selection of four
images from each of the six waste categories, accompa-
nied by their respective original images and CAM heatmaps.
Notably, these images were chosen at random from the origi-
nal five-fold dataset to ensure a representative assessment of
our model’s overall performance.

To further evaluate the efficacy of our model, we gener-
ate heatmaps using Score-CAM. These heatmaps illustrate
precisely where our classification model focuses its attention
when classifying different categories of waste. FIGURE 4
demonstrates that, in the majority of cases, the model
focuses primarily on the object’s centre. For larger waste
items that occupy a significant portion of the image, the
model effectively concentrates on multiple regions within
the waste region. FIGURE 4 depicts the consistent abil-
ity of our model to concentrate in on waste-containing
regions of an image. This capability remains consistent across
diverse waste categories and object sizes, demonstrating
the model’s proficiency in accurately localising and iden-
tifying waste objects. The qualitative evaluation conducted
using CAM-assisted saliencymaps provides valuable insights
into the performance of our model, validating its capacity
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FIGURE 3. The combined confusion matrix with class-based results.

FIGURE 4. Class activation maps (CAM) generated by Score-CAM of the
six categories waste along with their respective original images.

to precisely identify and classify a broad variety of waste
categories.

C. COMPARISON OF RWC-NET PERFORMANCE WITH
EXISTING WORKS
The TrashNet dataset, which was published in 2016, has
become the standard benchmark for waste image classifi-
cation tasks, and has been utilized in a variety of research
projects. Nonetheless, it is notable that several studies have
neglected to employ cross-validation in their research. This
oversight may lead to data leakage and bias during the
assessment phase. In contrast, our research is committed
to preserving the data’s integrity, and we have adopted a

TABLE 4. A comparison of our proposed model with the existing research
on TrashNet dataset.

five-fold cross-validation strategy. This method reserves 20%
of the dataset for testing in each fold, ensuring that no data
leakage or bias occurs during our investigation. By following
this thorough cross-validation strategy, we ensure that our
results are accurate and trustworthy. In Table 4, we present a
comparative analysis of the performance of our model versus
several state-of-the-art studies conducted on the TrashNet
dataset.

In the realm of classical machine learning and deep
learning, the implementation of k-fold cross-validation
is of paramount importance. This method permits a
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comprehensive evaluation of the performance of a model
across the entire dataset. Notably, a review of previous
research, as shown in Table 4, reveals that the majority of
investigations did not employ cross-validation. This omission
has the potential to introduce bias and data leakage into
the test set, thereby influencing the precision of the perfor-
mance metrics applied to the TrashNet dataset. To underscore
the significance of meticulous cross-validation, we present
a concrete example. In a referenced study [48], researchers
diligently employed a comprehensive 9-fold cross-validation
methodology, yielding an impressive overall F1-score of
93.68%. In our own investigation, we opted for a five-fold
cross-validation approach. The outcomes are compelling,
as we achieved a remarkable overall F1-score of 95.01%.
This performance metric not only attests to the effectiveness
of our proposed model but also underscores the practical
applicability and potential of the RWC-Net model in real-
world waste management applications.

D. LIMITATION OF OUR WORK AND FUTURE DIRECTION
Our research aimed to improve the efficiency of waste man-
agement systems by classifying six distinct categories of
recyclable waste using the TrashNet dataset. Despite the fact
that the dataset provides a foundation for this endeavour,
it has limitations that have impacted the performance of our
deep learning models. The relatively small size of the dataset,
which consists of a total of 2,527 images, is the most sig-
nificant limitation. There are only 137 images in the ‘‘litter’’
class, which is especially concerning. This insufficiency of
data proved insufficient for robust model training, and waste
class, which consists of small waste items not covered by the
other five waste categories, achieved an F1-score of 88.50%.
The disparity in class representation hinders the model’s
ability to recognize and classify these waste items effectively.
The dataset also lacks bounding boxes and segmented masks,
which is a notable limitation. Each image depicts a single
category of waste on a white background, limiting its appli-
cability for more complex waste detection and segmentation
tasks. In practical wastemanagement scenarios, the capability
of identifying waste within larger scenes and providing pre-
cise localization via bounding boxes or segmentation masks
would be invaluable. Furthermore, the dataset only includes
six categories of recyclable waste, whereas in actual waste
management numerous waste types are encountered every
day. Expanding the dataset to include a broader range of
recyclable waste categories would result in a more precise
and extensive representation of actual waste management
challenges. To address these limitations, waste management
research should prioritize the accumulation of larger and
more diverse datasets in the future. This may involve the
collection of additional images to improve class represen-
tation and accommodate more waste varieties. In addition,
the annotation of bounding boxes or segmentation masks on
images of waste represents an exciting direction for enhanc-
ing waste detection and segmentation techniques. By doing
so, we can contribute to the development of more efficient

and comprehensive waste management solutions that account
for the complexities of actual waste scenarios.

V. CONCLUSION
Recycling is crucial to minimizing waste and optimizing
waste management procedures. Utilizing automatic classi-
fication tools powered by models of deep learning to sort
different types of waste can significantly improve processing
efficiency and reduce operational costs in wastemanagement.
In our research, we developed a deep learning-based image
classificationmodel capable of categorizing six distinct waste
types. Our proposed RWC-Net model, a combination of two
renowned pretrained models, DenseNet201 and MobileNet-
V2, performed exceptionally well at classifying images of
waste. Through the combination of these model character-
istics and the optimization of our loss function with the
incorporation of two auxiliary outputs, we outperformed sev-
eral existing models in the waste classification task with an
impressive overall accuracy rate of 95.01%. In addition, our
model attained an accuracy of 94% or higher for five of
the six waste categories. To assure a thorough evaluation,
the performance of our model was evaluated across all five
folds of the dataset, providing an accurate representation of
its capabilities. These outcomes surpassed the performance
of several state-of-the-art models in the field of waste image
classification, resulting in impressive advances in waste recy-
cling processes. As a further demonstration of the robustness
of RWC-Net, we generated Score-CAM-based heatmaps
for waste images, which vividly demonstrate the model’s
proficiency at recognizing various waste categories. This
visualization highlighted the model’s precision in identifying
waste objects, further establishing its utility in the classifi-
cation of waste. The proposed method is ideally suited for
incorporation into waste sorting devices, thereby enhancing
the efficacy of waste sorting and recycling processes. Future
research efforts may concentrate on improving classification
accuracy, especially for the ‘litter’ category, and on waste
detection, which may involve the incorporation of bounding
boxes around waste objects in image data. Given the variation
in waste generation and recycling practices between nations,
our future researchwill involve the collection of waste images
from various geographical regions to evaluate the adaptability
and effectiveness of RWC-Net in diverse waste management
systems.
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